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Abstract. Estimating object poses is a fundamental problem in com-
puter vision in general as well as for robotic manipulation in particular.
Most approaches require a known 3D model of the object. One step
towards a more general formulation is to estimate the object’s width,
height and depth with the pose, e. g. consider a generic box, cylinder or
plate instead of one with known dimensions.
This paper investigates the last stage of such a pipeline, namely least-
squares estimating pose and scales from point correspondences aggre-
gated into a fixed size matrix. Therefore it encapsulates the scaled SO(3)
manifold in a so-called ⊞-operator and derives a Gauss-Newton based
optimizer with initial guess on that.
We find that the resulting estimator is strongly biased towards small
scales. This is due to the structure of the least-squares loss: Noise in
recognized object points is multiplied with the to be estimated transfor-
mation matrix, violating the additive noise assumption. It has no effect
in the prevalent use of this loss for pose estimation but affects the scale.
We propose a solution to this bias based on an approximation of total
least-squares that preserves the advantage of a fixed size representation
and show that it provides relatively consistent uncertainty estimates.
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A Well-Definedness of ρ and σ

σ is well-defined since Q⊤Q is diagonal and positive (by definition of Q), and
thus its square-root is well-defined and still diagonal and positive. ρ is well-
defined since the inverse of a positive diagonal matrix always exists. The result
of ρ is indeed in SO(3) since

ρ(Q)⊤ρ(Q) = σ(Q)−1Q⊤Qσ(Q)−1 = σ(Q)−1σ(Q)2σ(Q)−1 = I (1)

det(ρ(Q)) =
det(Q)

det(σ(Q))
=

det(Q)√
det(Q⊤Q)

=
det(Q)

|det(Q)|
= 1. (2)

⋆ This is the supplemental material of a paper accepted at the ROBOVIS 2025 con-
ference. The entire paper will be made available after the embargo period of 12
months.
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B Proof of the ⊞-Axioms for the Scaled SO(3)

The original publication [1] required the axiom that the zero-vector is the neutral
element of ⊞. This can actually be derived from the other axioms and is trivial
in this case anyway.

The first axiom requires surjectivity of ⊞ (all states can reach any other state
by a single ⊞-step).

∀Q1,Q2 ∈ Q : Q1 ⊞ (Q2 ⊟Q1) = Q2 (3)

Proof.

Q1 ⊞ (Q2 ⊟Q1)

= exp×(Q2 ⊟Q1)×Q1 exp◦(Q2 ⊟Q1)◦

=exp× log×(ρ(Q2)ρ(Q1)
−1)Q1 exp◦ log◦(σ(Q1)

−1σ(Q2))

=Q2σ(Q2)
−1σ(Q1)Q

−1
1 Q1σ(Q1)

−1σ(Q2)

=Q2

The second axiom requires local injectivity of ⊞ (within some neighborhood
V of a state, the tangent vector transferring to another state is unique).

∀Q ∈ Q, δ ∈ V : (Q⊞ δ)⊟Q = δ (4)

For this, we need the following lemma

σ(Q⊞ δ) = σ(Q) exp◦ δ◦ (5)

which is proven by using the diagonality of exp◦ and Q⊤Q and orthogonality of
exp×:

σ(Q⊞ δ)

=σ(exp× δ×Q exp◦ δ◦)

=
√
(exp◦ δ◦)

⊤Q⊤(exp× δ×)⊤ exp× δ×Q exp◦ δ◦

=
√

exp◦ δ◦Q
⊤Q exp◦ δ◦

=
√
exp◦ δ◦σ(Q)

√
exp◦ δ◦

=σ(Q) exp◦ δ◦

Proof.

(Q⊞ δ)⊟Q

=(log×(ρ(Q⊞ δ)ρ(Q)−1), log◦(σ(Q)−1σ(Q⊞ δ)))⊤

=(log×(ρ(Q⊞ δ)ρ(Q)−1), log◦ exp◦(δ◦))
⊤

=(log×(ρ(Q⊞ δ)ρ(Q)−1), δ◦)
⊤
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=(log×((Q⊞ δ)σ(Q⊞ δ)−1σ(Q)Q−1), δ◦)
⊤

=(log×((Q⊞ δ)(exp◦ δ◦)
−1σ(Q)−1σ(Q)Q−1), δ◦)

⊤

=(log×(exp× δ×Q exp◦ δ◦(exp◦ δ◦)
−1Q−1), δ◦)

⊤

=(log× exp× δ×, δ◦)
⊤

=(δ×, δ◦)
⊤

=δ

The cancellation of log× against exp× in the penultimate step is what requires
V to be restricted to angles up to π.

The third axiom requires 1-Lipschitzness of the family of functions fQ : R6 →
Q; δ 7→ Q⊞ δ:

∀Q ∈ Q, δ1, δ2 ∈ R9 : ∥(Q⊞ δ1)⊟ (Q⊞ δ2)∥ ≤ ∥δ1 − δ2∥ (6)

Proof.

