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Abstract

Autonomous robots should be able to explore information about themselves

and their environment to move meaningfully within it. One promising ap-

proach is the Attractor-based Behavior Control (ABC), an intrinsically mo-

tivated exploration strategy that discovers intuitive, energy-e!cient postures.

These postures correspond to equilibria of the underlying dynamical system,

connected by heteroclinic orbits. The resulting topological structure can be

stored as a graph that represents a compact discretization of the sensorimo-

tor manifold. During deployment on the physical robot, nonlinearities in the

motor control, such as dead-zones, can lead to uncertainties in the exploration

graph. In this work, I propose an extension of the ABC method that exploits

the gravity-induced asymmetry of the dead-zone for reliable convergence. I

then suggest a methodology to infer a locomotion mode from the topologi-

cal structure of the exploration graph. A physical, planar robot serves as an

experimental platform for the development and evaluation of the presented

algorithms.
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Kurzfassung

Autonome Roboter sollten in der Lage sein, Informationen über sich selbst

und ihre Umgebung zu erkunden, um sich sinnvoll darin zu bewegen. Ein

vielversprechender Ansatz ist das Attractor-based Behavior Control (ABC),

eine intrinsisch motivierte Erkundungsstrategie, die intuitive, energiee!ziente

Körperhaltungen entdeckt. Diese Haltungen entsprechen Ruhelagen des zu-

grunde liegenden dynamischen Systems, die durch heterokline Orbits mitein-

ander verbunden sind. Die resultierende topologische Struktur kann als Graph

gespeichert werden, der eine kompakte Diskretisierung der sensomotorischen

Mannigfaltigkeit darstellt. Während der Inbetriebnahme am physischen Robo-

ter können Nichtlinearitäten in der Motorsteuerung wie Totzonen zu Unsicher-

heiten im Explorationsgrafen führen. In dieser Arbeit schlage ich eine Erwei-

terung des ABC-Verfahrens vor, die die schwerkraftbedingte Asymmetrie der

Totzone für eine zuverlässige Konvergenz ausnutzt. Anschließend schlage ich

eine Methodik vor, um aus der topologischen Struktur des Explorationsgrafen

auf eine Fortbewegungsart zu schließen. Ein physischer, planarer Roboter dient

als experimentelle Plattform zur Entwicklung und Bewertung der vorgestellten

Algorithmen.
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1 Introduction

1 Introduction

“Yes,” said Sir. “That’s exactly what I do think, Andrew. Well

beyond your programmed levels, as a matter of fact. Not that I’m

troubled that you’ve unexpectedly turned out to have this streak

of artistic ability in you, you understand. But I’d like to know just

why it’s there.”

(Isaac Asimov in The Positronic Mac, End of Chapter 3, [1])

With this exchange between Sir and his humanoid robot Andrew, who un-

expectedly—beyond his original programming—develops wood-carving skills,

Isaac Asimov captures a fundamental motivation in robotics: emergence, the

concept where complex behaviors arise from simple rules. Asimov’s Three

Laws of Robotics state:

1. A robot may not injure a human being, or, through inaction, allow a

human to come to harm.

2. A robot must obey the orders given it by human beings except where

such orders would conflict with the First Law.

3. A robot must protect his own existence as long as such protection does

not conflict with the First or Second Law.

Sir’s daughter instructs Andrew to carve a gift for her out of a piece of wood.

This order together with the Second Law, forces Andrew to become creative

and acquire a new skill beyond his intended programming. From this story,

we can see how this ability is not only useful but necessary if autonomous

robots are ever to really be involved in our everyday lives. Beyond some

constrained specific cases like vacuuming or entertainment, Asimov’s fantasy

remains largely fictional.

1.1 Background and Motivation

The pursuit of autonomy is of central interest to the field of robotics. Auton-

omy can be understood as self-reliance, independence, or freedom of choice.

A robot remotely controlled by humans has little to no autonomy. Industrial

robots that automate a programmed process move autonomously but do not

1



1 Introduction 1.1 Background and Motivation

make their own decisions. Adaptive learning processes, on the other hand,

can adjust to di”erent conditions and react to disturbances, but they too were

created by a human. The ultimate aspiration is—as articulated by Rodney

Brooks in his famous paper Intelligence without Representation[2]:

to build completely autonomous mobile agents that co-exist in the

world with humans, and are seen by those humans as intelligent

beings in their own right.

Brooks therefore popularized the concept of embodiment, according to which

true intelligence emerges from an agent situated in a physical environment.

The term agent refers to an abstract concept of a brain or controller (the soft-

ware) and a body or morphology (the hardware) that serves as an interface to

the environment. An artificial mechanical agent is what we call a robot. The

agent and the environment communicate via two channels: the agent outputs

motor signals to act upon the environment and receives sensor signals as input

to observe it. These data streams are usually highly interconnected and form

complex topological structures called sensorimotor manifolds. These mani-

folds, though challenging to interpret for humans, are implicit body models

unique to the morphology and environment which is why they are a promising

representation for behavior planning.

Without computationally expensive onboard physics engines, autonomous

robots need to discover these complex manifolds themselves upon deployment.

This process is called exploration. The prefix in self -exploration serves a dual

purpose: on one hand, it emphasizes that exploration includes—beyond a

spatial mapping of the environment—the discovery of one’s own body. On

the other hand, it refers to the motivation, the reason an agent explores in

the first place. The problem of how to best motivate a robot to engage with

and learn about the world is called the lazy robot problem. Empirical methods

like reinforcement learning (RL) or artificial evolution (AE) motivate their

agents with a reward or a fitness function that needs to be optimized. But

this function is still designed by human hands and can therefore not really be

labeled as “self”-exploration.

