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Abstract

Objective lameness evaluation in horses is an important aspect of equine wel-
fare, as accurate detection of locomotor abnormalities enables timely and effective
treatment. Video-based markerless motion analysis offers a practical and accessible
approach, but requires reliable pose estimation models that can perform well under
varying conditions. This work investigates the use of synthetic data to enhance the
training of neural networks for equine pose estimation. A novel, adaptable Python
framework for generating realistic synthetic datasets for pose estimation tasks was
developed, producing over 900 high-quality images of horses in diverse and realis-
tic settings. In addition, a dataset of real-world videos was collected for evaluation.
Several network architectures were trained in DeepLabCut using different combi-
nations of synthetic and real data. Results indicate that deeper architectures allow
for the use of higher-resolution inputs compared to prior related research, improv-
ing the archievable detection of subtle details. The best-performing configuration
was a ResNet-101 trained on a mixed dataset of synthetic and real samples, though
differences to HRNet-w48 trained on the same dataset were negligible in visual in-
spection. The findings confirm that synthetic data is a valuable complement to real-
world data in this context. This work establishes a solid foundation for developing
clinically applicable, markerless lameness detection systems, but further research to
improve the consistency and accuracy of the recorded trajectories is needed.
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1

Introduction

1.1 | Motivation
Equine lameness has always been an issue that heavily impacts the welfare, health and
usability of horses. Lameness as a veterinarian term describes abnormal gait and stance
behavior, for example leading to an uneven movement pattern and avoidance of putting
strain on the leg. Depending on the cause of lameness and stress on the horses body, the
lameness can present itself in various degrees and types of lameness.

To minimize long term negative impact on the horses health, it is important to iden-
tify and treat lameness as early as possible. However, especially the early stages are of-
ten hard to detect if the cause of lameness is not a traumatic injury but rather a gradual
process i.e. wear and tear of the musculoskeletal system due to age or wrong training.

Recognizing light degress of lameness is a challenging task for lay persons and even
veterinarians. Even if the latter group is experienced in recognizing the lameness, it can
be hard to articulate their assessment in understandable terms to their peers due to dif-
ferent parameters used and therefore leading to misunderstandings when discussing a
medical case[19, 17]. Overall, both the veterinarian-to-veterinarian and the veterinarian-
to-horse-owner communication could greatly benefit from measurable and objective pa-
rameters to identify lameness and make a diagnosis.

Digital tools such as IMU-Sensors provide the necessary data for an objective lameness
evaluation, and over the past years there has been a number of studies done how these
sensors can be incorporated in lameness assessments [6, 9]. IMUs however do have a
major drawback, which is their need for specific equipment in addition to inaccuracies
due to different placements on the horses body and a high sensitivity to natural asym-
metries in the horse not related to actual lameness, which needs to be considered when
evaluating the sensor data. [18]

With the rise of deep learning, another method for objective lameness assessment
emerged: by using videos of moving horses and an inference performing a pose estima-
tion on each frame, it became possible to track body parts and measure their movement
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over time, therefore allowing to find deviant movement patterns without any specific
hardware needed other than a smartphone camera.

A common problem with computer vision appraoches like this in very specific fields
is usually obtaining suitable training data in large amounts to train such models. As
horses come in many different sizes, shapes and colors and additionally are often trained
and clinically examined in outdoor conditions and therefore subject to varying back-
grounds and lighting conditions, it is challenging to train a model that can generalize
well enough to be used in practical real world scenarios by both veterinarians and horse
owners.

A possible solution to this problem is synthetic data, which means artificially cre-
ated data samples, in this case images. Usually synthetic images are created as renders
of 3D-scenes, modeled in a software such as Blender [51]. While these images are not
suitable for fine tuning of a deep neural network, they can be used to increase the size
and variance of the training data set when real data is hard to obtain or there are not
enough resources available to label such data. The main goal of using synthetic data is
to increase the models ability to generalize on unseen, real data.

In cooperation with the orthopaedic department of the Hanseklinik für Pferde (engl.:
Hanse Equine Hospital) in Sittensen, this thesis strives to develop a robust model that is
suitable for real world usage in the day-to-day business of the clinic by using both real
and synthetic datasets.

Therefore, this thesis will answer the following question:

To what extent can synthetic data serve as an alternative or complement to
real-world data for training neural networks in animal pose estimation for equine

lameness evaluation?

To answer this question, the thesis will make three main contributions:

■ Development of a Python library to create synthetic data for keypoint based pose
estimation

■ Creation of multiple 3D-assets of horses and corresponding training facilities and
a dataset that is rendered in Blender using those assets and the previously de-
scribed Python package

■ Training and comparison of different Neural Neetwork architectures and training
strategies (synthetic, real and mixed data)

2
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1.2 | Structure
In this section the general structure and content of this thesis will be described.

Due to its interdisciplinary nature, both technical and veterinary basics necessary
will be described in chapter 3 and 2.

In chapter 2 a basic overview of the anatomy of the horse, its gaits and how lameness
is defined and diagnosed will be given. This is necessary to give some context to certain
design choices made in later chapters, especially in chapter 5 and 6.

Chapter 3 will start off with a short introduction (Deep) Neural Networks in section
3.1. These section will be rather short and go over the most important concepts and
definitions, as there is plenty of literature available for the more interested reader. In
section 3.3 the concept, benefits and challenges of synthetic data will be described, as
it is the basis for the dataset used in this thesis. The topic of pose estimation will be
introduced in section 3.2.

PoseCraft, a python package for synthetic data generation that was developed for this
thesis is presented in chapter 4. The chapter will include the motivation for developing
a new framework, list the design criterias and constraints that were taken into account,
describe the software and how it can be used as well as name some challenges that were
overcome during development.

A practical example how PoseCraft can be used will be presented in chapter 5: Here,
the dataset that was generated for the training of the network is presented. Since many
of the 3D Assets were created or adapted for the purpose of this thesis, some of the
steps in Blender will be described and design choices explained. There will also be an
overview of the statistics of the dataset, such as the number of images, keypoints and
classes.

The generated dataset will be put to use in chapter 6. Using the DeepLabCut frame-
work, multiple models are trained on both synthetic and real data. The collected set of
real world data and the annotation process will also be described. All models trained
will be thoroughly evaluated and compared with each other, followed by a discussion
of the results.

To reconnect the three main contributions of the thesis again, Chapter 7 will present
a general conclusion and highlight some possible ways to go forward with the results
of this thesis.

As this thesis heavily relies on visual material, a lot of examples can be best given
in visual form. To not clutter the main part of the thesis, Appendix A will contain
additional examples and figures that did not make it into the main part of the thesis,
but might be interesting for some readers and give a more detailed impression of the

3
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datasets. In Appendix B, some code snippets can be found to illustrate how the software
written for this thesis works. Finally, in Appendix C a list of all 3D assets created or
modified for this thesis can be found.
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2

Veterinary Background

In this chapter a the reader will be provided with the necessary knowledge of horse
anatomy and lameness diagnosis. Certain terms such as lamness will be defined, and
related research in the area of objective lameness evaluation will be presented.

2.1 | Anatomy and Gaits of the Horse
While most likely everyone knows what a horse looks like, this section will go over
some lesser known traits of the equine body and what types of gaits a horse has.

2.1.1 | Basic anatomy of the horse
Horses are quadruped1 mammals with the a muscosceletal system that is highly opti-
mized for effective running. Their exterieur includes the head (with eyes positioned lat-
erally for wide vision), neck (providing balance and aiding in movement), withers (the
ridge between the shoulder blades), back, loin, and croup leading to the tail. Their legs
are long and strong. The forelimbs will carry more of the weight due to the distribution
of the bodymass, while the hind legs offer power and propulsion for movement.[11]

While most of the bones in the human skeleton have an equivalent part in the skele-
ton of a horse, one important difference is that horses, like other quadrupeds as dogs
and cats, do not have a clavicle (collar bone). Instead, their shoulders are connected to the
body by soft tissue such as muscles and ligaments known as the thoracic sling. [11, p. 59]
This allows the trunk more flexibility in movement and the horse can use the muscles
to rise and lower its trunk or shift it slightly to the left or right side, which is especially
useful in curves at a higher speed. [11, p. 79]

1four-legged

5



Chapter 2. Veterinary Background 2.1. Anatomy and Gaits of the Horse

Figure 2.1: A horse viewed from the side with annotated names of the
body parts.
Based on [11]

2.1.2 | Gaits of the horse
Most horses move using four different gaits2. Those basic gaits are walk, trot, canter
and gallop. Some breeds can perform so called ambling gaits, however, those as well as
the gallop are not relevant here.

During movement, a horse’s limbs follow repetitive patterns known as strides. Stride
length refers to the distance covered between successive placements of the same hoof.
Each stride consists of distinct phases: the stance phase, when the hoof is in contact
with the ground and bearing weight, and the swing phase, when the limb is lifted and
moving forward through the air. The stance phase can be further divided into initial
ground contact (the hoof touches the ground), impact phase (a short phase after touching
the ground, where that the muscles have not adapted yet), loading phase (the limb is ac-
tively carrying weight) and breakover (the heel leaves the ground and rotate around the
toe). [11, p. 80f]

Walk: The walk is the slowest gait. It has four-beat rythm where each hoof strikes the
ground independently. It is an symmetrical gait. At any point during walk, the horse

2In german language, there is no distinction between canter and gallop, and usually people will speak
of three basic gaits, as the gallop is a faster version of the canter with a slight difference in the footing
sequence
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will bear weight on two or three limbs, and there is no moment of suspension. The
average speed in a medium walk is ≈ 6 km/h. [11, p. 82-98]

Trot: The trot is faster than the walk. It has a two-beat rythm. The diagonal limbpairs
will move forward at the same time, followed by a moment of suspension before reach-
ing the ground again with the other two limbs swinging forward. Therefore, each stride
features two phases of suspension. Like walk, a horses trot is symmetrical. How fast
a horse moves in trot depends on the collection3 and the individual locomotion of the
horse as well as it’s size. A range between 10 km/h and 16 km/h will be accurate for
most horses. [11, p. 99-120]

Canter: The canter has a three-beat rhythm. It is an asymmetrical gait: depending on
the lead, one hind limb initiates the stride, followed by the diagonal pair (consisting of
the other hind limb and the opposite forelimb), and finally the leading forelimb. This is
followed by a moment of suspension before the next stride begins. The speed by which
a horse can move in canter depends on similar factors as it does for the trot. At high
speeds, it will be faster than the trot of most horses, but a collected canter can be slower
than an extended trot. [11, p. 121-139]

As it is asymmetrical, the canter is not a part of lameness examinations.

2.2 | Lameness in Horses
In this section, the term lameness will be defined. Different types and grades of lameness
will be presented, and the procedure of a clinical lameness examination

2.2.1 | Definition of Lameness
Lameness describes an abnormal movement pattern in horses, usually as a result of pain.
The causes of lameness can be varied and may be caused, for example, by trauma (sin-
gle or repeated), developmental disorders, infections or many other reasons. [2, p. 67]
A lame horse will usually try to reduce the load on the affected limb with compensatory
movements. This can become apparent through untypical movements of the head (the
horse ”nods” each time the affected limb is bearing weight), a reduced extension of

3Collection means that the horse’s hind legs carry more weight, which is particularly desirable when
riding over long distances in order to keep the horse healthy. Collection is usually associated with a more
upright neck and a raised torso.
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Table 2.1: Grades of lameness as defined by the AAEP.

Grade Description
0 Lameness not perceptible under any circumstances.
1 Lameness is difficult to observe and is not consistently apparent, regardless

of circumstances (e.g. under saddle, circling, inclines, hard surface, etc.).
2 Lameness is difficult to observe at a walk or when trotting in a straight line

but consistently apparent under certain circumstances (e.g. weight-carrying,
circling, inclines, hard surface, etc.).

