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Abstract. Estimating object poses is a fundamental problem in com-
puter vision in general as well as for robotic manipulation in particular.
Most approaches require a known 3D model of the object. One step
towards a more general formulation is to estimate the object’s width,
height and depth with the pose, e. g. consider a generic box, cylinder or
plate instead of one with known dimensions.
This paper investigates the last stage of such a pipeline, namely least-
squares estimating pose and scales from point correspondences aggre-
gated into a fixed size matrix. Therefore it encapsulates the scaled SO(3)
manifold in a so-called ⊞-operator and derives a Gauss-Newton based
optimizer with initial guess on that.
We find that the resulting least-squares estimator is strongly biased to-
wards small scales. The reason for that lies in the mathematical structure
of the least-squares loss, where noise in recognized object points is mul-
tiplied with the to be estimated transformation matrix. This violates
the least-squares assumption of additive noise. It has no effect in the
prevalent use of this loss for pose estimation but affects the scale.
We propose a solution to this bias based on an approximation of total
least-squares that preserves the advantage of a fixed size representation
and show that it provides relatively consistent uncertainty estimates.

Keywords: Least-Squares Estimation · 9D Object Pose Estimation ·
RGB-D Perception

1 Introduction

Object pose estimation is an important perception skill in a variety of appli-
cations, such as household robots. In particular robot applications require a
metrical pose, not just a 2D bounding box. Most modern approaches [20,25]
generate point pairs pO

i ,p
C
i in object, respectively camera frame and match

these to obtain a pose. Usually the pC
i come directly from the sensor, the pO

i

are the output of a recognition process, e. g. by keypoints or a CNN. The last
stage of this matching is usually least-squares. There are various cases, but all
minimize a loss that’s a second order term in the coefficients of the 4× 4 trans-
formation matrix T ∈ SE(3) representing the pose. This can be directly seen, if
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the points in camera frame are 3D, e. g. from a depth camera:

T̂ = arg min
T∈SE(3)

Lpp(T), (1)

Lpp(T) =
∑
i

∥∥TpO
i − pC

i

∥∥2
2
=
∑
i

(
TpO

i − pC
i

)⊤ (
TpO

i − pC
i

)
(2)

where Lpp is actually even linear in the rotation part of T, which is exploited by
the well-known Umeyama algorithm [23]. This is known as point cloud matching.
The point matches can also be weighted by a covariance matrix Σi, e. g. because
in stereo vision, the viewing direction is the more uncertain:

Lppc(T) =
∑
i

∥∥TpO
i − pC

i

∥∥2
Σ−1

i

=
∑
i

∥Σ−
1
2

i

(
TpO

i − pC
i

)
∥22 (3)

Here, Lppc becomes second order.
For perspective matches, the pC

i is replaced by image coordinates ( ui
vi ). The

resulting function is non-linear in the coefficients of T due to the division in the
perspective projection. However, it can be approximated linearly by multiplying
with the denominator, the direct linear method [8, §7.1].

Lpersp(T) =
∑
i

∥∥∥(−f 0 u−u0 0
0 −f v−v0 0

)
TpO

i

∥∥∥2
2

(4)

Here, f is the focal length and ( u0
v0 ) the image center. The loss is again second

order in the coefficients of T.
Depth measurements di corresponding to pO

i can also be expressed.

Ldepth(T) =
∑
i

(
( 0 0 1 0 )TpO

i − di
)2

(5)

This also allows to model an RGB-D camera more precisely with Lpersp+Ldepth
instead of matching points with Lpp. All different variants condense the infor-
mation from the raw measurements into a 13× 13 matrix Ω.

L(T) = T̄⊤ΩT̄, (6)

where T̄ is a flattened vector of the 12 non-constant coefficients of T and a
constant 1. The latter allows to include the first and zeroth order terms of L(T)
in Ω (details in Subsect. 3.2).

This representation has been used to estimate the object’s pose [20] along
with a covariance matrix as uncertainty measure. Such an uncertainty measure
is useful for fusing the pose with other information [21] and for higher mission
control. The initial idea of our work was to extend the framework to estimating
the object’s pose and three-axes scale (object axes). This appears promising, as
scaling is already possible with T in (2)-(5) and only the optimization in (1)
needs to be extended to include scale as well. Sect. 3 derives how this is done in
detail.
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However, it turns out that the resulting least-squares estimator has a strong
bias towards smaller scales and also inconsistent covariance. This is caused by
the fact that noise in pO

i is multiplied by T and thus not additive as least-squares
theory assumes. Sect. 4 analyzes this observation and proposes a solution using
total least-squares theory [4]. While in general total least squares is much more
computationally expensive, we propose an approximation that is statistically
relatively consistent in experiments and needs only slightly more time. In par-
ticular, it saves the advantage of (6) to condense an arbitrary number of points
into a fixed size representation.

Thus, this paper contributes a novel algorithm to estimate object poses with
three-axes scale, including the following subcontributions:

– A formalization of the space of scaling transformations as ⊞-manifold.
– An optimization method based on Gauss-Newton.
– An investigation of a bias caused by noise multiplied by variables and its

correction by a total least-squares approximation.

The remainder of this paper is organized as follows: after an overview of
related work in Sect. 2, the Sects. 3 and 4 discuss the least-squares and total
least-squares approach to the simple point-to-point loss (2). Sect. 5 extends to
the perspective (4) and depth (5) loss. Finally, Sect. 6 presents experimental
results.

2 Related Work

6D object pose estimation is a much researched problem, with progress measured
by the BOP challenge [10]. Traditionally, CAD models and large image datasets
of the objects to be detected have been required. Recently, tasks have been
added to the BOP challenge that aim at handling objects without such detailed
knowledge. Our work is related to the topic of category-level pose estimation. In
this variant of the pose estimation problem, objects of similar shape are handled
by a common detector, which in turn requires some parameterization of the
instance-level properties. The object scales are one of these properties.

Wang et al. [25] propose predicting normalized object coordinates by a neural
network (which they call NOCS maps). They compare regression and classifica-
tion approaches for the output of the neural network. In order to estimate the
transformation, they align the masked point cloud from a depth camera with the
predicted NOCS map using RANSAC and a classic least-squares solution [23].
A similar method is used in [17]. Our work is applicable to that approach in
that it could replace the point alignment, if uncertainty information about the
NOCS map was available.