This is where the Attractor-based Behavior Control (ABC) comes in. It

proposes an exploration paradigm that is self- or intrinsically motivated and

operates without a human-designed fitness function. The ABC views the

2



1 Introduction 1.2 Problem Statement

agent-environment relationship through the lens of dynamical systems, a math-

ematical framework that studies and classifies the convergence behavior of

systems. An ABC-based exploration run on a robot naturally discovers the

system’s states of equilibrium that correspond to energy-e!cient body pos-

tures. With postures, I refer to specific positioning of the robot’s limbs. Adja-

cent postures are connected via motor movements which materialize a network

structure or graph. This graph is a sparse discretization of the sensorimotor

manifold and therefore an ideal tool for graph-based behavior planning.

One essential behavior of autonomous robots is locomotion: the ability to

deliberately move from one place to another. Not only do many locomotion

techniques exist, i. e., running, rolling, or jumping, but even the same tech-

niques can vary strongly depending on the morphology. Ideally, autonomous

robots should have the ability to come up with a locomotion style that suits

their morphology and environment without human help.

1.2 Problem Statement

This work investigates a planar robotic platform, where the morphology is de-

signed in the two-dimensional sagittal plane and extruded linearly in the third

dimension. Motor axes are oriented orthogonally to this plane to maintain

movement constraints. The robot comprises three limbs with two actuated

joints, providing a simplified yet physically embodied system as a playground

for developing and testing fundamental concepts.

The central research question addressed is:

Can a locomotion behavior for a planar, three-limb robot be derived

solely from topological analysis of his exploration graph?

To answer this question, I establish two primary objectives:

1. to develop a practical implementation of ABC that accounts for motor

nonlinearities, particularly dead-zone e”ects that introduce uncertainty

in state transitions, and

2. to formalize a motion generation algorithm that abstracts behavioral pat-

terns from morphological properties through geometric and topological

graph analysis.

3
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1.3 Outline

Section 2 (Related Work) surveys foundational research and establishes the

theoretical context for this contribution.

Section 3 (Theoretical Foundations) formally introduces the dynamical systems

framework and mathematical notation underlying the approach.

In Section 4 (Robotic Platform), I present the robot Brilliance, detailing its

hardware implementation, morphological design, and simulation environment,

with particular attention to the design rationale.

Section 5 (Exploration) demonstrates the practical implementation of the

Attractor-based Behavior Control, including methods for equilibrium detec-

tion and dead-zone compensation.

Section 6 (Locomotion) develops a topology-driven motion planning method-

ology, showing how morphological properties can be inferred from exploration

graphs to generate functional behaviors.

Section 7 concludes this thesis by providing a synthesis of the contributions,

discussion of limitations, and directions for future research.
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2 Related Work

The study of autonomous robots has led to significant advances which are

summarized here into four main subsections that are relevant for this thesis:

firstly, an overview of locomotion in robotics; secondly, existing compensation

techniques for dead-zones and other common nonlinearities; thirdly, research

on and representation of sensorimotor manifolds; and finally, exploration with

particular focus on previous work of the ABC approach.

2.1 Locomotion in Robotics

“Locomotion, the ability of a body to move from one place to another.”[3]

The periodic motion sequence that enables an agent to locomote is called gait.

Naturally, a gait is highly dependent on the physical environment and the

agent’s morphology. Hence an incredibly diverse set of gaits exists: swimming

underwater, flying in the air, walking on land, etc.

Even on flat, rigid surfaces, endless locomotion techniques can be found:

crawling, rolling, slithering, jumping, walking, running, etc. Some animals, like

horses, can even vary between di”erent gaits to achieve greater speeds or lower

energy expenses[4]. Many robots have been specifically designed to embody

a certain type of gait, be it quadrupeds[5], hexapods[6], monopod hoppers[7],

powered bipeds[8], hyper-redundant serpentine robots[9], soft robotics[10] or

even modular reconfigurable robots[11].

McGeer introduced the idea of Passive Dynamic Walkers[12], a bipedal

contraption that could walk down a slope entirely without control. Based on

this, hybrid models have been designed that try to generate e!cient gaits with

minimal actuation to replace gravity as an energy source[13].

2.2 Dead-zone Compensation

Jelaili and Huang define the dead-zone as a “predetermined range of input

through which the output remains unchanged irrespective of the direction of

change”[14]. Robotic systems rely on the use of electrical motors to navigate in

the world and achieve tasks like locomotion. Even though the output velocity

is usually linearly coupled with the input voltage of the motor, most physical

motors su”er from a dead-zone around an input of zero. A critical threshold

5



2 Related Work 2.3 Sensorimotor Manifolds

must be reached before the output reacts. This phenomenon is typically at-

tributed to friction[15], the shearing force that opposes the movement of two

surfaces in contact. Friction can be reduced through good hardware design or

the use of lubrication but not fully removed.

Several control methods use parametrized periodic signals superimposed

onto the primary control signal. A high-frequency vibration-like signal can

create an e”ective narrowing of the nonlinear sector[16]. Square pulsed ex-

citations have successfully reduced the control error during stick-slip motion

of pneumatic valves[17]. Though these methods are often easily implemented,

they introduce wear and tear.

Adaptive control theory o”ers numerous established approaches that learn

dead-zone parameters online and compensate through an inverse function[18].

Joint friction can also be adaptively compensated by a velocity observer to

achieve higher control accuracy[19].

Moreover, empirical approaches show promising results for irregular dead-

zone profiles where an exact model is unavailable. Fuzzy pre-compensators

obtained from evolutionary programming have been shown to improve the

performance of PD-controllers[20]. Selmic et al. have e”ectively demonstrated

that neural network-based approaches can successfully compensate for dead-

zones[21] and other common nonlinearities like backlash[22] or saturation[23].