∥(Q⊞ δ1)⊟ (Q⊞ δ2)∥2

=∥ log×(ρ(Q⊞ δ1)ρ(Q⊞ δ2)
−1)∥2

+∥ log◦(σ(Q⊞ δ2)
−1σ(Q⊞ δ1))∥2

=∥ log×((Q⊞ δ1)σ(Q⊞ δ1)
−1σ(Q⊞ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦((exp◦ δ2,◦)−1σ(Q)−1σ(Q) exp◦ δ1,◦))∥2

=∥ log×((Q⊞ δ1)(exp◦ δ1)
−1σ(Q)−1σ(Q)(exp◦ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦((exp◦ −δ2,◦) exp◦ δ1,◦)∥2

=∥ log×((Q⊞ δ1)(exp◦ δ1)
−1(exp◦ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦ exp◦(δ1,◦ − δ2,◦)∥2

=∥ log×(exp× δ1Q exp◦ δ1(exp◦ δ1)
−1(exp◦ δ2)(exp◦ δ2)

−1Q−1(exp× δ2)
−1)∥2

+∥δ1,◦ − δ2,◦∥2

=∥ log×(exp× δ1(exp× δ2)
−1)∥2 + ∥δ1,◦ − δ2,◦∥2

≤∥δ1,× − δ2,×∥2 + ∥δ1,◦ − δ2,◦∥2

=∥δ1 − δ2∥2

The ≤ in the penultimate step is justified by the fact that SO(3) is a ⊞-
manifold [1].

In conclusion, the scaled SO(3) with the given operators is a ⊞-manifold.
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C Jacobian of ⊞

The Jacobian of the ⊞-operator on T , as used in the Gauss-Newton iteration, is
the following:

J⊞,δ(T) =



0 T31 −T21 T11 0 0 0 0 0 T11

0 T32 −T22 0 T12 0 0 0 0 T12

0 T33 −T23 0 0 T13 0 0 0 T13

−T31 0 T11 T21 0 0 0 0 0 T21

−T32 0 T12 0 T22 0 0 0 0 T22

−T33 0 T13 0 0 T23 0 0 0 T23

T21 −T11 0 T31 0 0 0 0 0 T31

T22 −T12 0 0 T32 0 0 0 0 T32

T23 −T13 0 0 0 T33 0 0 0 T33

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 T14

0 0 0 0 0 0 0 1 0 T24

0 0 0 0 0 0 0 0 1 T34



(7)

Recall that the columns correspond to the three rotation, scaling and translation
parameters, respectively, and the final column captures the constant part of the
linearization. The rotation parameters affect Q according to the cross product
matrix pattern. The scaling parameters act on the columns of Q. The translation
parameters are direct offsets to the translation of T.

D Flattening certain Expressions Involving T

To derive the denominator expression in the total least squares approach, in all
sensor models we needed to express trWTΣT⊤W⊤ as T̄⊤ΩLT̄, i. e. flatten it
into our fixed sized representation.

Lemma 1. Let W ∈ Rd×4, T ∈ R4×4 with T4• =
(
0 0 0 1

)
, Σ ∈ R4×4, sym-

metric positive semidefinite with Σ44 = 0. Then

tr
(
WTΣT⊤W⊤) = T̄⊤ΩLT̄, with

(W⊤W)■ ⊗Σ■ 09×1 09×3

01×9 0 01×3

03×9 03×1 03×3

 . (8)

Proof.

T̄⊤ΩLT̄ = tr
(
WTΣT⊤W⊤) = tr

(
TΣT⊤W⊤W

)
(9)

=

4,4,4,4∑
k,l,m,n=1

TklΣlmTnm(W⊤W)nk (10)

=

3,3,3,3∑
k,l,m,n=1

TklΣlmTnm(W⊤W)nk (11)
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The last step holds, because from positive definiteness, the whole fourth row and
column of Σ is zero, so l = 4 and m = 4 can be omitted. The same holds for
k = 4 and n = 4, because Tkl or Tnm are zero.

We consider the coefficients for different products of T elements. There is no
constant and no linear term. Each quadratic term TklTnm is multiplied with
Σlm(W⊤W)kn, using symmetry of W⊤W.

By flattening T into T̄, its row-indices k and n have stride 3 in the rows and
columns of ΩL respectively. Both address an element of ΣO

i . The column-indices
l and m have stride 1 and address an element of W⊤W. The two elements are
multiplied. This is conveniently expressed with a Kronecker product, leading to
the formula (8).

References

1. Hertzberg, C., Wagner, R., Frese, U., Schröder, L.: Integrating generic sensor fusion
algorithms with sound state representations through encapsulation of manifolds.
Information Fusion 14(1), 57–77 (Jan 2013)


	Statistically Consistent Total Least-Squares Estimation of Object Scales

