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Abstract. Estimating object poses is a fundamental problem in com-
puter vision in general as well as for robotic manipulation in particular.
Most approaches require a known 3D model of the object. One step
towards a more general formulation is to estimate the object’s width,
height and depth with the pose, e. g. consider a generic box, cylinder or
plate instead of one with known dimensions.
This paper investigates the last stage of such a pipeline, namely least-
squares estimating pose and scales from point correspondences aggre-
gated into a fixed size matrix. Therefore it encapsulates the scaled SO(3)
manifold in a so-called ⊞-operator and derives a Gauss-Newton based
optimizer with initial guess on that.
We find that the resulting estimator is strongly biased towards small
scales. This is due to the structure of the least-squares loss: Noise in
recognized object points is multiplied with the to be estimated transfor-
mation matrix, violating the additive noise assumption. It has no effect
in the prevalent use of this loss for pose estimation but affects the scale.
We propose a solution to this bias based on an approximation of total
least-squares that preserves the advantage of a fixed size representation
and show that it provides relatively consistent uncertainty estimates.
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A Well-Definedness of ρ and σ

σ is well-defined since Q⊤Q is diagonal and positive (by definition of Q), and
thus its square-root is well-defined and still diagonal and positive. ρ is well-
defined since the inverse of a positive diagonal matrix always exists. The result
of ρ is indeed in SO(3) since

ρ(Q)⊤ρ(Q) = σ(Q)−1Q⊤Qσ(Q)−1 = σ(Q)−1σ(Q)2σ(Q)−1 = I (1)

det(ρ(Q)) =
det(Q)

det(σ(Q))
=

det(Q)√
det(Q⊤Q)

=
det(Q)

|det(Q)|
= 1. (2)

⋆ This is the supplemental material of a paper accepted at the ROBOVIS 2025 con-
ference. The entire paper will be made available after the embargo period of 12
months.
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B Proof of the ⊞-Axioms for the Scaled SO(3)

The original publication [1] required the axiom that the zero-vector is the neutral
element of ⊞. This can actually be derived from the other axioms and is trivial
in this case anyway.

The first axiom requires surjectivity of ⊞ (all states can reach any other state
by a single ⊞-step).

∀Q1,Q2 ∈ Q : Q1 ⊞ (Q2 ⊟Q1) = Q2 (3)

Proof.

Q1 ⊞ (Q2 ⊟Q1)

= exp×(Q2 ⊟Q1)×Q1 exp◦(Q2 ⊟Q1)◦

=exp× log×(ρ(Q2)ρ(Q1)
−1)Q1 exp◦ log◦(σ(Q1)

−1σ(Q2))

=Q2σ(Q2)
−1σ(Q1)Q

−1
1 Q1σ(Q1)

−1σ(Q2)

=Q2

The second axiom requires local injectivity of ⊞ (within some neighborhood
V of a state, the tangent vector transferring to another state is unique).

∀Q ∈ Q, δ ∈ V : (Q⊞ δ)⊟Q = δ (4)

For this, we need the following lemma

σ(Q⊞ δ) = σ(Q) exp◦ δ◦ (5)

which is proven by using the diagonality of exp◦ and Q⊤Q and orthogonality of
exp×:

σ(Q⊞ δ)

=σ(exp× δ×Q exp◦ δ◦)

=
√
(exp◦ δ◦)

⊤Q⊤(exp× δ×)⊤ exp× δ×Q exp◦ δ◦

=
√

exp◦ δ◦Q
⊤Q exp◦ δ◦

=
√
exp◦ δ◦σ(Q)

√
exp◦ δ◦

=σ(Q) exp◦ δ◦

Proof.

(Q⊞ δ)⊟Q

=(log×(ρ(Q⊞ δ)ρ(Q)−1), log◦(σ(Q)−1σ(Q⊞ δ)))⊤

=(log×(ρ(Q⊞ δ)ρ(Q)−1), log◦ exp◦(δ◦))
⊤

=(log×(ρ(Q⊞ δ)ρ(Q)−1), δ◦)
⊤
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=(log×((Q⊞ δ)σ(Q⊞ δ)−1σ(Q)Q−1), δ◦)
⊤

=(log×((Q⊞ δ)(exp◦ δ◦)
−1σ(Q)−1σ(Q)Q−1), δ◦)

⊤

=(log×(exp× δ×Q exp◦ δ◦(exp◦ δ◦)
−1Q−1), δ◦)

⊤

=(log× exp× δ×, δ◦)
⊤

=(δ×, δ◦)
⊤

=δ

The cancellation of log× against exp× in the penultimate step is what requires
V to be restricted to angles up to π.