2.3 Sensorimotor Manifolds

When making sense of complex data, the need to model and predict the topo-

logical nature of it becomes necessary. Early approaches include Kohonen’s

self-organizing maps (SOM)[24], Kuipers cognitive map[25], or Fritzke’s grow-

ing neural gas (GNG)[26]. Expanding these ideas to sensorimotor data leads

to the sensorimotor map[27]: a neural representation on which to realize plan-

ning.

Experiments with NASA’s humanoid robot Robonaut have shown that di-

mensionality reduction methods can be used to reveal the topological nature of

high-dimensional sensorimotor data streams[28]. The lower-dimensional rep-

resentations allow extraction of behavioral manifolds related to a humanoid

robot’s body postures[29].

Continuous representations of sensorimotor manifolds have been developed.

For example, Lie groups : smooth manifolds endowed with a group struc-

6
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ture, allow geometric interpretation of motor capabilities for mobile robots[30].

Custom neurons can be used to represent quadrics—a manifold defined by a

second-degree polynomial—and learn its parameters to approximate a set of

data points[31].

SMM representations have been used to plan behavior and accomplish

tasks. The humanoid robot Myon could accomplish di”erent visuomotor tasks

by generating and optimizing quadric-based representations[32]. Gaits syn-

thesized via graph-based representations of the sensorimotor manifold have

enabled 3D-printed planar robots to locomote[33].

2.4 Exploration and ABC-related Research

Benureau formalizes exploration as “creating access to di”erent aspects of the

environment”[34]. This incorporates the need to create spatial maps and lo-

calization within them[35] but can also be generalized to the discovery of the

law-like sensorimotor contingencies[36]. Autonomous systems have no prior

knowledge about themselves or the environment; hence, exploration becomes

a necessary predecessor to the planning of behavior.

Empirical approaches are based on random trial and error to determine

statistical models like in motor babbling[37] or reinforcement learning[38]. But

these approaches heavily su”er from the curse of dimensionality: the number of

possible inputs grows exponentially with increasing complexity. The therefore

large number of necessary trials to adequately sample the state-action space

means high computational intensity for simulations or time, wear, and cost

intensity for physical systems.

To address this, Hild introduced the Attractor-based Behavior Control

(ABC), an exploration algorithm that creates a graph of intuitive postures:

Interestingly, people immediately name the postures found by ABC-

Learning with verbs like lying, sitting, standing, kneeing, holding

up, which seems plausible if we realize that, e. g., the verb sitting

represents all variations of sitting, be it on a chair with the feet

on the ground, or on a table with dangling feet, but always the

defining property being that hip and neck are held upright (con-

traction mode), whereas knees and ankles are free to move (release

mode).[39]

7



2 Related Work 2.4 Exploration and ABC-related Research

The ABC graph is a spare discretization of the SMM whose complexity only

grows linearly with increasing degrees of freedom (DOF). It therefore presents

a promising approach to taming the curse of dimensionality.

The ABC employs Cognitive Sensorimotor Loops (CSL)[40] which natu-

rally locate stable fixpoints when driven in release-mode and unstable fix-

points when driven in contraction-mode. The CSL is a simple sensorimotor

coupling from which surprisingly complex behavior emerges[41]: A robot leg

with three joints controlled by independent contraction-mode CSLs moves from

a horizontal lying pose into an upright standing pose without any trajectory

planning[42].

Extensions to the original ABC concept have been proposed. Werner stud-

ied the kick-fly-catch paradigm that uses initial energy impulses and momen-

tum to improve energy e!ciency of contraction-mode transitions[43]. Bethge

evaluated di”erent heuristics-based exploration strategies that improve the ex-

haustiveness or e!ciency of the ABC algorithm[44]. Janz has pioneered the

idea of comparing past exploration data to current data to recognize situations

and to classify obstacles through deviations from expected behavior[45].

8
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3 Theoretical Foundations

This section presents the theoretical and mathematical foundations underpin-

ning the concepts developed in this thesis. Firstly, key terminology from the

field of topology is introduced. Next, the mathematical formulation of dynam-

ical systems is provided, establishing the basis for a concrete example system

involving a robot morphology in a gravity-driven environment. Finally, the

section describes the Cognitive Sensorimotor Loop (CSL) as the foundational

component of the Attractor-based Behavior Control (ABC), a framework en-

abling robots to self-explore their sensorimotor manifolds.

3.1 Topological Terminology

This thesis incorporates and extends key concepts from the mathematical field

of topology that are abstractly introduced in this subsection.

Euclidean Space, denoted as Rn, serves as the geometric model of physical

space. In this space, any point can be uniquely represented by coordinates

relative to a chosen origin. n corresponds to the number of dimensions required

for its description: n = 1 given an infinite line, n = 2 represents an infinite plane,

and so forth. The coordinates of a point or vector in the Rn are conventionally

expressed as:

[x, y, z,⋊] = x ∈ Rn

Euclidean space inherently defines fundamental geometric properties, including

distance, angle, and direction. The distance between a point and the origin is

modeled with the Euclidean distance:

⌝⌝x⌝⌝ =⌞x2 + y2 + z2 +⋊.

Topological Spaces represent a generalization of Euclidean spaces. Unlike

a Euclidean space, a topological space does not necessarily require a notion of

distance between its elements. Instead, it characterizes the spatial structure of

its elements in terms of their relative position and ordering. Several examples

of topological spaces are presented subsequently.

