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Abstract. Estimating object poses is a fundamental problem in com-
puter vision in general as well as for robotic manipulation in particular.
Most approaches require a known 3D model of the object. One step
towards a more general formulation is to estimate the object’s width,
height and depth with the pose, e.g. consider a generic box, cylinder or
plate instead of one with known dimensions.

This paper investigates the last stage of such a pipeline, namely least-
squares estimating pose and scales from point correspondences aggre-
gated into a fixed size matrix. Therefore it encapsulates the scaled SO(3)
manifold in a so-called H-operator and derives a Gauss-Newton based
optimizer with initial guess on that.

We find that the resulting estimator is strongly biased towards small
scales. This is due to the structure of the least-squares loss: Noise in
recognized object points is multiplied with the to be estimated transfor-
mation matrix, violating the additive noise assumption. It has no effect
in the prevalent use of this loss for pose estimation but affects the scale.
We propose a solution to this bias based on an approximation of total
least-squares that preserves the advantage of a fixed size representation
and show that it provides relatively consistent uncertainty estimates.
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A Well-Definedness of p and o

o is well-defined since Q" Q is diagonal and positive (by definition of Q), and
thus its square-root is well-defined and still diagonal and positive. p is well-
defined since the inverse of a positive diagonal matrix always exists. The result
of p is indeed in SO(3) since

p(Q)p(Q)=0(Q)'Q'Qr(Q) ' =0(Q)'0(Q)%(Q) " =T (1)

det(p(Q))— det(Q) _ det(Q) _ det(Q) -1 (2>

Cdet(0(Q))  \/det(QTQ)  [det(Q)|
* This is the supplemental material of a paper accepted at the ROBOVIS 2025 con-
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months.
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B Proof of the H-Axioms for the Scaled SO(3)

The original publication [1] required the axiom that the zero-vector is the neutral
element of H. This can actually be derived from the other axioms and is trivial
in this case anyway.
The first axiom requires surjectivity of B (all states can reach any other state
by a single H-step).
VQ1,Q2€ Q: QEH(Q:BQ1) = Qe (3)
Proof.
Q H(Q28Qu)
=exp, (Q2 B Q1)xQ1exp,(Q28Q1)o
= exp, log, (p(Q2)p(Q1) 1) Q1 exp, log, (0(Q1) '0(Qz))
=Q20(Q2) 'o(Q1)Q; 'Q10(Q1) ' (Q2)
=Qq

The second axiom requires local injectivity of B (within some neighborhood
V of a state, the tangent vector transferring to another state is unique).

VQeQ,0eV: (QBIHBQ= (4)
For this, we need the following lemma
o(QHJ) = o(Q) exp, do (5)

which is proven by using the diagonality of exp, and Q" Q and orthogonality of

expy:
o(QHY)
=0 (expy, 0x Qexp, o)
:\/(expO 3o)TQT (expy 0x) T expy dx Q exp, do

=1/exp, 1oQ T Qexp, o

:\/expo 5OU(Q)\/‘3XPO do
=0(Q) exp, J,

Proof.

(
=(log, (p(QE)p(Q) "), log.(0(Q) 'a(QEB)))"
(log, (p(Q B 8)p(Q) "), log, exp, (0s)) "

(log (
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=(log, (QB )0 (QB)'o(Q)Q™"),d,)"
=(log, ((Q B d)(exp, do) 'o(Q)'a(Q)Q ™), 00) "
=(log,, (exp, dx Qexp, do(exp, do) 1Q71),d0) "
=(log expy 6x,05)

—(0x,0) "

=4

The cancellation of log, against exp, in the penultimate step is what requires
V to be restricted to angles up to .

The third axiom requires 1-Lipschitzness of the family of functions fq: R® —
Q; i— QHG:

VQ € Q,01,0, €R”: [[(QEB6) B(QB)| < |61 — bl (6)
Proof.

(QEBd)B(QB&)|?
= log, (p(Q B &1)p(QE 53) ")
+[/log, (c(Q B 62) o (QE &))|?
=|log, ((QE 6:)o(QEB ) o (Q B &) (QEI) )|
+[[og, ((exp, 02,0) "o (Q) " o(Q) exp,, 61,0)) >
= log, ((QH &1)(exp, 61) ' o(Q) ' o(Q)(exp, 62)(Q H 62) )|
+[|log, ((exp, —02,0) exp, 01,0)|?
= log ((Q B 1) (exp, d1) " (exp,, 02)(Q B 62) )|
+[/og, exp, (81,6 — 62,0)||
= log, (exp, 61Qexp, b1 (exp, d1) ' (exp, b2)(exp, 2) ' Q" (exp, 62) 1) |1?
010 — G202
= log, (exp 61 (expy 62)"M)II* + 161,06 — 02,0
<[I81,x — B2, |12 + [[01,0 — O2,0 ]2
=[|61 — 62|

The < in the penultimate step is justified by the fact that SO(3) is a B-
manifold [1].

In conclusion, the scaled SO(3) with the given operators is a E-manifold.
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C Jacobian of H

The Jacobian of the HB-operator on 7, as used in the Gauss-Newton iteration, is

the following:

0 Ty -Toy Ty, O 0O 0 0 0 Ty
0 T -Tos 0 T 0 0 0 0 T
0 T33 —T23 0 0 T13 0 0 0 T13
Ty 0 Ty T,y O 0 0 0 0 Ty
Ty 0 Tis 0 To, 0 0 0 0 Th
Ty 0 Ti3 0 0 T3 0 0 0 Toy

Jus(T)=| Ty =1, 0 Ty 0 0 0 0 0 Ty (7)
Too —T12 0 0 T3 0 0 0 0 Ty
Tos ~Ti3 0 0 0 Tz 0 0 0 Ts
o 0o 0 o0 O 0 0 0 o0 1
0O 0 0 0 0 0 1 0 0 Ty
0 0 0 0 0 0 0 1 0 Ty
0O 0 0 0 0 0 0 0 1 Ty

Recall that the columns correspond to the three rotation, scaling and translation
parameters, respectively, and the final column captures the constant part of the
linearization. The rotation parameters affect Q according to the cross product
matrix pattern. The scaling parameters act on the columns of Q. The translation
parameters are direct offsets to the translation of T.

D Flattening certain Expressions Involving T

To derive the denominator expression in the total least squares approach, in all
sensor models we needed to express tr WIET W as TTQFT, i.e. flatten it
into our fixed sized representation.

Lemma 1. Let W € R4 T € R4 with Tye = (0001), 3 € R, sym-
metric positive semidefinite with 344 = 0. Then

(W 'W)m @ Zm 0951 09x3

tr (WIST'W') =T Q"T, with 019 0 Oix3|. (8)
03x9 03x1 O3x3
Proof.
T Q'T =tr (WIST ' W') =tr (TST'W'W) (9)

4,4,4,4
= Y TuZSimTum(W W)
k,l,m,n=1

3,3,3,3

Z TriXimTrm (WTW)nk

k,l,m,n=1
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The last step holds, because from positive definiteness, the whole fourth row and
column of 3 is zero, so | = 4 and m = 4 can be omitted. The same holds for
k =4 and n = 4, because Ty; or T, are zero.

We consider the coefficients for different products of T elements. There is no
constant and no linear term. Each quadratic term Ty;T,,, is multiplied with
S (W TW),,, using symmetry of WTW.

By flattening T into T, its row-indices k and n have stride 3 in the rows and
columns of Q% respectively. Both address an element of Eio. The column-indices
! and m have stride 1 and address an element of W T W. The two elements are
multiplied. This is conveniently expressed with a Kronecker product, leading to
the formula (8).
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