3 Lameness is consistently observable at a trot under all circumstances.
4 Lameness is obvious at a walk.
5 Lameness produces minimal weight bearing in motion and/ or at rest or a

complete inability to move.

joints like the fetlock or even an altered pattern of leg movement. [2, p. 67] This com-
pensatory behavior can lead to alterations of the body, for example a wide and flat hoof
on the weight-bearing, sound limb and a more narrow and upright hoof on the lame,
unloaded limb. [2, p. 68]

An observer will notice an asymmetrical movement pattern in the horse’s locomo-
tion. However, it must be stressed that almost every horse does move in slight asym-
metrical way especially on curved lines, and asymmetry is not a strict indication of
lameness or pain. [41]

Lameness becomes usually most apparent during the trot; since canter is an asym-
metrical gait it is not suitable to spot lameness. In walk, due to the abscence of a floating
phase, a lameness will only become apparent if it is severe. A light lameness is usually
not detectable in walk (see Table 2.1). [11, p. 120]

2.2.2 | Degrees of Lameness
There are various scales used to classify the severity of lameness. One widely used scale
is that of the American Association of Equine Practitioners (AAEP). It divides lameness into
five degrees, which are based on the gaits in which the lameness is visible and the extent
to which the affected leg is avoided. The five degrees of lameness are listed in Table 2.1,
as it was found in [2, p. 137] and [22, 7].

2.2.3 | Types of Lameness
It is not only important to know whether a horse is lame, but also what limb is affected
and what type of lameness is occuring. Lameness can be classified in different ways.
Two of the most important distinctions for this thesis are:
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Forelimb Lameness vs. Hindlimb Lameness: Whether the affected limb is a frontleg
or a hindleg will have a big impact on the observable symptoms. A forelimb lameness
will usually be expressed by an untypical head-movement in motion and an asymmetric
trajectory of the withers. For a hindlimb lameness, the trajectory of the hips and pelvis
will deviate. [11, p. 120]

Supporting Limb Lameness vs. Swinging Limb Lameness: By far the most common
type of lameness is the supporting limb lameness. The horse will express pain when the
impaired hoof touches the ground and bears the weight of the body. It often caused by
injuries to bones, joints or supporting structures such as tendons. If a horse shows signs
of a swinging limb lameness, the symptoms will become evident during the motion of
the limb. Often, the cause of this type of lameness is located in the upper part of the
limb or skeleton. [2, p. 68]

2.2.4 | Procedure of a lameness examination
The purpose of lameness examination is not just to determine whether a horse is lame,
but also which limb or limbs are affected. The author was invited by Dr. Jens Körner
to observe several lameness examinations at the Hanseklinik für Pferde. A lameness ex-
amination as described in [7, 2] usually consist of these steps (with deviations between
practicioners):

Observe the standing horse and examine its confirmation. Sometimes, the body of
the horse can already give hints whether issues with the musculoskeletal system or
other parts of its body are present. Therefore the horse should be thoroughly examined.

Trotting on a straight line. The horse will be presented in walk and trot on a straight
line, usually on hard ground. The veterinarian looks out for deviating movement pat-
terns of the head (head nods) and hips (hip nods).

Trotting on a circle on hard and softground. The strength of asymmetries in loco-
motion can vary depending on whether it moves on a straight or curved line. [40, 41]
Therefore, the examination usually includes the presentation of the horse on a circle.
The ground substrate is also proven to have an influence on the severeness of the asym-
metries it can be beneficial to lunge the horse on both hard and soft surfaces if local
conditions permit it. [38]
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Manipulation of the limbs. In order to make the change in the horse’s movement
more apparent, a so-called flexion test is often performed. This involves bending a joint
sharply for a few minutes, which can exacerbate existing lameness and make it more
visible, but there is a risk of false positives on legs that are actually healthy. [2, p.115]

Another method of manipulation is injection with anaesthetics. Starting at the joints
in the hoof, an anaesthetic is injected into the nerve to suppress the pain impulse during
movement. Once the anaesthetic has taken effect, the horse is repeatedly put back into
motion and examined. If it still shows signs of lameness, the process is repeated with
the next higher joint. In this way, the cause of the lameness can be localised. [2, p.157]

This way of examining horses by visual inspection through a professional veterinar-
ian is called subjective lameness evaluation. Studies have shown that especially less ex-
perienced veterinarians and laypersons will often overlook or misclassify signs of light
lameness. Research on the reliability of subjective lameness evaluation is presented in
Section 2.3.1.

2.2.5 | Measurable parameters in lame horses
In veterinary research it is a topic of interest to identify quantitative measurable values
to evaluate whether a horse is lame. These values can be measured with modern sensors
like IMUs (Inertial Measurement Units)4 or camera based motion tracking systems.

Often surprising to laymen is that during a lameness evaluation the main focus does
usually not lay on the legs and the trajecories of the upper body are usually more in-
teresting. The consensus among researchers is that it is primarily the movement of the
head and hips that can provide information about existing lameness. [2, p. 126-134]

However, especially the head trajectory will often be very unstable as the horse does
not only use it’s neck to balance itself during movement, but also look around. Espe-
cially in new stressfull situations and unknown environments like during the examina-
tion in a horse clinic, horses will often lift their head high to get a better view of their
surroundings and move the head a lot unrelated to the normal movement.

More recently, the trajectory of the withers garnered more attention by researchers.
While it is less sensitive to lameness especially on straight lines compared to the head
movement, it can deliver additional information and help differentiate between fore-
limb and hindlimb lameness. [2, p. 129]

4A sensor that will usually measure acceleration (Accelerometer), rotation rate (Gyrometer) and some-
times the magnetic field (Magnetometer).
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When a horse trots, its body moves down as it ”falls” on the first pair of limb in their
stance phase and then up when it pushes off the ground with this pair of legs during
one half of the stride, and again down and then up during the other half, with the other
diagonal limp pair. The head, withers and pelvis normally follow this pattern. In a
healthy horse, the highest and lowest point of this periodic curve should be the same
for both halves of a stride. [2, p. 126f]

However, in a lame horse, this will usually not be the case. In an effort to relief the
affected limb and quickly move the bodyweight back onto the other limb, it will lift it’s
head and body up, leading to different peaks of the trajectory in a stride. [2, p. 126f]

Generally, a forelimb lameness will be indicated by the trajectories of head and with-
ers, and a hindlimb lameness by the trajectory of the pelvis. A higher tempo in trot will
lead to a higher amplitude of the recorded signal. [39]

2.3 | Lameness Evaluation
As previously mentioned, subjective lameness evaluations can lack reliability. In this
section, research on this topic and emerging approaches to objective lameness evalua-
tion will be presented.

2.3.1 | Reliability of subjective Lameness Evaluation
Multiple studies investigated the agreement between different veterinarians when ex-
amining the same horses for lameness.

In “Rater Agreement of Visual Lameness Assessment in Horses during Lungeing”
[17] the authors collected videos of horses and send them to practicing veterinarians
with varying levels of experience. The veterinarians who accepted the invitation to
participate, finished the presented task in form of an online questionaire and were not
suspect to concerns regarding their integrity (n = 86) were classified as either experi-
enced (> 5 years of practical orthopaedic experience) or less experienced (≤ 5 years of
experience). The authors found that especially the less experienced veterinarians have
a very poor inter-rater agreement5. The veterinarians in the experienced group had a
higher level of inter-rater agreement, however the authors still noted that it was only
”moderately acceptable”. This implicates more reliable ratings for more experienced
veterinarians. The lowest level of agreement was calculated for whether a horse was

5Inter-rater agreement: Agreement for a certain decision/diagnosis between different persons

11



Chapter 2. Veterinary Background 2.3. Lameness Evaluation

sound6, meaning some of the study participants did not see a mild lameness or rated a
sound horse as lame.

Starke and May conducted a similar study in “Veterinary Student Competence in
Equine Lameness Recognition and Assessment”[46]. In this study, the participants con-
sisted of veterinary students in different years of their studies, again classified as either
experienced or less experienced. The experienced students were better at evaluating the
shown videos than the inexperienced students, but still taking the wrong choice for 1 in
4 horses. The results for sound horses were on the same level as chance. In this study,
the authors additionally made use of an eye-tracking method to investigate which parts
of the horse were mainly looked at to identify lameness. The authors only used th front
and rear view and no side view, however the results implied that with increasing ex-
perience the students paid less attention to the movement of limbs and more attention
to the upper body parts like head and hip movement. The authors conclude that both
groups results were inadequate, and students should receive better peceptual training
before going into clinical rotations.

Another study from 2019 by Starke and Oosterlinck also investigated inter-rater
agreement, this time on animated 3D models of horses rather than real video footage[47].
Participants consisted of both practicing veterinarians and veterinarian students. Again,
the results were rather poor and performancewise in line with the studies described
prior. The authors further found that there is no correlation between the self-rated con-
fidence of the viewer and the actual correctness of his or her evaluation.

Considering the studies cited above, there is a lot of evidence that subjective lame-
ness evaluations lack realiability, especially if the veterinarian or student is inexperi-
enced, and additional objective methods could be a great benefit to the field for both
horse owners and veterinarians.

2.3.2 | Objective Lameness Evaluation
Objective Lameness Evaluation describes the usage of quantitative, technology-based
methods that can be used as additional help during lameness examinations. There are
many different forms of objective lameness evaluation systems, which are based on
force plates, IMUs or camera-based systems. [21, 44] For this thesis, the two former
ones will be ignored; instead, the use of video based systems will be the focus. As this
thesis was originally a proposal made by the Hanseklinik für Pferde, they wished for a
system that would work with videos recorded on smartphones, but the processing of

6not showing any signs of lameness or abnormalities in movement
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the video would not necessarily have to happen on the device, therefore leading to less
restrainments regarding the required computing power.

2.3.2.1 | Historical context

There has been a number of studies done that use video analysis to evaluate lameness
in horses. Video analysis was used as early as 1986 to give a better assessment of un-
usual movement patterns in the horse [5]. However, the analysis of the video footage
recorded by analogue highspeed cameras relied on external hardware to to visualize the
trajectories of selected keypoints on the moving horse.

With more technical advancements, Motion Capture systems found their way into
the field. For those, the horse is equipped with markers that are attached to their skin at
certain skeletal landmarks. Those markers can be tracked by one or multiple cameras,
providing trajectories of the markers. Usually multiple cameras are used, allowing for
tracking in a 3D space. While the tracking itself is usually very accurate, the markers
move with the soft tissue they are attached to, which leads to noise compared to the
actual position of bones and joints that are supposed to be measured. [49]

These motion capture systems have another downside: the necessary setup is quite
time consuming and the equipment is expensive. Not every horse is examined in a
clinic; often, the veterinarian will do the examination at the stable where the horse is
kept. This makes a regular use of such systems in daily use very difficult.

Markerless systems are a lot easier to use: With the rise of Deep Learning, many
complex Computer Vision problems could now be solved by Neural Networks. While
markerless pose estimation for humans or animals is not as popular as other fields of
research such as object detection with bounding boxes or segmentation, there is still a
lot of relevant research and modern research that will be looked at more closely in the
next subsection.

2.3.2.2 | Markerless Pose Estimation for Lameness Evaluation

Due to the downsides of additional equipment needed for other approaches and the
growing camera quality and computing power of mobile devices, markerless pose esti-
mation for clinical use has been on the rise both in commercial solutions (see [56]) and
research (see [15, 48]).

Both Feuser et al. [15] and Wang et al. [48] trained Deep Neural Networks using DeepLab-
Cut [34]. Those were used to do pose estimation on horses lunged on a circle or trot-
ted on a straight line and recorded with smartphone cameras. The collected keypoints
were then processed to extract their trajectories and evaluated as described in Section
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2.2.5. Feuser et al. collected data of 65 horses for the training group, resulting in 454
frames from 215 videos. They trained a ResNet-50 on these images. They report an
error of 6.14 pixel on the evaluation data. The video resolution was reduced by 40%
from 1920 × 1080 p (FullHD) to 768 × 432 p. The authors concluded that a better and
more accurate model would be needed to make the system feasible for the detection of
light lameness (Grade 1-2, see Table 2.1), but the collected results matched the clinical
representation of the horses with a more severe lameness (Grade 3-5).