9



3 Theoretical Foundations 3.1 Topological Terminology

Homeomorphism refers to a bijective mapping between two spaces that

preserves all topological properties. Informally speaking, two spaces are identi-

cal from the perspective of topology if one space can be continuously deformed

into the other without tearing or gluing. When a homeomorphism exists, the

two spaces are considered homeomorphic.

Graphs or networks, are discrete topological spaces G with a finite set of

elements V called nodes or vertices:

G = (V,E).
The topological structure is defined via the set of edges E or connections that

align the nodes with each other. The edges can also contain directional infor-

mation in which case the graph is referred to as a directed graph or digraph.

Manifolds are n-dimensional, continuous spaces that are locally homeomor-

phic to the Rn but are globally topologically di”erent from the Rn. An n-

manifold embedded in a higher-dimensional space like the Rm can be con-

structed via a characteristic function φ that identifies the points on the mani-

fold:

Mn = {x ∈ Rm ⌐ 0 = φ(x)}.
Two classical examples are the n-sphere and the n-torus.

Sphere An n-sphere is a manifold defined as all points with a distance of 1

to the origin:

Sn = {x ∈ Rn+1 ⌐ ⌝⌝x⌝⌝ = 1}.
Figure 1(a) illustrates the 1-sphere, the outline of a unit circle. Though its

elements are two-dimensional points [x, y], any continuous subset of the circle

can be mapped onto a subset of the one-dimensional Euclidean space R1,

the line. But there exists no mapping of the entire S1 without making a

cut and therefore losing topological information. (b) shows the 2-sphere, the

topological space of the Earth’s surface. Famously, it requires an atlas—a

collection of overlapping charts (R2)—for complete representation, as no single

coordinate map can bijectively cover the entire surface.

10
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x

yS1

(a)

S2

(b)

T2

(c)

Figure 1: Examples of manifolds. (a) the 1-sphere, or a circle, (b) the 2-sphere,

and (c) the 2-torus.

Torus The n-torus is yet another example of a manifold that is constructed

as the Cartesian product of n circles:

Tn = S1 × S1 ⋊ S1⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
n times

.

A two-dimensional point whose coordinates are both elements of distinct S1 is

an element of the donut-shaped 2-torus visualized in Figure 1(c).

Angular Space An angle is a real number that measures rotation. When

expressed in the unit radians [rad]—as done throughout this thesis—it is 2ε-

periodic, meaning any angle a ∈ R can be mapped to an angle a⋊ that is an

element of the angle space A = [−ε,ε) using the modulo function:

a⋊ =mod(a + ε, 2ε) − ε.
This periodization preserves all topological information while providing a unique

representation of an angle. Continuous angular increase corresponds to traver-

sal of the circle outline because the one-dimensional angular space A is home-

omorphic to the S1. Higher dimensional angular spaces An are homeomorphic

to the Tn, where the two-dimensional case is sketched in Figure 2.

11
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(b) (c)(a)

Figure 2: A two-dimensional angular space [ω,ε] ∈ A2 is homeomorphic to the

2-torus. The sequence of sketches tries to visualize this relationship intuitively. (a)

shows an incomplete mapping of the angular space A2 onto the R2. The colored axis

arrows should be “glued” together to represent the periodicity of the angles. When

the ε-axis is rolled to connect the ω-axes, the structure becomes a cylindrical tube

as in (b). The torus appears when the cylinder is stretched and glued to connect

the ε-axes as well (c).

3.2 Dynamical Systems

A dynamical system is a mathematical framework describing the evolution of

a system over time. Formally, it is defined by the tuple

(T,S,#),
where:

• T is the time domain, commonly Z or R,

• S is the state space (or phase space),

• # is the flow [46].

The state vector s ∈ S encapsulates all time-varying properties of the sys-

tem. A state at time t ∈ T is denoted s(t), with s(0) as the initial state with

t = 0. The state space S is the set of all possible states, often a subset of

Rn. The individual scalar coordinates of a state are referenced with indices:

s = [s0, s1,⋊]. The flow # ⌐ S × T → S describes how a state s(0) has evolved
after time t:

#⌝s(0), t⌝ = s(t)
12
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Dynamical systems are classified by their time domain, as shown in Figure 3:

1. Continuous systems as in (a) with T = R define # implicitly via a first-

order di”erential equation:

f⌝s(t)⌝ = ṡ(t),
where ṡ(t) = d

dts(t) is the time derivative of the state or the velocity. The

function f is called the vector field of the system. If f does not depend

on time, the system is autonomous.

2. Discrete systems as in (b) with T = Z define # implicitly via iterative

map or di”erence equations which directly compute the state for the next

time step:

F ⌝s(t)⌝ = s(t + 1), F ⌐ S → S

(a)

f
ṡ(t)s(t)

(b)

F

z⌐1

s(t + 1)s(t)

Figure 3: Flowcharts representing the two types of dynamical systems: (a) con-

tinuous systems with t ∈ R, where is an integrator, and (b) discrete systems with

t ∈ Z, with z−1 as a delay block.

Most physical systems are continuous but can be discretized for simulation,

e. g., by using Euler’s method:

F ⌝s(t)⌝ ≈ s(t) +$t f⌝s(t)⌝
The approximation gets more accurate the smaller $t is chosen. Conversely,

the velocity in discrete systems is approximated by:

ṡ(t) ≈ $s(t)
$t

, $s(t) = s(t) − s(t − 1).
A trajectory s(a ⌐ b) is the set of states that the system reaches within the

time interval [a, b):
s(a ⌐ b) = {s(t)}t∈[a,b)

13
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An equilibrium (fixed point or fixpoint) s⌐ is a state that satisfies:

#(s⌐, t) = s⌐, ∧t ∈ T.
In other words, an equilibrium is not a”ected by the dynamics of the system

and does not change over time:

s⌐ = F (s⌐) or 0 = f(s⌐). (1)

Equilibria are classified based on their stability properties.