Wei et al. [26] split the transformation estimation into a learned object scale
predictor and a classic RANSAC PnP algorithm to determine translation and ro-
tation. Other approaches [6,11,12] directly predict the transformation and shape
parameters using a neural network. This has the disadvantage that the neu-
ral network has to generalize over camera intrinsics (i. e. training data must be
available), and it is harder to fuse the result with other input modalities.
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Regarding uncertainty in pose estimation, Brachmann et al. [3] use random
forests to predict noise in pixel coordinate measurements. However, this is not
used to provide uncertainty information about the predicted transformation.
Wursthorn et al. [27] use deep ensembles to quantify the uncertainty of pose
estimation. This comes at a cost in inference time though, and their uncertainty
metric provides less information than a covariance matrix. Richter-Klug and
Frese [20] predict pixelwise weights using a CNN and use them for least-squares
estimation, which provides a covariance matrix of the estimate. This is method-
ically closest to our approach is it uses the same ⊞-Gauss-Newton formalism as
we do.

The problem of finding an orthonormal matrix that minimizes the squared
error between two sets of corresponding points has been discovered across dis-
ciplines, e. g. as Wahba’s problem [24] or orthogonal Procrustes problem [22].
There are analytic solutions based on the singular value decomposition for cer-
tain variants of the problem. For instance, Kabsch’s algorithm [13,14] allows
weighting factors per point. Umeyama’s algorithm [23] does not explicitly include
weighting, but outputs a single isotropic scaling factor. Everson [5] investigates
the Procrustes problem where the transformation does not need to be normal,
i. e. scaling is allowed.

Computing the pose from 3D-2D correspondences is a long researched prob-
lem in computer vision [18,16,15,28]. In these works the focus lies on finding
a global solution algebraically, e. g. by Gröbner bases. All mentioned methods
model noisy data at most as isotropic per point and they do not provide a mea-
sure of uncertainty of the estimated transformation. In fact, it has to be defined
first what a covariance matrix on transformations means.

3 Least-Squares Estimation of Pose and Scale

Starting from an image of an object, there are three steps to determine its
transformation matrix (T = TC←O) and its uncertainty Σ:

1. Identify pixels ui, vi in the image that correspond to certain 3D points pO
i

of the object, either with keypoints (sparse) or by a CNN (dense)
2. Aggregate measurements into a fixed size (13× 13) information matrix Ω

(a) Aggregate perspective measurements ui, vi by (4)
(b) If available, aggregate depth measurements di by (5)
(c) Alternatively convert ui, vi, di to 3D-points pC

i and aggregrate them by
(2)

3. Obtain the max-likelihood transformation by minimizing the aggregated loss
T̄⊤ΩT̄ over the manifold of valid transformations T.
(a) Find a valid initial guess T0

(b) Iterate: Perform a Gauss-Newton iteration using a ⊞-operator to encap-
sulate the manifold

(c) Obtain a covariance matrix Σ from the converged Gauss-Newton
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Fig. 1. System overview. The object coordinates, camera coordinates and covariance
matrices are supplied externally, e. g. by a neural network from an RGB image and a
depth camera. The sensor model condenses the problem to a fixed size matrix Ω. From
this, the initial guess T0 is calculated. Finally, Gauss-Newton produces a δk+1 that is
added via ⊞ to the iterate, and a covariance matrix.

An overview of the approach is given in Fig. 1.
Such an approach has been used by [20] with a CNN in the first step to

estimate poses with uncertainty. In order to adapt this method to also estimate
object scales, we need to extend the following steps:

– The optimizer. In our framework, this means describing the transformation
space as ⊞-manifold (cf. Subsect. 3.1).

– The initial guess. The previous approach was based on evaluating a fixed set
of rotations and recovering the optimal translation. Now, we can still use a
fixed set of rotations, but the optimal scale is not a linear function of the
rotation, instead requiring the solution of a 4×4 linear equation per rotation
(cf. Subsect. 3.3).

Notably, the neural network that predicts 3D points requires no change, except
to output normalized coordinates. Constructing the information matrix needs
no adaptation either.

Throughout the paper we use homogenous points p ∈ R4 with a 1 as fourth
component to flag a location vector. Occasionally, we will need only the 3 actual
coordinates, this is noted as p■. Similarly, for a matrix A ∈ R4×4, A■ denotes
the left/upper 3× 3 part.

3.1 The Scaled SO(3) Manifold

We want to model 3D transformations from object to camera coordinates that
allow positive scaling along the object axes. Ignoring translation for now, these
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scaling-followed-by-rotation matrices are described by the following state space:

Q = {Rdiag(s) | R ∈ SO(3), s ∈ R3
>0}

= {Q | ∃s ∈ R3
>0 : Q

⊤Q = diag(s)2 ∧ det(Q) > 0}
= {Q | QT

i Qj = 0 ∀ i ̸= j ∧ det(Q) > 0}. (7)

Q forms a submanifold of GL(3). It is not closed under matrix multiplication
since the scaling from the first operand would be applied to the rotated axes
of the second operand. This is not necessarily a scaling of the original object
axes. Instead, the rotating and scaling components must be modified separately
to stay on the manifold, as seen below. This also means that, unlike SO(3), this
space does not form a Lie-group with matrix multiplication.

In order to use an iterative optimizer and the notion of Gaussian distributions
on this space, we view it as ⊞-manifold [9]. This method encapsulates the mani-
fold structure in two closed, smooth operators defining a local parameterization
(tangent space) of perturbations to a state.

⊞ : Q× Rd → Q (8)

⊟ : Q×Q → Rd (9)

The ⊞-operator takes a a manifold element Q and adds a vector δ from the d-
dimensional tangent space, returning a new manifold element Q⊞δ. The inverse
operator ⊟ returns the tangent space vector required to go from one manifold
element to another, i. e. Q1 ⊞ (Q2 ⊟Q1) = Q2.

In order to define these operators on our “scaled SO(3)” manifold, we need
two auxiliary functions, σ and ρ, which extract the scaling and rotating compo-
nents from Q, respectively.