While Wang et al. did a similar setup but filming horses on a straight line, they
trained both a ResNet-50 and ResNet-101. Unfortunately, they only report on the train
loss as metric, making it hard to determine why they chose ResNet-50 over the deeper
variant and see how the network performs on unseen data.

In [26] by Lawin et al. the commercial Sleip was evaluated against a multi-camera
motion tracking setup. They conclude that a smartphone app can be suitable for that
task. However, it should be noted that some of the researchers are associated with the
company behind the Sleip app.

Using videos collected on a smartphone seems to be a promising approach for ob-
jective lameness evaluation if the models trained for the task reach a sufficient perfor-
mance. However especially when filming from the inside of a circle, a method to seper-
ate the movement of the horse itself and other noise in the signal, for example due to an
unsteady hand has to be developed. In [15] a keypoint on the torso of the horse is used
as center, however, this would collide with the idea that the vertical movement of the
withers is an important additional metric for lameness evaluation. Other approaches
use a tripod and film the horse on a straight line/from the outside of a circle to avoid
this problem.
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3

Technical Background

Due to the interdisciplinary nature of this work, not every reader may have the techni-
cal background knowledge necessary to understand the later chapters. Therefore, this
chapter explains some of the core concepts in the field of deep learning. Accordingly,
these explanations will aim to explain these concepts as clearly and simply as possible,
rather than getting lost in the depths of mathematical and theoretical details.

3.1 | Neural Networks and Deep Learning

3.1.1 | Machine Learning
Machine Learning is a wide field that includes many different methods and concepts.
One trait they all share however is that they produce their output by learning from
examples rather than being explicitely programmed to do so. Machine Learning methods
are often divided into three big subclasses: Supervised Learning, Unsupervised Learning
and Reinforcement Learning. [27]

Since the latter two fields are not of relevance for this thesis, all following explana-
tions that might be ambigous in the broader context are made in regard to Supervised
Learning. Also it should be noted that a lot of machine learning models do not work
with images; the input of a model could be almost anything that can be represented in
a digital format, such as text or audio. However, as for this thesis images are used, they
will be the focus in examples and explanations.

3.1.1.1 | Supervised Learning

Supervised Learning is based on the principle of showing a model many different ex-
amples that have been manually annotated by humans. Those annotations, so called
labels, are also refered to as Ground Truth. If the model learns as desired, it will be able
to annotate new, unseen data with this information just as a human would. An example
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that fits this thesis: If we show a model a lot of images of horses and with each image
and also tell the model how that coat color of the horse is called, the model should even-
tually be able to name the color of the horse on an image it has not seen before. This
would be a classic example for a Classification task. [29]

There are other types of task than just classification. Another popular technique
would be Segmentation, where a model is trained to find all pixels of an image that
belong to a certain class or instance. For example, being shown an image of a horse,
find all pixels that show the horse, therefore creating a mask that seperates the horse
from the background. To archieve this, the network would have see many different
images of horses for which a human annotated all the areas of the image that actually
show the horse and are not part of the background or other foreground objects.

The task that is solved by the models in this thesis is called Pose Estimation. In the
context of Human Pose Estimation or Animal Pose Estimation it usually refers to so called
Keypoints that can be identified and tracked in images and videos. More on that can be
found in Section 3.2.

3.1.1.2 | Training and Testing of Machine Learning Models

What was priorly described as "showing a model" examples is in more technical terms
the Training of a model. How the training actually looks like depends heavily on the
type of model; more on the training of Neural Networks in the next subsection. The data
that is used to train a model should be as diverse and extensive as possible. How much
data is needed depends on the chosen model and the complexity of the task. If the
model is not presented with enough data during training, it can overfit. This means it
will perform very good on the training data, but not be able to generalize the underlying
patterns to new, unseen data. Therefore, it should always be tested on a seperate dataset.

3.1.2 | Neural Networks and Deep Learning
One type of Machine Learning Models that not only opened up a whole new world of
possibilities for data processing especially on images and audio but also caught a lot of
public interest. Artificial Neural Networks are not dissimilar in their basic principle to the
functioning of the brain, which is where they get their name from. An Artificial Neural
Network consist of multiple layers. The so called Input-Layer will as the name suggests,
get the input as basis for the calculations. In case of an image, that would be the color
values of each pixel. The output is generated by the Output-Layer. What form this
output has depends on the type of model. For a classification model, the output would
be the likelihood of each class for that specific input. Between the input layer and output
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layer is a varying number of hidden layers. Each of those layers consists of many artificial
neurons, which are connected with each other. Each of those connections is assigned
a weight, that will be used to calculate the value that is passed on to the connected
nodes in the next layer, before finally reaching the Output-Layer. Which value a weight
is assigned is determined during the training of the model. A layer can have multipe
channels; an intuitive example is a network that will take a RGB-Image as input. The
input layer will not only have an input neuron for each pixel in the image, but actually
need three neurons per pixel, one for each color value of the input. [29]

A Neural Network can be seen as a mathematical model to approximate a non-linear
function. The more layers and overall parameters a network has, the more complex
the function can be. This is why Deep Learning led to very good results in fields such
as image processing; deep refers to a high number of hidden layers. However, it is not
feasable to stack an unlimited amount of layers on top of each other to get a better model
due to the Vanishing Gradient Problem. The vanishing gradient problem occurs when
gradients in deep neural networks become extremely small during backpropagation,
causing earlier layers to learn very slowly or stop learning altogether. [3]

3.1.2.1 | Training of Neural Networks

Since the training of Neural Network involves very specific technical terms, these will
be explained here. During training, a sample of the training data is passed into the
network, more specifically passed into the input layer. Starting with the input values
of the sample, the calculated values depending on the input and weights of the neuron
connections will be passed from layer to layer, until they reach the output layer. The
error between the calculated output and the actual ground truth is used to calculate the
loss with a so called loss function. In a process called Backpropagation, the weights are
then adjusted to minimize the loss. This is done repeatedly many times. In this thesis,
the repetitions of this process are measured in epochs. In one epoch, the network will
be presented each image from the training dataset exactly once. How many iterations
one epoch takes is however not only dependant on the number of training images, but
also the batch size. The batch size decides how many images the network is presented
at the same time, in a batch. This means the weights of the network will not be adjusted
based on a single image, but multiple images at once. Therefore if the dataset consists
of 64 images, one epoch will take 64 iterations with batch size 1, or 16 iterations with
a batch size of 4. A bigger batch size will speed up the training process, but is limited
by the available computing power/memory of the computing unit, which is usually a
GPU. [31]
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3.1.2.2 | Transfer Learning

A pretrained network is a model that has undergone initial training on a huge bench-
mark dataset such as ImageNet [8] or COCO [28] that were made accessible to other
researcher to test their architectures or use them as foundation to train a network for a
domain-specific task. These learned parameters can then be transferred to a new task
via transfer learning. Here the whole network or only it’s head (referring to the last
few layers) is fine-tuned on the dataset that is collected from the actual target domain.
Since many of the features are already represented from the initial dataset, the task- and
domain-specific training will need significantly less training data and time. [30, 37, 50]

3.1.3 | Architectures for Neural Networks
Over time, many different architectures of neural networks emerged that address vari-
ous issues with a fully connected deep neural networks. The most important ones for
this thesis are the concept of Convolutional Neural Networks and the addition of Residual
Connections in Residual Networks.

3.1.3.1 | Convolutional Neural Networks

Convolutional Neural Networks are a type of neural networks that try to reduce the
number of weights a network has to learn during training. They employ convolutional
layers, where a filter of varying size (often a 3 × 3 matrix) is slid over every area. While
it is hard to prove, it is assumed that early layers typically detect low-level patterns
(edges, textures), while deeper layers combine these into higher-level representations
(shapes, objects). This hierarchical feature extraction enables CNNs to perform tasks
such as image classification and object detection efficiently, with fewer parameters than
fully connected networks. Convolutional Neural Networks usually consist of multipe con-
volution blocks, which usually consists of a Convolution layer with an activation function,
and a Pooling Layer. A pooling layer decreases the resolution of the input by combining
values of multiple pixels into one. By this decrease in resolution the Receptive Field of the
output neurons grows. Receptive Field refers to the amount of pixels that will have an
influence on the output value of that neuron. However, this decrese in resolution leads
to a loss of information. [24][4][1]

3.1.3.2 | Residual Networks

Residual Networks (often called ResNets) are a type of networks that try to solve the
vanishing or exploding gradients that can appear in very deep networks. ResNets solve
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Figure 3.1: Visualization of the ResNet Architectures.
Source: [35]

this by adding Residual Connections, that allow information to skip certain layers and get
passed directly to a deeper layer of the network. [20, 3]

Figure 3.1 shows the structure of residual networks of varying depths. ResNet-50
and ResNet-101 are also used later in this thesis.

3.2 | Pose Estimation
The term Pose Estimation describes a task in Computer Vision, where the goal is to
detect poses of a human or animal by identifying priorly specified keypoints. Often
those keypoints are attached to easily identifiable landmarks of the body, such as eyes,
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elbows or hands. How many keypoints are used and where they are on the body is task-
dependant. Pose Estimation can be applied to images with multipe individuals or just a
single one; this can have an influence on the network architecture that is most suitable
for the task. This task is most interesting to use on videos; however, usually the model
to solve this task will receive each frame of a video (which are images) as an input to
work on, rather than processing a whole video at once. [32] [25]

3.2.1 | Approaches
There are two major types of models for Pose-Estimation: Top-Down and Bottom-Up.

3.2.1.1 | Top-Down Pose Estimation

In this approach, each individual is first identified in a bounding box. The pose estimation
to identify the keypoints is then only done on the bounding box of an individual rather
than the whole image. As this needs two models to solve the task (one for the bounding
boxes, one for the keypoints), this has higher computational requirements. However,
it has the benefit of a better chance to find all individuals in an image, therefore being
especially suitable for multi-individual pose estimation. [25]

3.2.1.2 | Bottom-Up Pose Estimation

For the bottom-up approach, the model will first find keypoints of all individuals in an
image, and connecting them in the next step to form a skeleton for each individual. One
downside is that the model might struggle to find keypoints on individuals that are ei-
ther very small or very big. However, this approach requires less computational power
and is usually suitable for single-individual pose estimation. [25]

3.2.2 | How are the Keypoints estimated?
The common approach to train a model for pose estimation is based on heatmaps. A
heatmap will map a probability for something to each pixel or, if the heatmap has a lower
resolution than the input image, group of pixels for an input image. For pose estimation,
this means the model will output a heatmap for each specified keypoint. Each pixel of
the heatmap has a value p, with 0 ≤ p ≤ 1, representing the likelihood of that keypoint
being visible in that exact spot on the input image.

An example for such a heatmap is shown in Figure 3.2. The highest probability will
be used as position of the keypoint, if the probability is above a certain threshold.
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Figure 3.2: Here, all calculated heatmaps are overlayed onto the input
image. The keypoints used for the detection can be recognized well and
are clearly distinguishable despite being overlaid.

3.3 | Synthetic Data

3.3.1 | What is Synthetic Data?
Synthetic data refers to data that is artificially generated through statistical modeling
or simulation, rather than being directly collected from real-world observations. It has
emerged as a critical resource in machine learning, particularly in scenarios where real
data is scarce, sensitive, or costly to obtain. The concept of synthetic data was first pro-
posed by Rubin, who introduced the idea that statistical agencies could use artificially
generated data to release statistical findings publicly while maintaining the privacy of
individuals in the original datasets. [43, 42, 10]

In the context of supervised learning, acquiring labeled data can be especially chal-
lenging. The process of annotating data is often labor-intensive and time-consuming, as
it typically requires manual effort from human annotators [36, 33, 12]. The input data
for machine learning models can take various forms - for example in the form of text,
images, or numerical values. Therefore, synthetic data also exists in multiple formats.
Emam [12] classify synthetic data into two categories:

■ Synthetic data based on real data: This involves generating new data that mimics
the statistical properties of an existing dataset, often by imitating its probability
distribution.