3.2.1 Stability

Stability is most easily analyzed for autonomous linear systems, where f(s) is
expressed as a matrix multiplication with J ∈ Rn⋉n:

ṡ = Js (2)

The eigendecomposition of Jvi = ωivi yields the eigenvalues ωi ∈ C and

eigenvectors vi ∈ Cn. The real part of the eigenvalues Re(ωi) determines the

system’s stability around the origin:

• Re(ωi) > 0: Divergence along vi.

• Re(ωi) < 0: Convergence along vi.

• Re(ωi) = 0: No motion along vi.

The imaginary part Im(ωi) is responsible for rotation around the origin.

The four di”erent kinds of equilibria for two-dimensional systems are vi-

sualized in Figure 4. For diagonal matrices, the eigenvectors are the ma-

trix columns vi = J[i] and the eigenvalues are found on the main diagonal

ωi = J[i, i]. The equilibria are qualitatively classified according to the eigen-

values at the origin of the system:

s Stable fixpoint : Re(ωi) ≤ 0, ∧i, all eigenvalues are negative (or zero).

Trajectories converge (or do not move) in all directions as in (a). States

of stable fixpoints are marked by a black dot .

s Unstable fixpoint : Re(ωi) > 0, ∧i, all eigenvalues are positive. Trajecto-

ries diverge in all directions, as in (d). States of unstable fixpoints are

marked by a white-filled black circle .

14
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s , s Saddle point : Re(ωi) have mixed signs. Trajectories converge along the

stable eigenvectors and diverge along the unstable ones, as in (b) and

(c). The black half of the marker indicates the stable axis: For , s0 is

stable, and for , s1 is stable. For this thesis, this notation su!ces as

the considered systems are at most two-dimensional and the eigenvectors

approximately align with the coordinate axes.

J = ⌜⌜⌜⌜⌜⌝
⌐1 0

0 ⌐1
⌝⌝⌝⌝⌝⌝(a) J = ⌜⌜⌜⌜⌜⌝

1 0

0 ⌐1
⌝⌝⌝⌝⌝⌝(b)

J = ⌜⌜⌜⌜⌜⌝
⌐1 0

0 1

⌝⌝⌝⌝⌝⌝(c) J = ⌜⌜⌜⌜⌜⌝
1 0

0 1

⌝⌝⌝⌝⌝⌝(d)

Figure 4: Vector fields of di!erent autonomous linear dynamical systems with

purely real eigenvalues. They feature the four fundamental types of equilibria: (a)

Both eigenvalues are real and negative: a stable fixpoint, denoted as s . (b) and (c)

One eigenvalue is positive, the other is negative: a saddle point, denoted as s or s .

(d) Both eigenvalues are positive: an unstable fixpoint, denoted by s . vi are scaled

and colored according to their respective eigenvalue ϑi.
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According to the Hartman–Grobman theorem, the flow in a neighborhood

close to the point of interest is qualitatively equivalent to its linearization.

Which allows the application of linear stability analysis to a broader set of

dynamic systems, namely those where f is at least once di”erentiable at the

state of interest s̃. These systems can be linearized at s̃ using first-order

multivariate Taylor-expansion:

ṡ = f(s) ≈ f(s̃) + Jf(s̃)(s − s̃)
where Jf(s̃) is the Jacobian matrix of f evaluated at s̃ that holds all the partial

derivatives:

J = ⌞↼f(s̃)i
↼sj

⌞
i,j∈[1,n]

= ⌞↼ṡi
↼sj
⌞
i,j∈[1,n]

,

where si is the i-th component of the state vector s̃. If the state of interest is

chosen as an equilibrium s̃ = s⌐ then f(s̃) = 0 holds (Eq. 1) and through shifting

the origin of the system to s̃ the linearization always yields an autonomous

linear system just as in Eq. 2:

ṡ = Js
This means that extracting the eigenvalues of the Jacobian matrix of the sys-

tem function evaluated in a state of equilibrium s⌐ yields the stability charac-

teristics of this equilibrium and allows its qualitative classification as a stable

fixpoint, unstable fixpoint, or saddle point.

3.2.2 Attractors

An attractor A ⊂ S is a subset of the state space that satisfies the following

conditions:

1. A is invariant over time, meaning that

if s(t) ∈ A, then s(t ⌐ ∨) ⊂ A
2. A has a basin B(A) ⊂ S such that

B(A) ⧖A ≠ {}.
A basin is the set of states that converge toward A for t → ∨. This

means that a state s(0) ∈ B(A) ⧖A will follow a trajectory where:

s(0 ⌐ ↽) ⊂ B(A) and s(↽ ⌐ ∨) ⊂ A.
16
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States in the basin will stay within the basin. After a time of convergence

↽ , these states will be within the attractor.

3. A is robust to small disturbances. Meaning that there exists a ⇀-region:

Uω(A) = ⊍
sA∈A
{s ∈ S ⌐ ⌝⌝sA − s⌝⌝ < ⇀}

around the attractor states, with an arbitrarily small ⇀ > 0 that is entirely
contained by the attractor’s basin Uω(A) ⊂ B(A). Disturbed states would

therefore converge back into the attractor.

4. A is minimal, such that no true subset of A satisfies the other conditions.

A⌝s(0)⌝ refers to the attractor to which the system converges considering the

initial state s(0). A system’s set of all attractors is denoted as:

A(#) = {A0,A1,⋊}.
Figure 5 visualizes the four di”erent types of attractors:

1. Stable fixpoint s : A constant state satisfying

A⌝s(0)⌝ = {s }, s = lim
t→∞#⌝s(0), t⌝.