σ : Q → {diag(s) | s ∈ R3
>0}

Q 7→
√

Q⊤Q (10)
ρ : Q → SO(3)

Q 7→ Q · σ(Q)−1 (11)

σ is well-defined since Q⊤Q is diagonal and positive (by definition of Q), and
thus its square-root is well-defined and still diagonal and positive. ρ is well-
defined since the inverse of a positive diagonal matrix always exists. The result
of ρ is indeed in SO(3) since

ρ(Q)⊤ρ(Q) = σ(Q)−1Q⊤Qσ(Q)−1 = σ(Q)−1σ(Q)2σ(Q)−1 = I (12)

det(ρ(Q)) =
det(Q)

det(σ(Q))
=

det(Q)√
det(Q⊤Q)

=
det(Q)

|det(Q)|
= 1. (13)

It is straightforward that Q = ρ(Q)σ(Q), but ρ and σ do not commute in
general.
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Furthermore, we need two functions based on the matrix exponential (with
[x]× denoting the cross product matrix)

exp× : R3 → SO(3)

r 7→ exp[r]× (14)

exp◦ : R3 → {diag(s) | s ∈ R3
>0}

s 7→ exp diag s (15)

and their corresponding inverses:

log× : SO(3) → R3 (16)

log◦ : {diag(s) | s ∈ R3
>0} → R3 (17)

exp× corresponds to the well-known Rodrigues formula to convert an axis-angle
into a rotation matrix, and exp◦ maps real numbers to a diagonal positive scal-
ing matrix by exponentiating them element-wise. While the ◦-mappings are ac-
tually bijective, exp× is only injective within ∥r∥ < π. Furthermore, for the
◦-functions, the same rules for exponential functions hold as for real numbers
(since they basically operate element-wise on the diagonal entries). On the other
hand, exp×(r1) exp×(r2) = exp×(r1 + r2) does not hold in general.

Writing δ ∈ R6 = (δ×, δ◦), the ⊞- and ⊟-operators on Q are then defined as
follows:

⊞ : Q× R6 →Q
(Q, δ) 7→ exp× δ×Q exp◦ δ◦ (18)

⊟ : Q×Q →R6

(Q2,Q1) 7→(log×(ρ(Q2)ρ(Q1)
−1),

log◦(σ(Q1)
−1σ(Q2)))

⊤ (19)

This means that ⊞ uses δ× as axis-angle representation of a rotation and δ◦ as
logarithmic per-axis scale factors. ⊟ recovers the tangent vector that is required
to move from one state to another. This behavior is formalized by three axioms1
that need to hold for ⊞-manifolds, for which the proof is given in Appendix A.

In order to incorporate object translations, we extend our state space to full
4× 4 transformation matrices:

T =

{(
Q t
0 1

) ∣∣∣∣Q ∈ Q, t ∈ R3

}
(20)

R3 satisfies the ⊞-axioms with the usual vector addition / subtraction [9]. Thus
we can define ⊞- and ⊟-operators on T (with R9 as tangent space) that act

1 The original publication [9] required the axiom that the zero-vector is the neutral
element of ⊞. This can actually be derived from the other axioms and is trivial in
this case anyway.
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independently on Q and t, which makes T a 9-dimensional ⊞-manifold. Note
that in the optimization process itself, the ⊟-operator is not needed. It is however
necessary for defining the concepts of an expected value, a covariance matrix and
the Mahalanobis distance on T.

A normal distribution on a ⊞-manifold is defined by

N (µ,Σ) ∼ µ⊞N (0,Σ). (21)

This means the uncertainty of a transformation is quantified by a covariance
matrix Σ ∈ R9×9 on the tangent space at the mean µ ∈ T .

3.2 Point Pair Sensor Model

In our context, a sensor model is a function that maps a object-in-camera trans-
formation matrix T = TC←O ∈ T (the variable in the optimization) to a resid-
ual. The squared norm of this residual is then the loss to be minimized, e. g.
(2)-(5). Our sensor models are linear, leading to a quadratic loss. Thus we want
to express them as a matrix-vector product, which motivates the flattened trans-
formation matrix T̄ ∈ R13 defined as

T̄ =
(
T11 T12 T13 T21 T22 T23 T31 T32 T33 1 T14 T24 T34

)⊤
. (22)

It consists of the rotation part in row major order, a constant 1 and the trans-
lation column. Including the 1 in the flattened transformation allows us to use
a single Jacobian for affine linear functions. The position of the 1 between rota-
tion/scaling and translation coefficients is motivated by the block decomposition
for taking the Schur complement in Eq. (29). Similarly, a homogeneous vector
p ∈ R4 can be converted to a matrix p̄ ∈ R4×13 such that Tp = p̄T̄. This
means that we express the matrix vector product Tp as a linear operation on
the matrix coefficients.

p̄ =


p1 p2 p3 0 0 0 0 0 0 0 p4 0 0
0 0 0 p1 p2 p3 0 0 0 0 0 p4 0
0 0 0 0 0 0 p1 p2 p3 0 0 0 p4
0 0 0 0 0 0 0 0 0 p4 0 0 0

 (23)

Using this notation, a sensor model with M measurements is represented by
a Jacobian J ∈ RM×13. In addition, a covariance matrix Σ ∈ RM×M represents
noise in the measurements, such that at the true transformation T∗

JT̄∗ ∼ N (0,Σ) (24)

or equivalently
Σ−

1
2JT̄∗ ∼ N (0, IM ). (25)

The Hessian of the resulting normalized least-squares objective L(T) =

∥Σ− 1
2JT̄∥2 (up to a factor of 2) is called the information matrix Ω = J⊤Σ−1J ∈

R13×13. Equation (25) implies that T̄∗⊤ΩT̄∗ is χ2-distributed with M degrees
of freedom.
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The point pair sensor model assumes a set of N points of which the coordi-
nates relative to the camera pC

i ∈ R4 and relative to the object pO
i ∈ R4 (with

pC
i4 = pO

i4 = 1) are known. In a setting where the object scales should be esti-
mated, it makes sense for the object coordinates to be normalized to the range
[0, 1], as done in [25]. The Jacobian for a single 3D point measurement is then

Jpp,i =
(
I3 −pC

i■

)
p̄O
i . (26)

If the point measurements are independent, the 3N × 3N covariance matrix
becomes 3 × 3 block-diagonal and is parameterized by Σi ∈ R3×3 per point.
Then each point contributes the summand J⊤pp,iΣ

−1
i Jpp,i to Ω.

3.3 Initial Guess

The iterative Gauss-Newton algorithm needs a starting transformation T0. Often
RANSAC is used before the final least-squares to handle outliers which also
provides an initial guess. We take here the view to aggregate all measurements
into Ω and thus provide an algorithm to obtain an initial guess from Ω.

We can decompose the optimization into rotation, scale and translation:

min
T∈T

T̄⊤ΩT̄ = min
R∈SO(3)

min
s∈R3

>0

min
t∈R3

T̄⊤ΩT̄ (27)

with T =

(
Q t
0 1

)
,Q = Rdiag(s). Using the block decomposition

Ω =

(
ΩQ ΩQt

Ω⊤Qt Ωt

)
(28)

we can eliminate the translation by Schur complement, decomposing T̄ =
(
Q̄
t

)
into the 9 rotation coefficients, including the fixed 1 as Q̄ and the 3 translation
coefficients t.

min
R∈SO(3)

min
s∈R3

>0

Q̄⊤(ΩQ −ΩQtΩ
−1
t Ω⊤Qt)Q̄. (29)

For a given rotation R, Q is linear in the scale s. Hence the flattened Q̄ can be
expressed as a matrix vector product with s.