■ Synthetic data not based on real data: This type is generated independently, such
as through simulations that model real-world environments or phenomena.
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Besides synthetic data, there is also the term of augmented data, which is a different
thing. Augmentation techniques use an existing data sample as a base and then apply
transformations to expand the dataset by size or variability. In computer vision, for ex-
ample, this might involve rotating or mirroring images to create new training samples,
but also changes of brightness, saturation or contrast of the image. [36].

3.3.2 | Benefits and Disadvantages of Synthetic Data
3.3.2.1 | Benefits

Data availability and scalability. In many scenarios, real data is limited or difficult to
obtain. Synthetic data can be used to augment the size of training datasets, helping to
prevent overfitting and improve model generalization [36].

Automatic labeling. Manual labeling is a significant bottleneck in machine learning,
particularly in computer vision tasks such as image segmentation. Synthetic data, gen-
erated in controlled environments such as 3D engines, allows for automatic generation
of labels, including segmentation masks. This greatly reduces the time and effort re-
quired for data annotation [33, 36].

Privacy protection. The use of personal data in AI systems raises significant privacy
concerns. Regulations such as the GDPR impose strict requirements on data collection
and storage [13]. Synthetic data offers a way to sidestep many of these issues, as it does
not contain identifiable personal information and can be shared more freely [33].

Data diversity. In real-world data collection, it is often difficult to capture sufficient
variation in factors such as lighting conditions, object occlusion, or rare edge cases.
Synthetic data can be manipulated to introduce these variations deliberately, resulting
in more robust and generalizable models.

3.3.2.2 | Disadvantages

Domain gap. A key concern in using synthetic data is the domain transfer problem.
For example, in computer vision, synthetic images rendered from 3D models often dif-
fer in appearance from real-world images. This discrepancy, known as the domain gap,
can impair the model’s performance on real data. To mitigate this issue, synthetic data
should be as realistic as possible to ensure a smoother transition between synthetic train-
ing data and real-world test data [36].
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Lack of real-world imperfections. Synthetic data typically lacks the sensor noise and
imperfections present in real-world data. In computer vision, this might include noise
introduced by camera sensors (e.g., ISO noise), motion blur, or lighting artifacts, which
can affect model accuracy if not accounted for in the training data.

There are methods that strive to reduce the domain gap and make the translation
to real-world data easier. Examples for this would be the addition of gaussian noise,
color shifts, occlusion and blur effects archieve a higher data variety and make it more
realistic.

3.4 | Related Research
Using synthetic data to train deep neural networks for pose estimation tasks on animal
is not a new concept; this section will take a look at similar relevant research.

Jiang et al. did an extensive survey on the existing research for animal pose esti-
mation. They mention the lack of publicly available datasets and why 3D-generated,
synthetic data can be a way to deal with the difficulty of collecting big datasets with
enough variety in light, camera angles and poses. They present different metrics that
can be used to evaluate pose estimation models. The one that is used by most toolboxes
and frameworks is the RMSE. It is suitable even for very precise models, where other
metrics such as PCK would not be able to catch slight differences in performance [23].

Synthetic datasets in practice are presented by Fangbemi et al. [14] and Shooter,
Malleson, and Hilton [45].

In [14] the authors train a ResNet-50 to infer 3D-animations of a skeleton from 2D
videos of cougars. For this, they use the model of a cougar that is rendered from differ-
ent camera angles and add a random photo as background. To bridge the domain gap,
they try to techniques: The first on is a style transfer applied to both training and test
data, and the second one is to convert both training and test images to greyscale. While
the latter led to a significant improvement of performance, the former performed worse
than using the images without any augmentation. They report success in this task, but
also that the model will often struggle when presented complex videos with occlusions
or mutiple objects.

Shooter, Malleson, and Hilton create a synthetic dataset of dogs in the game engine
Unity3D. They use various models and textures for that model, which is then placed in a
3D environment. They apply post-processing effects such as adding grain and changing
the saturation and brightness of images randomly, to create a bigger variability in the
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dataset. They compare pose estimation models trained solely on synthetic data, fine-
tuned with real data, and trained on mixed datasets. They report that the models trained
on synthetic data only perform poorly, while fine-tuning led to an improvement. The
best results were archieved on a mixed dataset.

One thing that becomes apparent in synthetic datasets is the lack of directional light;
3D models are rarely illuminated by lightsources that will throw shadows or can be re-
flected by the coat of an animal. Also the 3D environment is either not existant or barely
more a than a textured plain. Therefore, the created images lack the sharp contours
direct sunlight will often create in real images taken on the outside, and the contrast
between shadow and illuminated areas. It is possible that more realistic 3D environ-
ments would lead to an improved performance of networks trained on synthetic data
and could be an even more valuable addition in domains where real data is sparse and
hard to collect.
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4

PoseCraft: A framework for synthetic
data generation

In this chapter, the python package PoseCraft will be presented. It was developed as part
of this work to provide framework to create synthetic datasets for pose estimation. This
chapter will describe the architecture of the package, give a short example how it can be
used and list some options for improvement in the future.

The package is set to be released publicly1 after some clean-up work and improve-
ment of stability.

4.1 | Motivation
Synthetic data for Computer Vision tasks is not a new concept as described in the previ-
ous chapter; there has been a number of research projects that used 3D render engines to
generate datasets that can be used to train neural networks. Frameworks for synthetic
data generation exist based on software like Blender [51], Unreal Engine [55], or Unity
[57]. A well-known example for the creation of synthetic data is the Framework Blender-
Proc [54]. However, while it covers task such as segmentation and depth mapping, it
does not support the creation of synthetic data for pose estimation natively.

Blender is not only a very flexible and powerful tool, it is also free software2 released
under the GNU-License which grants any user the freedom to use it as they see fit and
offers a Python interface through the package bpy [52]. As many machine and deep
learning projects are done with Python, most potential users would already be familiar
with that language and dont have to learn another software that offers extensive func-
tionality such as game engines. Addiditionally, Blender is a lot more lightweight than

1github.com/aylue/PoseCraft
2The definition of free software is explained by the GNU Operating System: ”Free software” means

software that respects users’ freedom and community. Roughly, it means that the users have the freedom to run, copy,
distribute, study, change and improve the software. Thus, “free software” is a matter of liberty, not price. [16]
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full game engine. Based on this and previous Blender experience of the author, it was
chosen for this thesis.

4.2 | Approach
The goal is to create a frame work that allows the user to randomly assembly assets to 3D
scenes, as this has proven to be effective for synthetic datasets. Users should have more
options to create more realistic lighting conditions and 3D environments, without losing
the advantage of variety by randomly selected backgrounds or models. So, instead of
using random plain images as background that will rarely fit the camera angle, lighting
and proportions of the 3D-scene, the package should incorporate the option to use a
more realistic lighting by the combination of a 360° HDRI background image or skybox
for the whole scene (the World in a Blender file) and one or multiple light sources that
will emit directed light that matches the world. The user is also encouraged to create
more realistic 3D environments than just textured planes; to take full advantage of those,
the camera will not just move around the object, but instead the object can be moved to
random locations within the scene. To avoid being placed to far away or clipping into
other meshes of the environments, the user can create an object called PlacementArea

in the 3D scene, and random coordinates to place the object on will only be created
in the volume or the on the faces of this object. The camera should be rotated in a
way that it is always directed towards the object. To create more variability, a random
offset within a user-defined range is applied everytime to both rotation and translation.
To make the package actually useful for pose estimation, it offers the option to pose
a rigged object into a randomly selected pose. These poses have to be predefined by
the user. In this thesis, a new pose was chosen each time the horse model was moved
to a new coordinate. The keypoint object that is used should have invisible Empty

objects attached, that are used as keypoints. In summary the user needs to provide the
following assets:

■ One or multiple 3D meshes connected to an armature for which the pose estima-
tion is done

■ One or multiple Blender files that contain at least a camera and a mesh called
PlacementArea for the random coordinates

■ One or multiple Blender files that contain a World. This can be the default grey
background, a skybox, or a 360° HDRI image, depending on the needs of the
project. Any lightsources in the scene will also be used.
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Figure 4.1: Diagram of the architecture of PoseCraft.

■ One or more .json files that contain information about how the armature is
posed. The user can extract them through a Blender plug-in, after posing the
model by hand prior.

These assets are placed into a project directory. The user can then write a script using
the library and decide how many of the possible transformations should be applied.
An example for such a script can be found in the appendix of this thesis in Listing
B.1. A list of random combinations is then created, assembling model, 3D scene and
background/lights into a single file. After that, the script can be executing python

scriptname.py and the render process will start. The images are saved alongside
with a .csv file that contains the image coordinates of the keypoints.

4.3 | Architecture of PoseCraft
In this section, the different modules of the PoseCraft package will be described. Cur-
rently the package is meant to be used by importing it and incorporating its functions
into a script that can be run. An overview can be seen in Figure 4.1.

Data Generation. The main functionality of the package, which is the generation of
synthetic images, is found in the data_creation module. The module contains two
classes (SceneBuilder and SceneRenderer) that help with the composition of the
Blender files to create a dataset and will render the images. Some auxiliary functions can
be found in the datacreation.utils submodule. Those auxiliary functions are for
example the calculation of how the camera must be positioned to face the target object,
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transform dataframes or reading data from the configuration files. The SceneBuilder
class will create the scene by loading the objects from other files and create the random-
ized coordinates where the objects will be placed. The SceneRenderer class will then
select a pose for the object, render the scene and save the images and annotations.

Data Extraction. This submodule is currently containing only one file, which will ex-
tract the bone rotations of an armature object to a JSON file. Currently this is only
implemented in form of a Blender addon, which can be used by copying the code of the
module into the Script window in the GUI application. While the addon should be
available too to make the usage easier, this module will be reworked to allow it to be
used in a script, so a user can for example extract the bone rotations of armatures from
all files in a directory.

Auxiliary Functions. The Utils submodule contains three files that help with the
project management.

■ project_utils.py: Contains functionalities such as the creation of a new project
directory.

■ create_render_sequence.py: Contains a function that creates a .csv file of
different combinations of all available objects, 3D environments and lighting con-
ditions.

■ dlc_converter.py: Can be used to copy all or a subset of generated images
into the directory of a DeepLabCut project, which is used later in this thesis to train
a neural network for pose estimation. It will also convert the .csv files with the
annotations to the format used by DeepLabCut.

4.4 | Development

4.4.1 | Designchanges during Development
During the development of PoseCraft, there were some changes on design decisions
that were initially made.

Running as a Blender package. Initially the idea of PoseCraft was based on a script
that was executed within the system wide installation of Blender. Blender can be run
from the commandline, with the option to pass Python scripts that will be executed
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upon startup (still using the bpy Python-API). However, this is not only very inconve-
nient to use, it also affects the system installation of Blender and makes it complicated
to use packages that are not included that are not included in the Python distribution
that is installed with Blender. Therefore, the framework was then changed to be exe-
cuted in Python, allowing for the use of virtual environments3. To make it even more
userfriendly, it was then further restructured to a python package that can be installed
on a users system.

Moving away from configuration files. In a first approach, the creation of the 3D
scenes was heavily reliant on configuration files. The idea was to save diskspace by
reusing the same 3D environment but different placement of the coordinates and cam-
era settings in it. However, this was prone to errors as the creation of configuration files
was not automized but done manually via copy-and-pasting and then adapting them.
To avoid this, the configuration files were scraped all together and each 3D scene needs
to contain a camera and a mesh which is used as ermitter for the random coordinates.

Usage of proper logging. At first, most information for the user was output through
print() statement. However, this is not suitable especially when the rendering pro-
cess should run on remote machines, as the output might become unavailable upon
disconnection. Therefore, the logging package was introduced to make the logs more
structured and most important save them into files.