2. n-orbit : A periodic trajectory with n states satisfying

A⌝s(0)⌝ = s(↽ ⌐ ↽ + n) and s(↽ + n) = s(↽)
A 1-orbit is actually a stable fixpoint. Orbits with di”erent n are topo-

logically di”erent from each other.

3. Quasi-periodic orbit : Closed-loop oscillations that never exactly repeat

but follow a recognizable pattern, as in (c).

4. Chaotic attractor or just chaos: unpredictable, non-repeating trajecto-

ries.

Saddle points and unstable fixpoints are—similar to attractors—invariant

over time. Unlike attractors though, the basin of an unstable fixpointB({s }) =
{s } consists only of itself (condition 2). Because of the “repelling” e”ect that

an unstable fixpoint has on its surrounding states it is also called a repeller.

17
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(a)

s1

s0

(b)

s1

s0

(c)

s1

s0

(d)

s1

s0

Figure 5: Dynamical systems can have four di!erent kinds of attractors: (a) the

stable fixpoint, an equilibrium state that trajectories converge toward; (b) an n-

orbit, periodic trajectories of n states; (c) quasi-periodic orbits that oscillate but

never exactly repeat; and (d) chaos.

Saddle points have a basin beyond themselves; states in the direction of the

eigenvectors with negative eigenvalues, the so-called stable manifold. But sad-

dle points—like unstable fixpoints—are not robust to noise (condition 3). Here,

trajectories that experience small disturbances beyond the stable manifold are

repelled.

A system with multiple attractors splits the state space into distinct basins.

A boundary between two basins is called a separatrix and can be a smooth,

continuous curve or have a fractal shape. Unstable fixpoints and saddle points

both lie within these separatrices as shown in Figure 6.

3.2.3 Bifurcations

Dynamical systems may depend on a vector of parameters u ∈ U . These values

influence how the state changes but are themselves not changed by the system

and hence not part of the state. To denote the dependency of the system

dynamics on u, it is written in the function index:

#u⌝s(0), t⌝ or fu⌝s(t)⌝ or Fu⌝s(t)⌝.
Changing a parameter may cause a state to converge to a di”erent attractor

Au(s0) ≠ Av(s0).

18
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s1

s0

Figure 6: All states that converge toward the stable fixpoint s make up the blue-

colored basin B(s ). The border to other basins creates the separatrices (black lines)

which house the unstable fixpoints s and the saddle points s and s . The red line

shows the stable manifold of s . If not disturbed, trajectories on the separatrix

travel along the stable manifold from the unstable fixpoint to the stable fixpoint.

There are three cases where Au ≠ Av holds:

1. The type of attractor changes. For example, a stable fixpoint starts to

oscillate and becomes an n-orbit or a quasi-periodic attractor.

2. The original attractor disappears. For example, a stable fixpoint becomes

unstable, and the state converges toward a di”erent attractor. The new

attractor might also be a stable fixpoint, but since the attractor land-

scape changed, it is topologically di”erent.

3. A new attractor appears, toward which s(0) now converges instead. The

new attractor might also be of the same type, but since the attractor

landscape changed it is topologically di”erent.

This topological change induced by a parameter variation is a bifurcation.

The parameter values u that induce a bifurcation in s ∈ S are elements of the

bifurcation set:

B(s) = {u ∈ U ⌐ ∃$u such that Au(s) ≠ Au+!u(s)} ,
where $u is some small parameter change.
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3.3 Sensorimotor Systems

A sensorimotor system is a type of dynamical system that consists of an agent

that is embodied within a physical dynamic environment. The agent interacts

with the environment via two channels:

1. Motors : The agent manipulates the state of the environment through a

vector of motor signals u ∈ U .

2. Sensors : The agent perceives the state of the environment through a

vector of sensor signals y ∈ Y .

3.3.1 Gravity

A concrete example of a dynamical system is a physical body that is embedded

in a gravity-driven environment. Figure 7 introduces the robot of this thesis

called Brilliance. It exists in a two-dimensional world where gravity accelerates

downwards. The robot’s morphology consists of three limbs: two leg limbs

connected to the left and right sides of a central torso limb. The joints are

marked by colored circles in the figure: cyan for the left and orange for

the right side. The joint angles ϖL and ϖR give the relative rotation between

the respective leg and the torso. The tuple of all joint angles of a robot is also

called configuration ϖ, where in Brilliance’s case:

ϖ = [ϖL, ϖR] ∈ A2.

When the configuration angles are held constant at a fixed value and cannot

be changed by the environment, the robot is essentially a rigid body.

The state of a rigid body in a two-dimensional world is given by its pose

s = [x, y,ϑ]. x and y are the coordinates of an arbitrary reference point of

the body relative to the world origin, and ϑ is the orientation, i. e., the angle

between the torso and the world. In the figure, the gray ground line serves

as a reference for ϑ. Assuming that the terrain stays flat for any x and that

gravity always adjusts y so that the body has ground contact, x and y can be

omitted from the state:

s = [ϑ] ∈A1. (3)

With this, changing the state e”ectively means rotating the robots’ entire body,

as can be seen in Figure 7 from (c) to (d). The gravity-driven dynamical system

will provide ṡ = ϑ̇, the angular velocity.
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p1

ω = [0,0], ε = 0

unstable (null posture)

(a)

p1 p2

ωL

ωR

ω = [43ϑ,⌐1
3ϑ], ε = ⌐0.06

stable fixpoint

(b)

p1

ω = [5.22,1.53], ε = 0.65

unstable fixpoint

(c)

p1 p2

ε

ω = [5.22,1.53], ε = ⌐0.71
stable fixpoint

(d)

Figure 7: Selected poses of the Brilliance morphology. The morphology consists of

three limbs that are connected by two joints marked by colored circles. The small

denotes the COM of the individual limbs whereas the big is the combined COM.