The third axiom requires 1-Lipschitzness of the family of functions fQ : R6 →
Q; δ 7→ Q⊞ δ:

∀Q ∈ Q, δ1, δ2 ∈ R9 : ∥(Q⊞ δ1)⊟ (Q⊞ δ2)∥ ≤ ∥δ1 − δ2∥ (6)

Proof.

∥(Q⊞ δ1)⊟ (Q⊞ δ2)∥2

=∥ log×(ρ(Q⊞ δ1)ρ(Q⊞ δ2)
−1)∥2

+∥ log◦(σ(Q⊞ δ2)
−1σ(Q⊞ δ1))∥2

=∥ log×((Q⊞ δ1)σ(Q⊞ δ1)
−1σ(Q⊞ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦((exp◦ δ2,◦)−1σ(Q)−1σ(Q) exp◦ δ1,◦))∥2

=∥ log×((Q⊞ δ1)(exp◦ δ1)
−1σ(Q)−1σ(Q)(exp◦ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦((exp◦ −δ2,◦) exp◦ δ1,◦)∥2

=∥ log×((Q⊞ δ1)(exp◦ δ1)
−1(exp◦ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦ exp◦(δ1,◦ − δ2,◦)∥2

=∥ log×(exp× δ1Q exp◦ δ1(exp◦ δ1)
−1(exp◦ δ2)(exp◦ δ2)

−1Q−1(exp× δ2)
−1)∥2

+∥δ1,◦ − δ2,◦∥2

=∥ log×(exp× δ1(exp× δ2)
−1)∥2 + ∥δ1,◦ − δ2,◦∥2

≤∥δ1,× − δ2,×∥2 + ∥δ1,◦ − δ2,◦∥2

=∥δ1 − δ2∥2

The ≤ in the penultimate step is justified by the fact that SO(3) is a ⊞-
manifold [1].

In conclusion, the scaled SO(3) with the given operators is a ⊞-manifold.
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C Jacobian of ⊞

The Jacobian of the ⊞-operator on T , as used in the Gauss-Newton iteration, is
the following:

J⊞,δ(T) =



0 T31 −T21 T11 0 0 0 0 0 T11

0 T32 −T22 0 T12 0 0 0 0 T12

0 T33 −T23 0 0 T13 0 0 0 T13

−T31 0 T11 T21 0 0 0 0 0 T21

−T32 0 T12 0 T22 0 0 0 0 T22

−T33 0 T13 0 0 T23 0 0 0 T23

T21 −T11 0 T31 0 0 0 0 0 T31

T22 −T12 0 0 T32 0 0 0 0 T32

T23 −T13 0 0 0 T33 0 0 0 T33

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 T14

0 0 0 0 0 0 0 1 0 T24

0 0 0 0 0 0 0 0 1 T34



(7)

Recall that the columns correspond to the three rotation, scaling and translation
parameters, respectively, and the final column captures the constant part of the
linearization. The rotation parameters affect Q according to the cross product
matrix pattern. The scaling parameters act on the columns of Q. The translation
parameters are direct offsets to the translation of T.

D Flattening certain Expressions Involving T

To derive the denominator expression in the total least squares approach, in all
sensor models we needed to express trWTΣT⊤W⊤ as T̄⊤ΩLT̄, i. e. flatten it
into our fixed sized representation.

Lemma 1. Let W ∈ Rd×4, T ∈ R4×4 with T4• =
(
0 0 0 1

)
, Σ ∈ R4×4, sym-

metric positive semidefinite with Σ44 = 0. Then

tr
(
WTΣT⊤W⊤) = T̄⊤ΩLT̄, with

(W⊤W)■ ⊗Σ■ 09×1 09×3

01×9 0 01×3

03×9 03×1 03×3

 . (8)

Proof.

T̄⊤ΩLT̄ = tr
(
WTΣT⊤W⊤) = tr

(
TΣT⊤W⊤W

)
(9)

=

4,4,4,4∑
k,l,m,n=1

TklΣlmTnm(W⊤W)nk (10)

=

3,3,3,3∑
k,l,m,n=1

TklΣlmTnm(W⊤W)nk (11)
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The last step holds, because from positive definiteness, the whole fourth row and
column of Σ is zero, so l = 4 and m = 4 can be omitted. The same holds for
k = 4 and n = 4, because Tkl or Tnm are zero.

We consider the coefficients for different products of T elements. There is no
constant and no linear term. Each quadratic term TklTnm is multiplied with
Σlm(W⊤W)kn, using symmetry of W⊤W.

By flattening T into T̄, its row-indices k and n have stride 3 in the rows and
columns of ΩL respectively. Both address an element of ΣO

i . The column-indices
l and m have stride 1 and address an element of W⊤W. The two elements are
multiplied. This is conveniently expressed with a Kronecker product, leading to
the formula (8).
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