4.4.2 | Challenges and Solutions
During development, different problems were encountered and solved. Some of them
are described here.

Wrong calculation of 2D keypoint coordinates After the pipeline was generally work-
ing (i.e. composition of scenes, placing the keypoint object etc.), plotting the keypoints
on the images showed that their positions were calculated wrong. This had multiple
reasons, at first a mistake in the calculation of the world coordinates for the keypoints
(giving false coordinates) and then using the wrong object property as coordinate (tech-
nically correct calculation of keypoints, but their location was the rest pose, and not
their actual position in the image after the mesh to which they were attached was trans-
formed). The correct way to get the position of a keypoint kp is as follows:

3Virtual Environments function like independent Python installations; therefore, collisions between
installed packages or their version can be avoided
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1 bpy_extras.object_utils.world_to_camera_view(bpy.context.scene, camera, kp.

matrix_world.translation)

Listing 4.1: Get camera space coordinates for a Blender object in bpy

Important is using kp.matrix_world.translation and not just the world matrix if
a object is translated because the parent object to which it is attached is transformed.

Mathematically correct, but visually inaccurate keypoint positions. After being cal-
culated correctly, the keypoints were sometimes still slightly off. This was caused by the
parented object: At first, the vertices that are used to calculate the position of a keypoint
in the image were attached to the armature. However, depending on the distance to
the parent and how much the parent bone was rotated, the vertices would not be dis-
placed in the same way as the mesh and therefore showing inaccurate positions. This
was solved by attaching the keypoint vertex to the closest vertex of the mesh instead of
an armature bone.

Importing the HDRIs as world background from one file to the other One bug that
took a while to figure out was an error when trying to import the world data block
from one file to the other. This happened because at first it was implemented to use the
append function, that is used to copy objects such as meshes or lights (see Listing B.1).
This does however not work for worlds, so that no data at all copied to the mainfile. It
was resolved by doing it as shown in Listing B.1.

GPU activation in Docker When running the code in Docker, the process did not use
the GPU but rendered the images on the CPU instead. This happened despite explicitely
activating the GPU and selecting Cycles as render engine in the code.

This had two reasons:

■ The GPU not explicitely being selected when the container was started from the
image

■ The CPU not being disabled and therefore Blender still using it as primary device
over the GPU.

The first issue was solved by using the -gpus flag when starting the container. For
the second reason, it was necessary to explicitely disable the CPU in Blender after se-
lecting the GPU as render device and save the settings. Code for this is shown in Listing
B.1 in the appendix.
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4.4.3 | Future Work
The range of functions should be further improved to increase user friendliness and
make working with the package easier.

Calculation of occluded keypoints. As it is sometimes better to not label keypoints
that are not visible in the picture, the package should offer to calculate whether an object
is occluded and then leave the coordinates for that keypoint empty.

Save Information about the assembled scene in the directory where the images are
saved. As each combination of model for pose estimation, background and 3D scene
gets it’s own directory where the images are saved, it would be beneficial to save which
assets where used for each directory and offer a function that can count how many time
an asset was used, if a user wishes to do a statistical analysis of the dataset.

Less parameters for the functions. Right now, the API required a lot of parameters for
many of the functions, that should not be necessary as the information could be sourced
elsewhere.
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5

Synthetic Dataset Generation

In the previous chapter a python package to generate synthetic data for keypoint de-
tection was introduced. This chapter will present how the python package was used
to create a dataset that can be used to train a neural network for keypoint detection on
horses. For both environment and horsemodels, the design criterias will be discussed
and examples presented. A list of all 3D assets used as well as information on the Poly
Haven Library can be found in Appendix C.3.

5.1 | Horses

Figure 5.1: A selection of models to represent the variety of horse types
in the dataset.

Horses come in many different shapes, sizes and colors. However, in datasets euro-
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pean warmbloods and thoroughbreds are often overrepresented, despite the fact their
phenotype of athletic build and an often dark coat has a rather low variability and many
other types of horses are underrepresented. Since it can be hard to get real world data of
specific horse types, the 3D-Models of the horses for this dataset are supposed to cover
as many different phenotypes as possible.
To get a usable horse model, at least the following things are needed:

1. Creation of a 3D base model

2. Rigging the model to allow for posing

3. UV-Mapping the model to allow for texturing

4. Create different textures to represent different coat colors and patterns

At this stage the model will look like a horse, but it will not be very realistic. Since
lighting conditions can be very different and the fur of animals can look very different
depending on the lighting, the models were also equipped with particle systems to cre-
ate more realistic interactions with light. For mane and tail, hair particle systems were
used aswell instead of modeling them as meshes.
This made a few additional steps necessary:

5. Create a hair particle system for the body fur with the Quick Fur modifier in
Blender

6. Create a hair particle system for the mane and tail

7. Brush the curves that are used as guides for the particle system to create a natural
look

8. Create a weight map for the particle systems to influence the length and density
of the fur according to the body

5.1.1 | Mesh
As foundation for the 3D Model a public model distributed under a free license was
used, which is depicted in figure C.1.

The base mesh was then remeshed and refined using the Sculpt Mode in Blender.
This way the resolution was increased, allowing for more details. Further, this helped
to smooth out edges and cornes when the model was posed with its armature. The
tail was cut of and replaced by a short cylinder to simulate a real horstail. This mesh
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Figure 5.2: Variations of the adapted horse model.

is used as base where hair particles can be attached to. The different variations of the
horse model can be seen in figure 5.2. All models share the same UV-Map and were not
remeshed further, so they dont need their own textures.

To be able to precisely track the keypoints, additional objects of the type EMPTY are
attached to the mesh onto the closest vertex. Those will not be visible rendered, but
their coordinates can be extracted and transformed to 2D image coordinates. A list of
the keypoints is also given later in Table 5.1.

5.1.2 | Rig
To be able to pose the mesh to represent different stance phases during trot, the mesh
has to be rigged. Blender offers the Plug-In Rigify[53]. This plugins comes with multiple
Metarigs, which are ready-to-use armatures that can be bound to a mesh. Some of the
bone groups had to be slightly translated and rotated to better fit the mesh, but other
than that the rig could be parented to the base mesh with automatic weights1 and no
further adjustments. The mesh and the rig can be seen in figure 5.3.

5.1.3 | Textures
For the dataset, a total of 14 different textures were handpainted. Since it proved to
be difficult to unwrap the mesh into a well structured UV-Map2 in Blender, another ap-
proach was chosen: The mesh was exported to an .obj file and imported into Procreate
on a 2020 iPad Pro. In Procreate it is possible to paint a base color texture directly on the
3D mesh and use multiple layers while doing so. This made it easier to deal with chaotic

1Weights are used to determine how much a bone affects a specific area of the mesh. For really good
results and with enough experience a manual adjustment of the weight map could yield even better results,
but the automatic settings worked well enough.

2A UV-Map is used to assign pixels of an image to the corresponding faces of a mesh. However, for
complex meshes with many faces, it can be difficult to unwrap them without creating a lot of ”isles”, which
refers to many small groups of neighboured vertices instead of a few big groups.
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Figure 5.3: One of the horse mesh variants with the attached rig.

UV-Maps. After that, the texture can be exported as an image and used for the model in
Blender. Each texture consisted mostly of three layers:

■ Base color

■ Marking/coat patterns

■ Light and shadow effects

The base color gives the horse its main color and is just a solid color. The second layer
contains markings like socks, blazes, spots or flecked hairs which can be combined with
all the base colors. The third layer contains light and shadow effects to give the horse a
more plastic look and is applied to all coat variants. As example, those three layers are
shown in Figure 5.4.

5.1.4 | Fur simulation
As previously mentioned, the models were additionally equipped with particle systems
to simulate fur and hair. This creates a more realistic look and allows for more realistic
interactions with light.

Using the Quick Fur modifier in Blender, a particle system is added to the body
mesh, which creates a fur-like appearance. In the Sculpt-Mode for curves, the curves
that are used as guides are then brushed to lay flat on the body and account for typical
hair swirls in horse coats. The visible hair is then interpolated between the hair curves.
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Figure 5.4: Examples of layers that form a texture. The first image is the
base color, the second image adds markings and coat patterns, and the
third image adds some basic light reflections.

Figure 5.5: Weight map for the horse model, used to determine the den-
sity of the hair particle system at certain places.

The density (the amount of hair) is set by a weight map. The weightmap for the model
is depicted in Figure 5.5. Red means a very high density of hair, while dark blue stands
for no hair at all. This way, the hooves and certain parts of the body such as nostrils and
eyes are not covered in hair. As base color, the base color of the underlying mesh were
the hair is attached to is used. A similar weight map is used for the length of the hair
aswell. This allowed to simulate the longer hair on the legs some breeds such as Irish
Cobs have, that will hide the contours of the leg/fetlock and pastern area.

The impact of the hair particle system on the light effects can be seen in figure 5.6. It
compares the appearance of the horse model with and without the hair particle system
rendered. Environmental light from the World has mostly an impact in form of the
color that is reflected by the hair. Light sources such as a Sun will lead to stronger light
reflections based on their angle and the strength of the light source. The darker the
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Figure 5.6: Horse model up close. On the left, no hair particles are ren-
dered, on the right, the particle system is visible.

basecolor, the more the light reflections become visible. The particle system also adds
a nice textured look to the model, making it look less cartoonish. The material settings
also have a big impact how the hair looks like. Here, the Principled Hair BSDF

shader was used to archieve a realistic look. The settings of the shader vary between the
different models and are not uniform.

However, the quality of the hair rendering was heavily bottlenecked by the com-
puter used to create the models; Blender would repeatedly crash when working on a
model that had a very high density of hair. To make up for this, the density was kept
lower. To still cover the body, the hair length and thickness had to be higher than it
realistically would be.

5.1.5 | Poses
The base armature was posed into 21 different poses, which were created using video
frames of moving horses as reference to make them realistic. The bone rotations were
then exported into a JSON-File and saved in the project directory. Some examples of the
different poses for the horse can be seen in Figure 5.7.

5.1.6 | Horses for the Dataset
With all these modification, a total of 19 different horse models were created by com-
bining the 3 rigged mesh variants with the 14 texture variants. All models used can be
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Figure 5.7: Three examples of poses that were created for the dataset

found in Appendix C.1.

5.2 | Environment
This section will give some insight into the design choices and creation process of the 3D
scenes in which the horse model will be placed later on. The dataset features multiple
indoor and outdoor environments that resemble the classic structure of real world horse
training facilities and are later on combined with a randomly selected skybox to get as
much variety as possible without having to create too many different 3D environments.

5.2.1 | Design Criteria
As mentioned in the introduction of this section, the 3D scenes resemble the idea of real
world horse training facilities. Usually, horses are lunged in riding arenas (indoor/out-
door) or on round pens, both of which are included in the dataset. There are some
characteristics that are very common in these environments:

■ Surrounded by a fence. This fence can often be wooden or an electric fence. Es-
pecially indoor riding arenas often feature so called kicking boards, which are
wooden boards that are attached to the lower part of the fence to prevent horses
from kicking through it but allow spectators to see the horse, and riders and horses
to still see their environment.

■ The standard dimensions of a riding area as defined by international guidelines
are 20 m × 40 m or 20 m × 60 m, but other sizes are possible. A round pen is a
smaller, and, as suggested by the name, round area with a diameter of 15 m to 25
m.

■ The ground is usually made of sand, which provides good grip. The other option
is grass, especially if a stable does not have a designated riding arena and uses
part of the pastures instead.
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■ The surroundings can be very diverse and cannot be generalized. For outdoor
arenas, some kind of plantation is often present, such as trees or bushes.

■ Indoor arenas can range from very dark with little to no natural light to very bright
with large windows and skylights. Especially skylights can lead to harsh shadows
and strong light contrasts, which can be problematic for the neural network to
learn from.

The dataset therefore tries to reflect these typical characteristics.