Q̄ = R̆

(
s
1

)
, R̆ =


Ri1 0 0 0

i=1..30 Ri2 0 0
0 0 Ri3 0
0 0 0 1

 (30)

Given a rotation we can rewrite the optimization problem in the scale vector s.

min
R∈SO(3)

min
s∈R3

>0

(
s⊤ 1

)
R̆⊤(ΩQ −ΩQtΩ

−1
t Ω⊤Qt)R̆

(
s
1

)
. (31)

The inner optimization problem is quadratic in s and can thus be solved ana-
lytically. This ignores the positivity constraint, so if the optimal s for some R



10 A. Hasselbring, U. Frese

isn’t positive, it’s simply discarded. Thus for a given rotation, we can calculate
the optimal scale and subsequently the optimal translation as −Ω−1t Ω⊤QtQ̄. The
rotational space can be efficiently sampled by a grid, by selecting each of the 60
vertices of a football (truncated icosahedron) as the x-axis and rotating around
it in 22.5◦ steps.

3.4 Gauss-Newton on the Manifold

The initial guess is refined by the Gauss-Newton algorithm on the previously
defined ⊞-manifold, following the principles from [9]. In each iteration the cur-
rent value Tk is changed by some δ in the tangential space using ⊞. This δ is
determined optimally in a linearized way.

Tk+1 ≈ Tk ⊞ lin arg min
δ∈R9

(Tk ⊞ δ)
⊤
Ω(Tk ⊞ δ) (32)

This requires a linearization of the ⊞-operator in order to project the infor-
mation matrix to the tangent space of the manifold. This is represented by
the Jacobian J⊞,δ(T) ∈ R13×10, which satisfies locally for δ ∈ R9 ≈ 0 that
T⊞ δ ≈ J⊞,δ(T)

(
δ⊤ 1

)⊤:

J⊞,δ(T) =



0 T31 −T21 T11 0 0 0 0 0 T11

0 T32 −T22 0 T12 0 0 0 0 T12

0 T33 −T23 0 0 T13 0 0 0 T13

−T31 0 T11 T21 0 0 0 0 0 T21

−T32 0 T12 0 T22 0 0 0 0 T22

−T33 0 T13 0 0 T23 0 0 0 T23

T21 −T11 0 T31 0 0 0 0 0 T31

T22 −T12 0 0 T32 0 0 0 0 T32

T23 −T13 0 0 0 T33 0 0 0 T33

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 T14

0 0 0 0 0 0 0 1 0 T24

0 0 0 0 0 0 0 0 1 T34



(33)

Recall that the columns correspond to the three rotation, scaling and translation
parameters, respectively, and the final column captures the constant part of the
linearization. The rotation parameters affect Q according to the cross product
matrix pattern. The scaling parameters act on the columns of Q. The translation
parameters are direct offsets to the translation of T.

The resulting unconstrained quadratic optimization problem Eq. (35) can
be solved by Cholesky decomposition to obtain the Gauss-Newton step, which
is then applied to the iterate via the real nonlinear ⊞-operator. The matrix R
regularizes the linearized least-squares problem, such that empirically step size
1 can be chosen in Eq. (37). After N iterations, the final estimate T̂ is available,
including a covariance Σ̂.

Jk =J⊞,δ(Tk) (34)
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δk+1 =arg min
δ∈R9

(
δ⊤ 1

)
(J⊤k ΩJk +R)

(
δ
1

)
(35)

=−H−1k gk, with
(
Hk gk

gT
k ck

)
= J⊤k ΩJk +R (36)

Tk+1 =Tk ⊞ δk+1 (37)

T̂ =TN (38)

Σ̂ =H−1N , with R = 0 (39)

The idea is that the output of Gauss-Newton approximately parameterizes the
distribution of the true transformation T∗, i. e. T∗ ∼ N (T̂, Σ̂).

4 Inconsistency and Total Least Squares Correction

By now, we have a complete algorithm to obtain a 9D transformation from
point pair measurements. Point measurements are aggregated into the fixed size
matrix Ω, from which an initial guess of the transformation is made, which is
refined by Gauss-Newton to yield an estimate of the distribution parameters.
However, running it on sample data (cf. Subsect. 6.1, experiment PP2 ) reveals
that there is a problem. There is a bias towards smaller object size of 10%. This
bias is not reflected in the estimated covariance matrix, such that the results are
inconsistent by a factor of 6.

The reason is that the noisy object coordinates pO
i are multiplied by the

optimization variable T in (2). This is not allowed in standard least-squares
problems, where the noise must be confined to the “right-hand side of the equa-
tion”, i. e. additive as noise in pC

i . In our case, the optimizer can scale the noise
in the object coordinates down to reduce the error. This creates a bias towards
smaller scales. This problem does not appear as long as only a 6D pose is fitted,
since the orthonormal rotation matrix preserves the level of the noise. In fact, it
has been shown that the solution to the unitarily-constrained total least squares
problem is the same as the standard orthogonal Procrustes solution [1].

This leads us to the insight that for estimating scales consistently, we do
need to model the problem as total least squares [7] which allows a noisy data
matrix. We follow the approach from [4] and [19, §15.3] to normalize the squared
residual by its variance at the current parameters, instead of the variance at the
true parameters.

4.1 Loss Function

In standard least squares the normalization with the variance is a constant pre-
computed weighting factor for the minimization and included in the matrix Ω in
(6). By constrast the current parameters T̄ change during optimization, so nor-
malization at the current parameters makes the loss more complex. The direct
interpretation of this paradigm results in a loss function with a sum of fractions,
one per scalar measurement j. We use the index j for scalar measurements, while
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i indexes logical measurements (e. g. a 3D point pair is one logical measurement
that contributes 3 scalar measurements).

Ltls(T) =

M∑
j=1

(
JjT̄

)2
V (JjT̄)

(40)

For a scalar measurement j, where the Jacobian Jj is just a row vector, the
denominator V (JjT̄) is the quadratic form T̄⊤Cov(Jj)T̄. Cov(Jj) depends on
the specific sensor model and the noise in the quantities affecting Jj (e. g. pO and
pC), but again can be precomputed as it does not change during optimization.
The dependency on T̄ during optimization is purely quadratic.