The scale of the GCPs marked by denotes the weight distribution. The di!erent

postures show the influence of the three angles ωL, ωR, and ε.
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The dynamics of this system depend on two morphological properties:

The point where Newtonian forces like gravity apply is called the center

of mass (COM). Each limb has its own COM, marked by a small . The

weighted sum of the individual COM gives the robot’s combined COM

c = [cx, cy], marked by a big .

The coordinates where the body touches the ground are the ground con-

tact points (GCP) pi = [pxi, pyi] marked by a black, upwards pointing

triangle . Omitting y from the state (Eq. 3) guarantees that there is

always at least one GCP p1. If more than one GCP exists they are in-

dexed by i. Since the ground is at y = 0, pyi = 0 for all GCP. The size of

the GCP marker reflects the relative weight distribution.

Both c and pi depend on and can be geometrically computed from the ori-

entation ϑ (and later ϖ). The arrangement of their x-coordinates cx and px
determines the system dynamics ϑ̇:

• If there is only one GCP and cx > px then ϑ̇ < 0. A negative rotation will

take place as in Figure 7 (a).

• If there is only one GCP and cx < px then ϑ̇ > 0. A positive rotation will

take place.

• If there is only one GCP and cx = px then ϑ̇ = 0. The state is an

equilibrium. Either an unstable fixpoint like in (c) or a stable fixpoint

with a curved contour touching the ground. If the curve’s radius is larger

than the distance ⌝⌝c − p1⌝⌝ it is stable.
• There is more than one GCP and

pL ≤ cx ≤ pR then ϑ̇ = 0,
where pL and pR are the leftmost and rightmost GCP x-coordinates. In

this case, the state is a stable fixpoint, as in (b) and (d).

The system vector field for continuous time could be modeled as

ϑ̇ = fε(ϑ) = ⇁
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌟⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌟

+1, cx < px
−1, cx > px
0, cx = px
0, pL ≤ cx ≤ pR

, (4)
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with ⇁ as some constant angular velocity.

Since ϑ ∈ A1, the state space is homeomorphic to the S1 and can be repre-

sented as such in Figure 8. With the configuration set to ϖ = [5.22,1.53], three
stable fixpoints ϑ emerge at −1.72, −0.68, and 2.62, states where more than

one GCP exists and cx lies within the x-range of those. The unstable fixpoints

ϑ at −2.41, −1.60, and 0.69 are postures where the singular GCP vertically

aligns with the COM. (The unstable fixpoint −1.60 lies too close to the stable

fixpoint at −1.72 to be displayed in the figure.)

ω

⌐1.72
⌐0.68

2.62

⌐2.41

0.69

Figure 8: Circular visualization of the one-dimensional state space with s = ε, the
orientation angle between the torso limb and the world frame. Both joint angles are

held constant at ω = [5.22,1.53]. Since ε is an angle, the state space is homeomorphic

to a circle. The equilibrium poses that emerge due to gravity with this configuration

are displayed with their respective stability marker: for stable, for unstable.
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3.3.2 Sensorimotor Manifolds

The sensorimotor manifold of a dynamical system is defined as:

M(#) = {(y,u) ∈ Y ×U ⌐ ∃A ∈ A(#u), y ∈ A, u ∉ B(y)} .
In other words, it contains all (y,u)-tuples where y is part of an attractor

of the system given the parameters u, but excluding any u that causes a

bifurcation for the state y. Bifurcations always lie on the border of stability

and therefore do not locally resemble the Euclidean space. These manifolds

topologically describe the sensorimotor relationship of the system.

In the example, treating the left leg angle as a mutable parameter to the

system (u = [ϖL])—while still keeping ϖR = 1.53 constant—enables bifurcation

analysis. Figure 9 depicts the bifurcation diagram of fεL(ϑ). The y-axis shows
the location of stable fixpoints ϑ depending on the parameter value ϖL on

the x-axis. As both values are angles, the diagram is in both dimensions 2ε-

periodic and homeomorphic to the 2-torus (T2). While this toroidal structure

is challenging to visualize directly in the planar representation, the angular

periodicity implies that traversal beyond any diagram boundary corresponds

to re-entry at the opposite boundary. The complete structure can be mentally

reconstructed by imagining the diagram folded into a donut shape, following

the homeomorphic mapping sketched out in Figure 2.

The state space from Figure 8 represents the gray vertical slice of this dia-

gram at ϖL = −1.06. The red arrows represent bifurcations. Here, a previously

stable fixpoint becomes unstable due to varying ϖL. The arrows point at the

stable fixpoint that the new state converges toward. States that align vertically

have the same configuration and only di”er according to their ϑ.

The stable fixpoints construct a one-dimensional manifold M⌝fεL(ϑ)⌝ em-

bedded in this two-dimensional angular space. This manifold is unique to

the morphology of the robot and can provide topological insights about its

sensorimotor relationships:

1. The manifold can be classified into distinct submanifolds. All states

within the same submanifold can be reached without falling. The pos-

tures that belong to the same submanifold are labeled with the same

letter, e. g., (a1) and (a5) both belong to submanifold (a).