5.2.2 | Creation process
The creation process of the 3D scenes was usually quite similar for every scene. The
following steps were taken to create the 3D scenes that are used in the dataset:

1. Starting with a new Blender file, the ground plane is created and scaled to the
desired size. How the ground is created in detail is described in section 5.2.2.1.

2. After that, a fence or kicking board is created around the ground from simple
cylinder- or cube meshes that are adapted in the edit mode to the desired size and
shape.

3. For indoor scenes, a hall is created by adding walls and a roof.

4. The material of the meshes is adapted. To create a more realistic look, for many
parts textured materials from PolyHaven are used.

5. For the indoor scenes, the wall and/or roof get cutouts that are replaced with
a glass material (using the Glass BDSF shader) that allows light rays to pass
through. For outdoor scenes, add some kind of plantation and other objects that
are available in the PolyHaven library.

5.2.2.1 | Ground creation

Two types of ground are represented in the dataset: sand and grass.

Sand: The sand ground is created by adding a plane mesh to the scene and scaling
it to the desired size (one of the standard sizes). To make it possible to deform it, the
plane is subdivided multiple times. With the Displacement modifier, the different faces
are moved up or down, based on a height map that is created in Blender with a cloud-
like texture. After that, a material from PolyHaven is applied to the ground, so it also has
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a realistic texture. In the final step, the sculpting tool is used to imitate how footprints
are created in sand and how sand accumulates in corners, for example. Example images
of this process can be seen in Figure 5.8.

Figure 5.8: Steps for the creation of sand in Blender.

Grass: To create a grass ground, a plane was created and textured with a grass or
dirt texture from PolyHaven. The grass like appearence is archieved by using a particle
system on that plane, which is set to use meshes of little grass blades as particles that
were also imported from the PolyHaven asset library. It should be noted that this type of
ground does increase the rendering time of the scene by a large margin, as the density
of the grass particles/the number of children rendered has to be quite high.

5.2.2.2 | Skybox and Light

All the backgrounds were saved into seperate files, so they can be used with all the
different 3D scenes created prior. To create realistic environments and lighting condif-
tions, 360° HDRIs3 from PolyHaven were used. Those images range from pictures of the
plain sky to scenes in nature or urban environments. This way it was possible to add
a lot more variety to the background of the rendered images with just a few different
3D scenes. The HDRIs were downloaded in a 4k resolution, as this was the smallest
possible resolution that did not lead to visible pixelation in the background.

3High Dynamic Range Images
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While the skybox will already provide light that matches the background in temper-
ature and intensity for each direction on the surface of the objects, it will not produce
shadows. To compensate for this, in each scene that features directional light like out-
door scenes with sunlight, a light source was added to create shadows. The nly light-
source suitable for this task is the Sun, as it creates directed light everywhere in the
scene, so it doesnt have to be adapted to the composition of the 3D scene it is eventually
placed in. The direction of the sun and the intensity of the light as well as its color are
set to match the HDRI skybox. For example, a background featuring a sunset will have
a light source of a slightly orange color and a very low angle, so the shadows are long
and the light is not too harsh.

5.2.3 | Created Assets
The finalized 3D scenes used for the dataset generation are two indoor scenes and four
outdoor scenes, one of which is a Round Pen. For almost all scenes, there are mutliple
versions with slightly different objects placed in the scene, a different lens for the camera
or a different position of the area that is used to create the coordinates where the horse
will be placed later on. In addition to the 3D scenes, 14 additional files containing a
skybox and matching lights were created.

Some examples of rendered images of the 3D scenes with a HDRI skybox and light
added can be seen in Figure 5.9.

5.3 | Dataset
The resulting dataset consists of 95 different combinations of environment, horse model
and background image. For each of this combinations, 10 images were rendered, result-
ing in a total of 950 images. For each of this images, a predefined pose for the model
was randomly selected. The keypoints that were calculated for each image are listed in
Table 5.1.4

Unfortunately, there is no complete list of all the combinations of environment, horse
model and background image that were used to render the images, more information
on that is described in Section 5.3.2.

4The english translation of body part names is rather inconsistent; for example, the carpus is colloqui-
ally called knee. Therefore, some of the keypoint names might be confusing as they were directly translated
from the german word for that body part.

41



Chapter 5. Synthetic Dataset Generation 5.3. Dataset

Figure 5.9: Examples of the 3D scenes created for the dataset. The images
show the scene with a HDRI skybox added.

Bodypart Keypoint name
Mouth kp_mouth
Poll kp_neck
Withers kp_withers
Highest Point of the Croup kp_croup
Tailbase kp_tailbase
Elbow kp_elbow_l kp_elbow_r
Carpus kp_carpal_l kp_carpal_r
Fetlock Frontleg kp_fetlock_front_l kp_fetlock_front_r
Point of Hip kp_hip_l kp_hip_r
Stifle kp_knee_l kp_knee_r
Hock kp_hock_l kp_hock_r
Fetlock Hindleg kp_fetlock_hind_l kp_fetlock_hind_r

Table 5.1: A list of all the keypoints calculated for each image in the
dataset.

5.3.1 | Computational Cost of the dataset generation
The dataset was rendered using a Machine learning server with a Intel(R) Core(TM) i5-
7500 CPU, a NVIDIA Titan V GPU and 32 GB RAM running Ubuntu 22.04.4 LTS.
The PoseCraft package was installed in a Docker container based on the python:3.11-slim
image. The dataset was rendered in multiple batches. For 95 different combinations

42



Chapter 5. Synthetic Dataset Generation 5.3. Dataset

Figure 5.10: Keypoints attached to the horse model.

of environment, horse model and background image with 10 rendered images each,
the sum of render time is approximately 20 hourse based on the directory timestamps.
However, the amount of time needed is highly depended on the 3D scene. For some
scenes, 10 images were rendered in less than 10 minutes, other scenes took more than
60 minutes for the same amount of images. The GPU was also shared with another un-
related Docker container for an unknown amount of time, which might have increased
the render time.

5.3.2 | Limitations and Opportunities for Improvement
While the dataset generated was sufficient to train a network as described in Chapter
4, there is room for improvement. This subsection will describe some issues with the
generated dataset, that were discovered too late to improve them in time for this thesis
but should be considered in future work.

More keypoints. To make the images more useful for other tasks, more keypoints
should have been added, even if they are not used for this thesis. For example, the
hooves and the shoulder joints should have been included, as it is common to use an-
notate these keypoints in other datasets.
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More environments. It might have been benefecial to crete more unique environ-
ments, even though it is not proven that this would actually improve the performance
of the network.

Bias towards sunny lighting conditions. The dataset shows a bias for lightboxes that
resemble sunny weather. While strong sunlight can lead to challenging lighting condi-
tions and it is important to train the network on these, cloudy weather with less envi-
ronmental light is most likely underrepresented in the dataset.

Optimizing the Armature for the horse model. The armature was not optimally adapted
before it was parented to the mesh. In this process, the bones were mostly rotated and
translated to fit them into the mesh. More scaling would have been good, or, alterna-
tively, manual adjustment of the weightmaps for the vertex groups.

Occlusion of keypoints. The DeepLabCut userguide recommends to ignore keypoints
that are invisible in the image and add no coordinates for them. While this is easy if
keypoints are annotated manually, the dataset generation process does currently not
allow for this in every case. Keypoint coordinates are removed in two cases:

■ The keypoint is out of the image boundaries, e.g. if the horse is too far to the left
or right, or the camera is zoomed in very close.

■ Since the horse will always be visible from a lateral view, some keypoints are al-
ways invisible, as they face the outside and are hidden by the torso of the horse.
The keypoints where this applies are elbow, hip and knee. They are removed for
either the left or the right side of the body, depending on the the overall rotation
of the horse towards the camera (the rotation switches between 90 ° and -90 ° after
every rendered image).

However, there are cases where the keypoints of the outer legs are occluded by the
corresponding inner leg. In a video, this will only be the case for very few frames, but
it does happen. It was not possible to remove these keypoints in an automted way after
the dataset generation was finished. This has to be done in PoseCraft and a check for
visibility should be added in a future version (see Section 4.4.3).

Statistical analysis of the dataset. Due to an user error, the CSV-File containing the
combinations of each render batch were not saved but instead overwritten on every
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new run. Therefore, the information how many times each asset was used is unfortu-
nately unavailable. In a future version of PoseCraft, it should be implemented that each
directory will also include a file that saves the information about the used assets, so that
a statistical analysis of the dataset is possible on whatever subset the user selects (see
Section 4.4.3).

45



6

Deep Learning for pose estimation on
horses

After the last few chapters were mainly focused on the creation of a dataset, in this
chapter we will put this dataset to use. The goal is to create a neural network (at least
partially) trained on synthetic data, that can detect keypoints on horses in real-world
videos. For this, the python library DeepLabCut is used, which is a framework for train-
ing neural networks for keypoint detection on animals and humans. In this chapter, the
dataset creation will be described in more detail, as well as the training of the neural
network and the evaluation of the results.

6.1 | Training- and Testdata
This section will take a look at the dataset used to train and evaluate the network. In ad-
dition to the synthetic dataset generated with PoseCraft, a number of real-world videos
was collected to evaluate the performance of the network on real-world data. In Figure
6.1 an example of the annotated images from both synthetic and real-world dataset is
shown. More images from both datasets can be found in Appendix A.1.

Since the synthetic dataset was already described in detail in section 5.3, this section
will primarily focus on the collected real-world data and any type of pre-processing and
annotation process of the data.

6.1.1 | Recorded Videos
The videos were recorded at different locations and with different horses. Some of the
videos were provided by the Hanse Equine Hospital and taken as part of the lameness
diagnosis process of horses presented to the veterinarian. Other videos were recorded
by the author of this thesis or friends and acquaintances of the author. Everyone willing
to participate was provided with a list of instructions:
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Figure 6.1: On the left an annotated image from the synthetic dataset, on
the right an example of a video frame from the real-world dataset. The
the Ground Truth keypoints are plotted onto the image with DeepLabCut.

■ The horse should be lunged in a circle, the video recorded from the center of the
circle.

■ For the head any equipment such as a bridle, a halter or a cavesson is fine, but the
body of the horse hsould be visible and the horse should not be waring equipment
such as a saddle or a rug

■ The video should be recorded in landscape mode and at least in HD resolution
(720p × 1280p) or higher.

All videos were recorded with a smartphone camera, hand held by the person lung-
ing the horse or by a second person standing next to the lunge line handler in the middle
of the lunge circle.

The final dataset consists of 28 videos that are recorded in HD (720p × 1280p) or
higher resolution. Videos of higher resolution were downscaled to a HD, as this quality
should be sufficient for the the analysis, but keeps the computing time reasonable. To get
a balanced dataset in regards to horses being lunged on both left and right hand, some of
the videos were mirrored horizontally to get an even distribution. The length of a video
did not matter, as the number of frames extracted from the video is the same for every
video (20 frames). For the extraction of frames, the default settings of the DeepLabCut
package were used, which extracts frames by k-means clustering to get frames of as
much variance as possible from the video. However, some of the extracted frames were
removed later on, because the horse was filmed from an angle that the network would
have had no chance to properly learn.
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6.1.1.1 | Common errors in recorded videos

From initially over 40 videos, unfortunately a lot of the videos had to be discarded as
they did not meet the criterias for the dataset. Most common reasons for discarded
videos were:

■ The video resolution was too low. Especially if videos were sent via an instant
messenger app instead of being uploaded to the provided cloud service.

■ The horse was equipped with a rug or a girth and saddle pad. While this is com-
mon in the day to day training of horses, there is a chance that important keypoints
are occluded and a horse would not wear this in a clinical examination situation.
Therefore, the network is not required being able to handle this kind of additional
equipment.

■ Video was filmed in portrait mode rather than landscape mode.

6.1.2 | Annotation of Videos
For both synthetic and real data, the DeepLabCut GUI was used to make and validate
annotations.