Therefore, the previous parameterization of the optimization problem by Ω
must be split into a set of matrices for the numerators and denominators, which
we call ΩU

j and ΩL
j , respectively.2

ΩU
j =J⊤j Jj (41)

ΩL
j =Cov(Jj) (42)

Ltls(T) =

M∑
j=1

T̄⊤ΩU
j T̄

T̄⊤ΩL
j T̄

(43)

If there is noise only in the right hand side, ΩL
j is only non-zero at the diagonal

entry corresponding to the fixed 1 of T̄ and hence the denominator constant.

There are three problems with this formula:

1. Each measurement contributes a summand, so the problem cannot be rep-
resented by a constant number of parameters.

2. The measurements are assumed to be independent which they aren’t, e. g.
some random variables are shared or correlated within a logical measurement
(e. g. the x/y/z measurements of one point).

3. This function does not have the quadratic form that Gauss-Newton expects.

For the first problem, we make the assumption that the denominators (i. e.
variances of individual measurements) are not too different (i. e. within the same
order of magnitude). Then,

∑M
j=1

xj

yj
≈ M

∑
xj∑
yj

is a valid approximation and we
set

ΩU =

M∑
j=1

ΩU
j (44)

ΩL =
1

M

M∑
j=1

ΩL
j (45)

2 Technically, ΩL
j is a covariance matrix, not an information matrix. We still call it Ω

instead of Σ due to the similar role as the information matrix in the nominator.
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L̃tls(T) =
T̄⊤ΩU T̄

T̄⊤ΩLT̄
(46)

This is a rather strong approximation. But it is also very beneficial, because
it again combines all measurements into a fixed size representation (ΩU ,ΩL).

The second problem is partially addressed by keeping the weight matrix Σ−
1
2

in (25) corresponding to noise in the right-hand side (e. g. pC
i ). In textbook total

least squares such a weight appears in the denominator, but being scalar that
can not handle correlation in x/y/z components. Furthermore, this approach
improves the sum-of-fractions approximation in (46) as it makes the constant
part of ΩL

j one and hence equal for all j.

4.2 Optimization

As in normal Gauss-Newton, we replace T̄ by Jk ( δ1 ) and regularize the numer-
ator, so the modified Gauss-Newton step becomes

δtls
k+1 = arg min

δ∈R9

(
δ⊤ 1

)
(J⊤k Ω

UJk +R)

(
δ
1

)
(
δ⊤ 1

)
J⊤k Ω

LJk

(
δ
1

) . (47)

In Gauss-Newton, the linearized least squares problem is quadratic and can be
solved exactly. This would be complicated here. It’s also not necessary since (47)
is only an approximation itself. So we opted for using the full gradient at δ = 0 of
the fraction, but only the scaled nominator’s Hessian, making it a preconditioner.
Note that the Hessian only affects the steps not the final result [19, §15.5].

δ̃tls
k+1 = −

(
HU

k

cLk

)−1(
gU
k

cLk
− cUk

cLk
2g

L
k

)
(48)

with
(
HU

k gU
k

gU
k

⊤
cUk

)
= J⊤k Ω

UJk +R,

(
HL

k gL
k

gL
k

⊤
cLk

)
= J⊤k Ω

LJk (49)

We don’t reduce the fraction HU
k

cL
here to highlight the similarity to the multi-

sensor case in Subsect. 5.3.
The initial guess is not adapted and uses only ΩU , since the scale bias is

small enough to be refined by Gauss-Newton. Furthermore, the initial guess is
not involved in the final covariance matrix.

4.3 Covariance Matrix

It is proven in [4] that for sufficiently high signal-to-noise ratios the posterior
covariance matrix of the unconstrained TLS-problem (43) is given by

Σ̂ =

 M∑
j=1

ΩU
j

ˆ̄T⊤ΩL
j
ˆ̄T

−1 . (50)
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In our case, the approximations from Subsect. 4.1 are also employed here. Apart
from that, the optimization is constrained, i. e. the ⊞-Jacobian needs to be con-
sidered as in Subsect. 3.4. The result is the matrix factor in front of the gradient
in (48). This also justifies using that factor instead of the full fraction’s Hessian
in the optimization.

Σ̂ =

(
HU

N

cLN

)−1
, with R = 0 (51)

4.4 Application to the Point Pair Sensor Model

In the sensor model from Subsect. 3.2, the measurement uncertainty was repre-
sented by a single covariance matrix that normalizes the residual to unit vari-
ance. For the total least squares approach, we need to attribute the uncertainty
to the object and camera coordinates. Both are assumed to be normal distributed
around their true values (∗), and while the coordinates within a point may be
correlated, the points are assumed independent.

pO
i ∼N (pO∗

i ,ΣO
i ) (52)

pC
i ∼N (pC∗

i ,ΣC
i ) (53)

For the fourth homogeneous component of pO
i ,p

C
i model zero noise. Then, with

the right-hand side decorrelation/normalization in the numerator as explained
above, we get the information matrix

ΩU
pp =

N∑
i=1

J⊤pp,iΣ
C
i■
−1

Jpp,i. (54)

The corresponding denominator ΩL is difficult to derive from Cov(Jj) as the
flattening from the ¯ -operator hinders algebraic manipulation. So, we derive it
from the original measurement model (3) and then convert it into ΩL according
to the flattening of T as T̄.

T̄⊤ΩLT̄ =
1

M

M∑
j=1

V (ΣC
i

− 1
2JjT̄) (55)

=
1

3N

N∑
i=1

tr Cov
(
ΣC

i

− 1
2 (TpO

i − pC
i )
)

(56)

=
1

3N

N∑
i=1

tr
(
ΣC

i

− 1
2
(
TΣO

i T
⊤ +ΣC

i

)
ΣC

i

− 1
2⊤
)

(57)

= 1 +
1

3N

N∑
i=1

tr
(
ΣC

i

− 1
2TΣO

i T
⊤ΣC

i

− 1
2⊤
)

(58)
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Fig. 2. The point pair model produces two matrices that represent a quadratic frac-
tion. Only the numerator is used in the initial guess, but Gauss-Newton approximates
optimization of the entire fraction.

This expression is clearly quadratic in the entries of T and hence can be expressed
by a suitable ΩL. Lemma 1 in Appendix B gives the concrete formula using the
Kronecker product.

ΩL
pp =

 1
3N

∑N
i=1 Σ

C
i■
−1 ⊗ΣO

i■ 09×1 09×3
01×9 1 01×3
03×9 03×1 03×3

 . (59)

The resulting modification to our system is depicted in Fig. 2.