6.1.2.1 | Real-world videos

The video frames were annotated through the DeepLabCut GUI, which features a tool to
annotate extracted frames of a video. Each of the visible keypoints was annotated. For
the hock joints, the tail was sometimes in front of the joint, in which case the keypoint
was still annotated, primarily to keep it consistant with the synthetic dataset, where
joints occlouded by other body parts were also annotated. The outer leg pair being
occlouded by the inner leg pair was annotates if at least a small piece of the joint was
visible, otherwise the labels were left empty.

6.1.2.2 | Synthetic dataset

After being imported into the DeepLabCut project, the synthetic dataset and the corre-
sponding annotations were checked in the previously mentioned DeepLabCut GUI. No
changes were made to the annotations with two exceptions:

■ The frame being so dark that the horse was not visible; some or all keypoints for
this frame were removed.
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■ Especially the smaller horse models were sometimes positioned in a way that one
or more of the fetlock joints were not visible, as they were sunken into the uneven
sand surface. As this was pretty severe in some cases, the keypoint on that joint of
all affected legs were removed.

6.1.3 | Data Augmentation
As mentioned in Section 3.3, synthetic data often suffers from a domain gap, which can
lead to poorer performance. Augmentation techniques to add more noise and imperfec-
tions are therefore recommended to make the synthetic data more realistic. As different
light conditions were already covered in the data generation itself, the main concern
would be to add noise and blur to the rendered images. DeeplabCut offers both of these
techniques as well as additional scaling and rotation to be applied during the training
of the neural network. The augmented results are only available in memory and not
saved to the disk as images, therefore no examples can be shown here. This made an
additional step to further augment the dataset unncessary.

6.1.4 | Datasplits
To be able to evaluate both the performance of the network in general, but also the
quality of the synthetic dataset compared to a real one, different splits of the dataset
will be created to train networks on.

■ Train the network solely on synthetic data and compare it against real-world test
data

■ Train the network solely on real-world data and compare it against real-world test
data

■ Train the network on both synthetic and real-world data at the same time and
compare it against real-world test data

■ Train the network on synthetic data and then fine-tune it on real-world data and
compare it against real-world test data

The number of images per split and in sum is shown in Table 6.1
While some horses or environments are present in multiple videos, the splits were

made in a way that no horse or environment is present in both training and test data.
This ensures that the metrics reflect the network’s ability to generalize to new, unseen
data, rather than memorizing the training data.
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Table 6.1: How the data was split and how many images each split con-
tains.

Split # Images Train fraction
Synthetic Data 932 0.74
Real Data 200 0.34
Synthetic and Real Data 1132 0.77
Test Data 333
Real-World Data 533
All 1465

6.2 | Training
As already mentioned in the introduction of this chapter, the training of the model was
done using the python library DeepLabCut. As this library is explicitly designed not just
for computer scientists, but rather interdisciplinary research, it simplifies a lot of the
steps that would otherwise be necessary to train a neural network. In earlier versions,
both TensorFlow and PyTorch were supported, since the release of version 3.0 users are
heavily encouraged to use the PyTorch backend as TensorFlow will be deprecated in the
future. This influences especially the available model architectures and some of the
training parameters, but the general workflow remains the same.

For this thesis, three different model architectures were tested. Two of them are stan-
dard ResNet architectures (ResNet-50 and ResNet-101). The third one is a HighReso-
lution Network (HRNet-W48), which often tends to perform better on tasks such as pose
estimation, as pixel accuracy is more easily archieved if details are preserved rather than
lost during the downsampling of the image. Since this task only features a single horse
in the image and does not require the detection of multiple individuals, all networks are
used in their default Bottom-Up version.

As described in the previous section 6.1.4, the architectures should be tested on dif-
ferent training data sets aswell to see how well the synthetic data can imitate real-world
data and if the synthetic data in addition to the real-world data can improve the perfor-
mance of the model. As the ResNet-50 models performed very poorly on both synthetic
and real data, they were not further used and only the deeper networks were trained on
the mixed and finetuned datasets.

6.2.1 | Training Parameters
Most of the training parameters were left at their default values, as similar papers have
already shown that these hyperparameters can produce good results[15].
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Weight Initialization: All of the networks were initialized with weights pre-trained
on ImageNet[24].

Epochs: The number of epochs was set to 300, as the results started to plateau around
250 to 300 epochs. This is slightly lower than the 400 epochs used in the paper by Feuser
et al. [15]

Batch Size: The batch size was kept at the default value of 8.

Learning Rate: The learning rates differed between the different architectures, but
were kept to the default values as well. For both ResNets, the learning rate was initially
set to 0.0005 and decreased to 0.0001 and 1e − 05 after respectively 90 and 120 epochs.
The HRNet was trained with a learning rate of 0.0001 initially, decreased to 1e − 05 and
1e − 06 after 160 and 190 epochs.

The loss rate of the best performing architecture can be seen in Figure 6.2.

Figure 6.2: Plotted loss rates of ResNet-101. The other lossrates were sim-
ilar.
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6.2.2 | Hardware and Training Environment
The training was done on the same server as the data generation, euqipped with an In-
tel(R) Core(TM) i5-7500 CPU, a NVIDIA Titan V GPU and 32 GB RAM running Ubuntu

22.04.4 LTS. The training was done in a Docker container provided by the DeepLab-
Cut developers. This container provides an deeplabcut 3.0.0 installation with a
pytorch 2.5.1 backend.

The amount of time needed to train the networks varied a lot depending on the size
of the network and the amount of training data. A more detailed overview is shown in
Table 6.2 below.

Table 6.2: The amount of time each network needed to train on the differ-
ent dataset splits.

Model Synth data Real data Mixed data
ResNet-50 4:10 h 2:30 h –
ResNet-101 5:00 h 1:40 h 6:20 h
HRNet-W48 9:30 h 3:20 h 11:0 h

The models that were trained solely on synthetic data were trained for an additional
100 epochs on real data to get another version, that can be compared against the models
that were trained on mixed data from the beginning.

6.3 | Results and Evaluation
In this section the results that the networks archieved on the test data will be discussed.
It is particularly interesting to compare the models with regard to three factors:

■ Which model performs best overall?

■ How well performs a model trained on synthetic data, compared to real and mixed
data?

■ How is performance of a model trained on synthetic data and later finetuned on
real data, compared to a model trained on mixed data from the beginning?

The models are evaluated both quantitatively using the RMSE and subjectively by
applying them to videos from the test dataset.
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6.3.1 | Quantitative Analysis
The models were quantitatively evaluated in two ways: using the RMSE to evaluate
their overall performance, and the error in pixels per keypoint. For the RMSE, the eval-
uation was done twice; in the first run, all keypoints were considered. However, the
evaluation per keypoint and qualitative analysis showed that most errors stem from the
keypoints on the legs. Therefore, a second evaluation was done that only kept the key-
points of the upper body, the elbow and the stifle. This was done because the detection
of elbow and stifle is so accurate and reliable that the trajectories should be sufficient
to be able to calculate the stance phase. The results of the evaluation by RMSE on all
trained models can be seen in Figure 6.3. It is important to note that the reported RMSE
values are calculated on all keypoints, with no regard to the confidence. If only detected
keypoints above a certain threshold were considered, the RMSE dropped significantly,
for the best performing models even below 10 over all keypoints. Different values for
the pcutoff parameter were tried (0.4 / 0.5 / 0.6) but no significant difference between
those was found. Since it is not possible to evaluate how many values are dropped for
the calculation of the RMSE because the confidence for that keypoint was below a cer-
tain threshold. However too many frames with missing keypoints, depending on which
keypoint is affected, would make the video useless for analysis. Therefore, those values
were not further used for evaluation.

Figure 6.3: RMSE for all trained models. Left shows the error for all key-
points, right only for the selected keypoints.

To get a better understanding what causes the error, the euclidean distance in pixels
between prediction and ground truth was calculated aswell. A comparison of the best
two model is shown in Figure 6.4. A comparison for each architecture can be found in
the Appendix A.3.1. It becomes apparent that all the models struggle with the keypoints
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Figure 6.4: Error in pixels per Keypoint and model

on lower limbs of the horse. This is in line with the improvement of the RMSE when
those keypoints are ignored for the evaluation.

Overall, the best performing models are the ResNet-101 and HRNet-w48 models
trained on mixed datasets, with an RMSE of 22.13 and 25.12 respectively.

6.3.1.1 | Qualitative Analysis

For a qualitative analysis, the models were mainly tested by using them to create anno-
tated videos from the testset. A keypoint was drawn into the frame with a probability

54



Chapter 6. Deep Learning for pose estimation on horses 6.3. Results and Evaluation

Figure 6.5: A Screenshot taken from one of the annotated videos. The an-
notation was set to not only show the keypoints of that frame, but create
a trail of the position of each keypoint for the past 10 frames.

p ≥ 0.4. Addiditionally, the series of keypoint positions was filtered, to remove outliers
and make it a bit smoother. This did improve the consistency of the annotated key-
points. While the results produced by ResNet-50 did not seem to deliver useful informa-
tion, the deeper architectures were able to produced even if trained solely on synthetic
data results, that seemed to be usable even though the keypoints tended to jump a little
bit to the left/right, especially around the withers. Also the legs were difficult; while a
general differentiation between left and right was not a problem, as the elbow and stifle
were labeled correctly for each side, the lower joints were repeatedly put onto the same
leg or somewhere else entirely. There was no noticeable difference between the ResNet-
101 and HRNet-w48 that were trained on the mixed dataset and turned out to be the best
performing models both quantitatively and qualitatively. Both models delivered results
that hat a stable and reliable detection for most of the keypoints. They were even able
to get the legs correct most of the time. Keypoints that were placed outside of the horse
were very rare for all models.

In Figure 6.5 an example from one of those videos is shown. By showing the key-
points from the prior frames, it is possible to better track the consistency and trajectory
of a keypoint. The figure is an particularly good example because it shows both the con-
sistent tracking and periodid vertical movement of the upper body keypoints, aswell as
the problems related to the estimation of the limp position.

Addiditionally, DeepLabCut offers the option to get the predictions plotted onto the
frames that were extracted. The difference in both confidence and accuracy in the de-
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Figure 6.6: A comparison of the prediction of the worst (ResNet-50
trained on synthetic data) and the best (ResNet-101 trained on mixed
data) model on the same frame (cropped) from the training data set.
+ : Ground truth
· : Model prediction with confidence above the pcutoff value
× : Model prediction below the cutoff

tection becomes apparent in those annotated images aswell. An example can be seen in
Figure 6.6.

6.4 | Discussion
Considering a RMSE and pixel error per keypoint that seems to be quite high, the pose
estimation on videos works surprisingly well. When comparing error values with other
studies, it is important to consider the resolution of the videos: an error of 10 pixels in
a 720p video is less significant than in videos with significantly lower resolution. It is
possible that this is also related to the poor performance of the ResNet-50 architecture
in this work: the network may possibly not be deep enough, or the receptive field at
the end of the network may be too small to ”see” the entire image in high-resolution
videos and view the image areas in their bigger context. Higher-resolution videos offer
the benefit that small movements can be detected, which otherwise would be lost. If
performance is not a concern (within reasonable limits), than a deeper networks should
be the prefered choice. It should also be taken into consideration that the dataset was
not randomly shuffled, but seperated by location and horses. It is reasonable to assume
that a random split of all images, or at least the occurrence of a location in both data
sets, would have improved the metrics in the quantitative evaluation.
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When calculating the RMSE on a subset of keypoints, the HRNet’s error was almost
twice as high as that of the ResNet. One possible explanation for this could be the key
feature of HRNets: the preservation of high-resolution features even at deeper levels
could mean that the domain gap between synthetic and real data has a stronger influ-
ence than with a ResNet, as the difference between the synthetic images and the real
images will be most noticable up close. The results of comparing models trained on
different training sets are as expected and are also consistent with other research such
as [45]: Synthetic data alone does not achieve the same performance as a training set
of real data. However, it does lead to improved results when both data sets are mixed
and used in training. One possible explanation for this could be that labels annotated
by humans are unconsciously set differently than in synthetic data. While this gap is
virtually ’lost’ in the mixed data set, the network must first relearn this difference. Per-
haps a longer training period on the real data would have led to an improvement, and
100 epochs were too short.