5 Extensions Beyond Point Pairs

So far, we have treated the optimization problem Eq. (3). This means that only
pixels with valid depth data can be used, since that is needed to construct the
pC
i . Although the perspective loss Eq. (4) is not sufficient to disambiguate scale,

there are still ways to improve upon the point matching method. For instance,
when depth data is partially available, the remaining RGB pixels can still be
used to improve the estimate. Other possibilites include multiple cameras (with-
out explicit stereo matching), or fusing the perspective data with a prior [21].
Therefore, it makes sense to define separate sensor models for a perspective and
a depth camera.

The steps to obtain an information matrix from RGB and depth data are
described in detail in [20]. However, the normalization by a variable variance is
new, hence the sensor models are restated here.
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5.1 Perspective Sensor Model

In the perspective camera model, each object pixel generates two scalar mea-
surements. The Jacobian corresponding to Eq. (4) is

Jpersp,i = Pip̄
O
i , with Pi =

(
−f 0 ui − u0 0
0 −f vi − v0 0

)
(60)

where f , ( u0
v0 ) are focal length and optical center of the camera, and ( ui

vi ) are
the pixel coordinates where pO

i was observed. From this, obtaining ΩU
persp is

straightforward by Eqs. (41) and (44). As above, pO
i is assumed to be normal

distributed around its true value with covariance ΣO
i .

The denominator is obtained with the same strategy as in Subsect. 4.4, where
Pi takes the role that ΣC

i
− 1

2 had before.

T̄⊤ΩL
perspT̄ =

1

M

M∑
j=1

V (Jpersp,jT̄) (61)

=
1

2N

N∑
i=1

tr Cov
(
PiTpO

i

)
(62)

=
1

2N

N∑
i=1

tr
(
PiTΣO

i T
⊤P⊤i

)
(63)

Again with Lemma 1 the denominator is

ΩL
persp =

 1
2N

∑N
i=1(P

⊤
i Pi)■ ⊗ΣO

i■ 09×1 09×3
01×9 0 01×3
03×9 03×1 03×3

 . (64)

The fact that ΩL
persp,10,10 is 0 corresponds to the scale invariance of the perspec-

tive residual.

5.2 Depth Sensor Model

For the depth sensor model, each pixel is a single measurement, i. e. N = M .
Depth di ∼ N (d∗i , (σ

d
i )

2) is measured at the pixel where pO
i is recognized. The

Jacobian corresponding to Eq. (5) is

Jdepth,i = Dip̄
O
i , with Di =

(
0 0 1 −di

)
. (65)

ΩU
depth is calculated from the Jacobian and the right-hand side variance (σd

i )
2. As

in the point pair model, the weighting factor 1
σd
i

is included in the nominator to
make all denominators have 1 as constant part and improve the sum-of-fractions
approximation.
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The derivation of ΩL
depth is analogous using Lemma 1.

T̄⊤ΩL
depthT̄ =

1

M

N∑
j=1

V (
1

σd
j

Jdepth,jT̄) (66)

=
1

N

N∑
i=1

tr Cov

(
1

σd
i

(
ZTpO

i − di
))

,with Z = ( 0 0 1 0 ) (67)

=
1

N

N∑
i=1

tr

(
1

σd
i

(
ZTΣO

i T
⊤Z⊤ + σd

i

2
) 1

σd
i

)
(68)

= 1 +
1

N

N∑
i=1

tr

(
(
1

σd
i

Z)TΣO
i T
⊤(

1

σd
i

Z)⊤
)

(69)

ΩL
depth =


∑N

i=1

(
σd
i
−2

Z⊤Z
)
■
⊗ΣO

i■ 09×1 09×3

01×9 1 01×3
03×9 03×1 03×3

 . (70)

5.3 Combining Sensor Models

The residuals in the perspective camera model all have a factor of the pixel’s
depth, which the depth residuals do not have. This potentially violates the as-
sumption of variances in the same order of magnitude that underlies Eq. (45).
Therefore, each sensor’s contribution to the loss is normalized separately.

Lpersp+depth(T) =
T̄⊤ΩU

perspT̄

T̄⊤ΩL
perspT̄

+
T̄⊤ΩU

depthT̄

T̄⊤ΩL
depthT̄

(71)

Although this doubles the number of parameters involved in the optimization
process, it is still a small constant instead of growing with the number of mea-
surements. Similarly, if multiple cameras were used or other sensors, each would
be normalized in a separate summand. This affects the modified Gauss-Newton
step Eq. (48), where the Hessians and gradients from all S sensors have to be
added.

δ̃tls
k+1 = −

(
S∑

l=1

HU
l,k

cLl,k

)−1( S∑
l=1

gU
l,k

cLl,k
−

cUl,k

cLl,k
2g

L
l,k

)
(72)

The overall relation of the individual parts can be seen in Fig. 3.
For the initial guess, the information from multiple sensors has to be aggre-

gated as well. As stated in Subsect. 4.2, the initial guess does not handle the
denominator matrix. Therefore, ΩU

persp and ΩL
depth should not simply be added.

At least the factor of each pixel’s depth in the residual of the perspective camera
model can be compensated. A good guess for this factor is the mean of depth
measurements d̄, so that the initial guess is made from ΩU

persp + d̄2ΩL
depth.
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Fig. 3. Both sensor models output matrices representing a quadratic fraction. The
initial guess uses both nominators. Gauss-Newton optimizes the sum of each sensor’s
fractions.

6 Experiments and Results

We evaluate our approach with simulated data. This way, we can focus on the
statistical properties of our approach and have control over noise in the data.

Since our algorithm outputs the parameters of a distribution, we want to
show that the true pose is consistent with this distribution. A measure for this is
the squared Mahalanobis distance, which should be χ2-distributed with as many
degrees of freedom as the tangent space’s dimensionality.

χ2 = (T∗ ⊟ T̂)⊤Σ̂−1(T∗ ⊟ T̂) (73)

In particular its expected value should be 6 for pose and 9 for pose and scale.

6.1 Point Pair Model

Each experiment is a series of 1000 trials in which certain quantities are ran-
domized, i. e. at least the point measurements. For each trial, a set of N = 1000
true 3D object points pO∗

i is generated, all coordinates uniformly sampled from
[0, 1]. The corresponding true camera points pC∗

i are obtained by T∗pO∗
i . The

object or camera points, or both, are corrupted by additive Gaussian noise to
form the measurements. Finally, a transformation and its covariance is computed
using the algorithm from Sect. 3 (LS) or Sect. 4 (TLS). The parameters of all
experiments are summarized in Table 1.