Remarkable is the performance of the models trained solely on synthetic data; while
models trained like this will often perform poorly on real data and are not able to bridge
the domain gap by themselves, in this project it worked surprisingly well. Even if they
were outperformed by the other models, the results were still acceptable the perfor-
mance gap compared to a model trained on real data is almost negligible. This strongly
suggests that effort spend on creating high quality 3D assets is not wasted, but will in-
crease the value of synthetic data by a large margin, especially if real data is hard to
come by. Carefully crafted synthetic data sets with a focus on realism can be a helpful
addition to a dataset for pose estimation.

Future research should evaluate the usability of the trained models for actual lame-
ness evaluations; for this, it is necessary to find methods to deal with shaky camera
movements or changes in distance between the horse and the camera and seperate them
from the trajectory of the keypoints.

Overall, the results are satisfying and the goals of this thesis were archieved: The
successfull training of deep neural networks for pose estimation on horses filmed from
the center of a circle with a predominantly good performance and the creation of a
syntehtic dataset which is realistic enough to not only improve the model performance
when added to real-world dataset, but also produces acceptable or even good results
when the model is trained solely on synthetic data.
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Conclusion

Objective lameness evaluation is a very highly relevant topic and good solutions in this
area could lead to a significant improvement in equine wellfare. Video-based markerless
methods are particularly suitable for making the application of these methods as simple
and accessible as possible. This area of research is an interesting interdisciplinary field
between computer science and veterinary research. Therefore fundamental knowledge
for both fields was presented in the early chapters. Returning to the research question
posed in the introduction, it can be said with certainty that synthetic data is a useful
addition to the training of neural networks for pose estimation in horses, as it boosts the
reliability and accuracy of the model. For the creation of realistic synthetic data, a new
framework was developed in form of a python package, that is not limited to be used in
this project, but is adaptable enough to be a suitable solution for other projects. With this
framework and manually created assets with a focus on realism, a dataset of over 900
images was generated. Additionally, a dataset of real videos was collected which could
be used for evaluation and comparison of various training strategies. These two datasets
were used to train a neural networks in different configurations in DeepLabCut. The
evaluation of the results those networks delivered suggests that deeper architectures can
be beneficial to be able to use higher resolution videos for the analysis, which leads to a
decreased loss on details and small changes. The best performing model is a ResNet-101
trained on a mix of synthetic and real data. However, there was no noticeable difference
to a HRNet-w48 trained on the same dataset when inspecting videos annotated by them.

Further research should focus on methods how extracted trajectories can be stabi-
lized, even for videos that were filmed without a tripod, and options to postprocess the
trajectories to reduce noise and make them more usable for downstream biomechanical
analysis. This could include smoothing algorithms, filtering techniques, or model-based
motion reconstruction approaches. By improving the stability and precision of the de-
rived kinematic data, these systems could become robust enough for deployment in
clinical settings, ultimately contributing to more accurate and accessible objective lame-
ness evaluation for horses.
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Figures

A.1 | Examples from the Synthetic Dataset

A.1.1 | First iterations of the dataset
The first images that were rendered looked a lot less realistic than later iterations. Some
examples of those ”first tries” can be found here.

A.1.2 | Dataset examples
Here are some examples of images rendered with PoseCraft for the dataset. The images
show horses in different poses and lighting conditions. The annotated labels and a
skeleton where plotted onto them with DeepLabCut.
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A.2 | Exaples from the Real-World Dataset
Here are some examples of frames extracted from the real-world videos. The keypoints
are annotated with DeepLabCut and plotted onto the images.
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Appendix A. Figures A.3. Evaluation results

A.3 | Evaluation results

A.3.1 | Error per Keypoint grouped by Architecture
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B

Code listings

B.1 | PoseCraft

Using PoseCraft in practice

1 # import the posecraft package

2 import posecraft

3 from posecraft.create_render_sequence import create_render_sequence

4

5 list_of_combinations = create_render_sequence(n=NUMBER_OF_COMBINATIONS)

6

7 # Iterate over the list of combinations of the object of interest, the main

file and lighting conditions

8 for combination in list_of_combinations:

9

10 # dataframe to save the keypoint coordinates into

11 keypoint_df = utils.create_keypoint_df(PROJECT_SETTINGS[’keypoints’])

12

13 # the Scene Builder object assists with the combinations of the different

Blender files into a single scene

14 scene_builder = sb.SceneBuilder(scene_name=combination.SCENE_PATH,

project_path=PROJECT_PATH, world_file_name=combination.WORLD_PATH,

keypoint_object_name=combination.KEYPOINT_OBJECT_PATH, scene_id=

combination.ID)

15

16 # load the file under NAME_OF_SCENE containing the environment as

mainfile

17 scene_builder.load_blend_file()

18 # add a World and all Light objects from the file WORLD_FILE_NAME

19 scene_builder.load_scene_lighting()

20 # create EMPTY-Objects in their own collection, at random locations on

the surface of an object named "PlacementArea" in the mainfile

21 scene_builder.create_coordinates()

22 # load the mesh, armature, textures and curves (hair) from
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KEYPOINT_OBJECT_PATH

23 scene_builder.load_keypoint_object()

24

25 # The Scene renderer object assists with any changes within the created

scene and renders and saves the image

26 scene_renderer = sr.SceneRenderer(project_settings=PROJECT_SETTINGS,

scene_builder=scene_builder)

27

28 # Use the objects created by scene_builder.create_coordinates() to place

the Armature-Object at random locations within certain constraints

29 for coordinate in scene_builder.coordinate_collection.objects:

30 # move the object to a new location

31 scene_renderer.move_object(coordinate.location)

32 # adjust the orientation of the camera, so it faces the object (an

offset can be given)

33 scene_renderer.adjust_orientation()

34 # pose the object into a randomly chosen position

35 scene_renderer.pose_object()

36 # save the scene to allow for easier debugging if something goes

wrong

37 scene_builder.save_scene()

38 # render the image; the function will return the filepath of the

image

39 filepath = scene_renderer.render_image()

40 # add the keypoints calculated for that pose to the dataframe

41 keypoint_df.loc[filepath] = scene_renderer.get_keypoints(

PROJECT_SETTINGS[’keypoints’])

42 # save the dataframe for this scene

43 keypoint_df.to_csv(f"{PROJECT_PATH}/generated_images/{combination.ID}/

keypoints.csv")

Listing B.1: An example how the PoseCraft package can be used in a
script. It is a slightly simplified version where some parameters that are
currently necessary are ommitted.

GPU Setting in bpy

1 bpy.context.preferences.addons["cycles"].preferences.compute_device_type = "

CUDA"

2 bpy.context.preferences.addons["cycles"].preferences.get_devices()

3 if len(bpy.context.preferences.addons["cycles"].preferences.devices) > 0:

4 for device in bpy.context.preferences.addons["cycles"].preferences.

devices:

5 if device.type == ’CPU’:

6 device.use = False

7 else:
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8 device.use = True

9

10 bpy.ops.wm.save_userpref()

Listing B.2: Activate GPU in bpy

Copying data objects between Blender files

1 with bpy.data.libraries.load(self.world_file_path) as (data_from, data_to):

2 data_to.worlds = data_from.worlds

Listing B.3: Import the world from one Blender file to another

1 with bpy.data.libraries.load(self.world_file_path) as (data_from, data_to):

2 lights = [name for name in data_from.lights]

3 for light in lights:

4 bpy.ops.wm.append(

5 filepath=light_dir + light,

6 directory=light_dir,

7 filename=light)

Listing B.4: Import lights and other objects

Converting PoseCraft data to DeepLabCut

1 import numpy as np

2

3 from posecraft.util import dlc_converter

4 import pandas as pd

5

6 dlc_converter.collect_files(project_path=PATH_TO_POSECRAFT_CONFIG,

7 dlc_path=PATH_TO_DLC_PROJECT_CONFIG,

8 scorer=’aylu’)

9

10 # read csv

11 path = PATH_TO_COLLECTED_DATA_CSV_DLC

12

13 df = pd.read_csv(path, header=[0, 1, 2], index_col=0)

14

15 for idx in df.index:

16 # find out if the horse is facing left or right

17 left_rein = df.loc[idx, (’aylu’, ’kp_neck’, ’x’)] < df.loc[idx, (’aylu’,

’kp_tailbase’, ’x’)]

18 if left_rein:

19 df.loc[idx, (’aylu’, ’kp_elbow_r’)] = np.nan

20 df.loc[idx, (’aylu’, ’kp_knee_r’)] = np.nan

21 df.loc[idx, (’aylu’, ’kp_hip_r’)] = np.nan
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22 else:

23 df.loc[idx, (’aylu’, ’kp_elbow_l’)] = np.nan

24 df.loc[idx, (’aylu’, ’kp_knee_l’)] = np.nan

25 df.loc[idx, (’aylu’, ’kp_hip_l’)] = np.nan

26

27 df.to_csv(path)

Listing B.5: Export PoseCraft data to DeepLabCut

B.2 | Working with DeepLabCut

Dataset preparation

Training of the networks
1 import deeplabcut

2

3 deeplabcut.create_training_dataset(

4 CONFIG_PATH,

5 net_type="resnet_101",

6 Shuffles=[2,3,4],

7 trainIndices=[synthDataIndices, realDataIndices, realDataIndices+

synthDataIndices],

8 testIndices=[testIndices,testIndices, testIndices],

9 userfeedback=False,

10 )

11

12 deeplabcut.train_network(

13 CONFIG_PATH,

14 shuffle=2,

15 epochs=300,

16 trainingsetindex=0,

17 )

18

19 deeplabcut.train_network(

20 CONFIG_PATH,

21 shuffle=3,

22 epochs=300,

23 trainingsetindex=1,

24 )

25

26 deeplabcut.train_network(

27 CONFIG_PATH,

28 shuffle=4,

29 epochs=300,
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30 trainingsetindex=2,

31 )

Listing B.6: Training a model

Analyzing new videos

1 import deeplabcut as dlc

2

3 config_path = $PATH_TO_DLC_PROJECT_CONFIG

4 shuffle_i = $SHUFFLE_ID

5

6 dlc.analyze_videos(

7 config_path,

8 [args.videodir],

9 save_as_csv=True,

10 shuffle=shuffle_i,

11 )

12

13 dlc.filterpredictions(

14 config_path,

15 [args.videodir],

16 shuffle = shuffle_i

17 )

18

19 dlc.create_labeled_video(

20 config_path,

21 [args.videodir],

22 videotype=".mp4",

23 shuffle = shuffle_i,

24 save_frames = False,

25 filtered=True,

26 draw_skeleton=True,

27 overwrite=True,

28 fastmode=False

29 )

Listing B.7: Analyzing a video with EquiNeT
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3D assets

C.1 | Horses

Basemodel

Base Mesh

Name American Paint Horse Nuetral V1
Creator ultramitente
Lizenz CC-0
URL https://cults3d.com/en/3d-model/art/caballo-americano-nuetral
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3D Models
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Textures
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C.2 | 3D scenes
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C.3 | Assets from Poly Haven
For the creation of the environment, multiple materials (including textures), meshes and
360° HDRIs were imported into Blender using the Poly Haven plug in.

About Poly Haven
Poly Haven is a platform that provides high-quality assets for 3D renders such as meshes,
textures/materials and HDRIs. All their assets are available under the CC0 license,
which allows for free use in any project, commercial or non-commercial, without the
need for attribution. For suporters they also offer a Blender Plugin, that allow for easy
acces to their assets by directly being able to drag-and-drop them into the scene. With
exception of the Horse model, all assets in this thesis that were not created by the author,
were downloaded from Poly Haven.

More information on the project can be found on polyhaven.com
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