In order to demonstrate the relevance of total least squares, we start with
a simple experiment: The true object transformation T∗ is set to the identity
matrix. We start with isotropic noise, identical for all points (i. e. ΣO/C = σ2I3,
σ = 0.1). When the noise is in the camera points only, we are in the classic least-
squares case (PP1 ). Therefore, the LS estimator yields consistent results: Over
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Table 1. Overview of the experiments. Common parameters are the number of points
N = 1000, the true 3D object point distribution and the number of trials (1000).

Name Noise True Transformation Algorithm
PP1 σC = 0.1m T∗ = I LS
PP2 σO = 0.1 T∗ = I LS
PP3 σO = 0.1 T∗ = I TLS
PP4 σO ∼ U([0.05, 0.1]) rotated R∗ = I, t∗ = (0m, 0m, 1m) TLS

σC ∼ U([0.01m, 0.1m]) rotated s∗ = (0.04m, 0.08m, 0.12m)
PP5 σO ∼ U([0.05, 0.1]) rotated R∗ ∼ U(SO(3)) TLS

σC ∼ U([0.01m, 0.1m]) rotated t∗ ∼ U([−1m, 1m]3)
s∗ ∼ U([0.02m, 0.3m]3)

PD1 σO ∼ U([0.05, 0.1]) rotated R∗ = I, t∗ = (0m, 0m, 1m) TLS
σd = 0.01m s∗ = (0.04m, 0.08m, 0.12m)

PD2 σO ∼ U([0.05, 0.1]) rotated R∗ ∼ U(SO(3)) TLS
σd = 0.01m t∗ ∼ U([−0.2m, 0.2m]2 × [0.2m, 2m])

s∗ ∼ U([0.02m, 0.3m]3)

Table 2. Overview of the results. The χ2 metric would ideally be 9. The scale ratio is
the average ratio of predicted and true scales over all axes. The bias in PP2 is noticable.

Name χ2 Scale Ratio
PP1 9.1003 1.0005
PP2 332.36 0.8930
PP3 10.272 0.9998
PP4 11.189 1.0022
PP5 13.842 1.0026

PD1 9.3517 0.9997
PD2 9.4690 1.0001

1000 trials, the average squared Mahalanobis distance is close to the expected
9 (cf. Table 2) and its cumulative distribution matches a χ2 distribution with 9
degrees of freedom (cf. Fig. 4).

However, with noise in the object points, the classic least-squares approach
fails (PP2 ). Although the least-squares problem is properly scaled at the true
parameters (the averaged T̄∗⊤ΩT̄∗ matches the expectation of 3000 measure-
ments), the averaged squared Mahalanobis distance is much higher than the
expected 9 degrees of freedom (cf. Table 2). Looking at the average value of
the estimated scales (ρ(T■)), we find that they are systematically lower than
their true values. This is the effect explained in Sect. 4, that by making the
object smaller, the noise’s contribution to the residual is reduced. The other
components in the mean of estimated transformations (calculated by fixed-point
iteration over the ⊞-manifold [9, §3.5]) are unbiased.

With similarly generated data, the TLS approach from Sect. 4 yields rela-
tively consistent results (cf. PP3 in Table 2 and Fig. 4).

We can move to more complex settings regarding the true object transforma-
tion and noise distributions (PP4 ). We set the true object transformation to a
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Fig. 4. Cumulative distributions of the Mahalanobis distance from the experiments
(left: point pair, right: perspective and depth camera). The curve of PP1 closely
matches the true χ2 distribution with 9 degrees of freedom. PP2 (visible at the bot-
tom) is shifted far off to the right due to inconsistency. PP3, PP4, and PP5 are a bit
off to the right (i. e. the estimation tends to be overconfident), as the involved approx-
imations take increasing effect at those settings.

scale of (0.04m, 0.08m, 0.12m) and 1m ahead of the camera, and corrupt both
object and camera points by noise. The noise is drawn for each point indepen-
dently from a 3D covariance matrix with random rotation and standard devia-
tions drawn uniformly from [0.05, 0.1] for the object points and [0.01m, 0.1m] for
the camera points. In this setting, we still get an acceptable average Mahalanobis
distance of ≈ 11.

As final validation, we randomize the ground truth transformation (PP5 ).
The rotation is chosen uniformly over SO(3) [2], translation is uniformly from
[−1m, 1m] and scales from the range [0.02m, 0.3m], independently per axis. The
latter may be a typical range for household objects to manipulate with robots. At
this point, the approximations start to show (cf. Table 2). In particular, the scales
of the axes of an object may differ by an order of magnitude in this experiment.
This transfers to the variances of the x/y/z components which therefore make
the approximation Eq. (46) worse. Still, the results are far better than even the
simple example without total least squares.

In summary, as long as the scales of the axes of the object are not orders of
magnitude apart and the noise level is relatively low, the transformation can be
estimated sufficiently consistent.

6.2 Perspective and Depth Camera Model

We now evaluate transformation estimation using the perspective and depth
camera model from Sect. 5. The process is similar to the point pair experiments,
where the main difference is how the true object coordinates are obtained. For
each trial, a 32× 32 depth image is generated by sampling uniformly within an
object diameter of the object’s true z-translation, i. e. the true object is a random
point cloud. This depth image is then transformed into camera points using a
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pixel coordinate grid and a camera matrix. The focal length is chosen depending
on the object diameter and distance to the camera, such that the resulting object
coordinates are approximately normalized. Both the depth image and the object
points are then independently corrupted by noise. Experiment PD1 uses similar
settings to PP4, i. e. a fixed object transformation (cf. Table 1). For the random
object transformations in PD2, the true translation is sampled from a different
range than in PP5. In particular, the true z coordinate is always positive and
x/y are chosen from a narrow range, such that the object center is not too far
outside the “visible” patch. The results can be seen in Fig. 4 and Table 2. In
both experiments, transformations can be estimated with consistent uncertainty
information.

7 Conclusion and Future Work

Many object pose estimation algorithms match a set of point pairs, either 3D-3D
or 3D-2D, with least-squares. We showed how this process can be extended to
also estimate object-axes scales, by optimizing over the scaled SO(3) manifold
using a ⊞-operator that encapsulates the manifold.

However, a problem comes up that’s hidden in the original pose formulation
already, but does not have an effect there: There is noise in both sides of the
match, one of them is multiplied with the scale. Ignoring this creates a bias
towards smaller scales, because that also scales the noise down. This bias is not
reflected by the uncertainty estimate rendering it inconsistent.

The paper discusses a solution for this problem using total least squares by
normalizing every measurement with the variance at the current parameters.
Normally, this approach would not allow to combine all measurements into a
fixed size representation. However, we propose an approximation to achieve this,
which in the experiments proved relatively consistent.

In future work, our fusion stage will be combined with a neural network to
predict object coordinates and uncertainties to construct a complete 9D pose
estimation system. Further lines of research go for fusion with a prior, other
sensors or fusion over time, where a system might remember the objects scale,
even if the pose has changed.
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A Proof of the ⊞-Axioms for the Scaled SO(3)

The first axiom requires surjectivity of ⊞ (all states can reach any other state
by a single ⊞-step).

∀Q1,Q2 ∈ Q : Q1 ⊞ (Q2 ⊟Q1) = Q2 (74)

Proof.

Q1 ⊞ (Q2 ⊟Q1)

= exp×(Q2 ⊟Q1)×Q1 exp◦(Q2 ⊟Q1)◦

=exp× log×(ρ(Q2)ρ(Q1)
−1)Q1 exp◦ log◦(σ(Q1)

−1σ(Q2))

=Q2σ(Q2)
−1σ(Q1)Q

−1
1 Q1σ(Q1)

−1σ(Q2)

=Q2

The second axiom requires local injectivity of ⊞ (within some neighborhood
V of a state, the tangent vector transferring to another state is unique).

∀Q ∈ Q, δ ∈ V : (Q⊞ δ)⊟Q = δ (75)

For this, we need the following lemma

σ(Q⊞ δ) = σ(Q) exp◦ δ◦ (76)

which is proven by using the diagonality of exp◦ and Q⊤Q and orthogonality of
exp×:

σ(Q⊞ δ)

=σ(exp× δ×Q exp◦ δ◦)

=
√
(exp◦ δ◦)

⊤Q⊤(exp× δ×)⊤ exp× δ×Q exp◦ δ◦

=
√

exp◦ δ◦Q
⊤Q exp◦ δ◦

=
√
exp◦ δ◦σ(Q)

√
exp◦ δ◦

=σ(Q) exp◦ δ◦

Proof.

(Q⊞ δ)⊟Q

=(log×(ρ(Q⊞ δ)ρ(Q)−1), log◦(σ(Q)−1σ(Q⊞ δ)))⊤

=(log×(ρ(Q⊞ δ)ρ(Q)−1), log◦ exp◦(δ◦))
⊤

=(log×(ρ(Q⊞ δ)ρ(Q)−1), δ◦)
⊤

=(log×((Q⊞ δ)σ(Q⊞ δ)−1σ(Q)Q−1), δ◦)
⊤

=(log×((Q⊞ δ)(exp◦ δ◦)
−1σ(Q)−1σ(Q)Q−1), δ◦)

⊤
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=(log×(exp× δ×Q exp◦ δ◦(exp◦ δ◦)
−1Q−1), δ◦)

⊤

=(log× exp× δ×, δ◦)
⊤

=(δ×, δ◦)
⊤

=δ

The cancellation of log× against exp× in the penultimate step is what requires
V to be restricted to angles up to π.

The third axiom requires 1-Lipschitzness of the family of functions fQ : R6 →
Q; δ 7→ Q⊞ δ:

∀Q ∈ Q, δ1, δ2 ∈ R9 : ∥(Q⊞ δ1)⊟ (Q⊞ δ2)∥ ≤ ∥δ1 − δ2∥ (77)

Proof.

∥(Q⊞ δ1)⊟ (Q⊞ δ2)∥2

=∥ log×(ρ(Q⊞ δ1)ρ(Q⊞ δ2)
−1)∥2

+∥ log◦(σ(Q⊞ δ2)
−1σ(Q⊞ δ1))∥2

=∥ log×((Q⊞ δ1)σ(Q⊞ δ1)
−1σ(Q⊞ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦((exp◦ δ2,◦)−1σ(Q)−1σ(Q) exp◦ δ1,◦))∥2

=∥ log×((Q⊞ δ1)(exp◦ δ1)
−1σ(Q)−1σ(Q)(exp◦ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦((exp◦−δ2,◦) exp◦ δ1,◦)∥2

=∥ log×((Q⊞ δ1)(exp◦ δ1)
−1(exp◦ δ2)(Q⊞ δ2)

−1)∥2

+∥ log◦ exp◦(δ1,◦ − δ2,◦)∥2

=∥ log×(exp× δ1Q exp◦ δ1(exp◦ δ1)
−1(exp◦ δ2)(exp◦ δ2)

−1Q−1(exp× δ2)
−1)∥2

+∥δ1,◦ − δ2,◦∥2

=∥ log×(exp× δ1(exp× δ2)
−1)∥2 + ∥δ1,◦ − δ2,◦∥2

≤∥δ1,× − δ2,×∥2 + ∥δ1,◦ − δ2,◦∥2

=∥δ1 − δ2∥2

The ≤ in the penultimate step is justified by the fact that SO(3) is a ⊞-
manifold [9].

In conclusion, the scaled SO(3) with the given operators is a ⊞-manifold.

B Flattening certain Expressions Involving T

To derive the denominator expression in the total least squares approach, in all
sensor models we needed to express trWTΣT⊤W⊤ as T̄⊤ΩLT̄, i. e. flatten it
into our fixed sized representation.



24 A. Hasselbring, U. Frese

Lemma 1. Let W ∈ Rd×4, T ∈ R4×4 with T4• =
(
0 0 0 1

)
, Σ ∈ R4×4, sym-

metric positive semidefinite with Σ44 = 0. Then

tr
(
WTΣT⊤W⊤) = T̄⊤ΩLT̄, with

(W⊤W)■ ⊗Σ■ 09×1 09×3
01×9 0 01×3
03×9 03×1 03×3

 . (78)

Proof.

T̄⊤ΩLT̄ = tr
(
WTΣT⊤W⊤) = tr

(
TΣT⊤W⊤W

)
(79)

=

4,4,4,4∑
k,l,m,n=1

TklΣlmTnm(W⊤W)nk (80)

=

3,3,3,3∑
k,l,m,n=1

TklΣlmTnm(W⊤W)nk (81)

The last step holds, because from positive definiteness, the whole fourth row and
column of Σ is zero, so l = 4 and m = 4 can be omitted. The same holds for
k = 4 and n = 4, because Tkl or Tnm are zero.

We consider the coefficients for different products of T elements. There is no
constant and no linear term. Each quadratic term TklTnm is multiplied with
Σlm(W⊤W)kn, using symmetry of W⊤W.

By flattening T into T̄, its row-indices k and n have stride 3 in the rows and
columns of ΩL respectively. Both address an element of ΣO

i . The column-indices
l and m have stride 1 and address an element of W⊤W. The two elements are
multiplied. This is conveniently expressed with a Kronecker product, leading to
the formula (78).
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