2. Bifurcations correspond to falling transitions. If the robot at state (a1)
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ωL

ε

⌐3
2ϑ

⌐ϑ ⌐ω
2
⌐1.06 0

0

ω
2

ϑ

3
2ϑ

(a1) (a2)

(a3)

(a4)

(a5)

(a6)

(b1) (b2) (b3)

(b4)

(c1) (c2) (c3) (c4)

Figure 9: The bifurcation diagram of the Brilliance morphology sampled with

n = 120 per axis. The black lines show how the state ε of the stable fixpoints

changes in dependency on the parameter ωL, the left leg angle. The right leg is held

constant at ωR = 1.53. The red arrows visualize bifurcations: here, the parameter

change induces a topological change, namely a stable state becomes unstable. This

corresponds to a falling motion due to a small change in ωL. The vertical gray line

corresponds to the state space of Figure 8.
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decides to decrease ϖL, it will eventually move its COM beyond the GCP-

x-range and turn the stable fixpoint unstable. Now, ϑ will change or

“fall” into a state similar to (a5).

3. Falling is irreversible or uni-directional. For example, the movement that

transition (a1) to (a5) is a small negative rotation of the left joint and

causes a large change in ϑ–a fall. However, the robot cannot apply the

inverse, i. e., a small positive rotation, to transition from (a5) back to

(a1).

4. The accessibility of di”erent states can be inferred from the topology of

the manifold. Even though there is no direct path from (a5) back to (a1),

the robot can instead traverse the states (a4), (a3), and (a2) to reach

(a1) again. While some submanifolds can be escaped—moving from (a6)

to (b2)—others trap the robot, like (b) and (c) so that states on di”erent

submanifolds are inaccessible.

5. A plateau corresponds to no immediate impact from changing a param-

eter. Areas where the gradient ϑϖ⌟ϑεL is zero create plateaus like around

(a4), (b2), or the entire submanifold of (c). Here, the left leg does not

touch the ground and hence has no influence on the position of any GCP.

6. A crease is the point where di”erent smooth patches meet non-smoothly.

This reflects a discontinuity in the gradient ϑϖ⌟ϑεL. Here, a limb is either

being lifted o” or placed on the ground. Normally, the GCP smoothly

follows the outline of the limb while ϖL varies. When a new GCP gets

introduced or a previous GCP is removed like in (b3) then there is a

sudden change in the relationship of ϑ to ϖL, and a new smooth curve

takes over.

7. Curvature corresponds to the number of di”erent limbs that touch the

ground. When only one limb supplies the GCP, as in (a5), (a6), or the

entire submanifold of (c) then the lines are either constant or linear.

When the lines have a curvature like around (a3) or (b4) two di”erent

limbs are on the ground.

Analogous to ϖL, the right leg angle ϖR is motorized and can therefore be

treated as a parameter to the dynamical system. Now, u = ϖ = [ϖL, ϖR]. The
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3 Theoretical Foundations 3.3 Sensorimotor Systems

sensorimotor manifold M(fε(ϑ)) manifests as a collection of disconnected two-

dimensional warped surfaces, embedded in the A3. Figure 10 shows Brilliance’s

SMM embedded in an R3 projection. The three di”erent azimuth angles al-

low for better spatial clarity. The colors correspond to the value of ϑ. The

theoretically smooth manifold is here discretized and sampled at a resolution

of 120 per parameter axis. Figure 9 represents the highlighted slice along the

ϖL-axis.
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Figure 10: Brilliance’s three-dimensional sensorimotor manifold from three dif-

ferent perspectives. The number of samples is 50 per axis. The highlighted slice

represents the bifurcation diagram from Figure 9. The coloring is according to ε on

the z-axis.
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3.3.3 Cognitive Sensorimotor Loop (CSL)

The cognitive sensorimotor loop (CSL) is an adaptive controller proposed by

Hild[39] and designed to control the motor signal u of a rotational joint whose

angle ϖ rotates with a rotational velocity ϖ̇. It directly couples the measured

sensor value with the motor signal. The CSL control loop is depicted in the

flowchart of Figure 11 and is defined as:

u(t + 1) = gf u(t) − gi ϖ̇(t). (5)

+

z⌐1

ω̇ u
⌐gi

gf

Figure 11: Flowchart of the Cognitive Sensorimotor Loop

It depends on two parameters: int input gain gi and int feedback gain gf.

Di”erent combinations of parameter values are called behavior modes and are

categorized according to Table 1:

Table 1: CSL-modes and their parameters (adjusted from [44])

Release Hold Contraction Support

gi > 0 > 0 > 0 < 0
gf ∈ [0,1) = 1 > 1 = 0

• Release-mode (r): With gi > 0, the input works against the movement

of the joint. The motor passively follows outside forces like gravity and

is essentially “relaxing” its joint. The delay unit and 0 < gf ≤ 1 work as

a leaky integrator that slows down movement proportionally to gf. The

release mode automatically finds stable fixpoints s . True relaxation can

also be achieved by disabling the motors (coast mode) which is di”erent

from u = 0 when enabled (break mode). Breaking increases resistance

to outside movement which results in larger dead-zones. In this thesis,

r-mode is used synonymously with a disabled motor.
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• Hold-mode: With gf = 1, the exact integrator accumulates changes

in angular value and will try to return to its initial position. This is

equivalent to an I-controller.

• Contraction-mode (c): Further increasing gf > 1 causes the CSL to

actively work against outside forces. Deriving from eq. (5) with $u = 0,
the CSL balances output value and velocity such that

giϖ̇(t) = (gf − 1) u(t − 1).
When an outside force starts to slow down or speed up the motion the

CSL adjusts u to work against this disturbance. The c-mode converges

toward unstable fixpoints s . E”ectively, the stability characteristics

of the system are inverted when in contraction. For c-mode to properly

function, the parameters need to be tuned, e. g., as done in [43], otherwise

it is prone to destabilize into uncontrolled oscillation. The c-mode in this

thesis uses the parameters gi = 0.07 and gf = 1.08, with ϖ̇ measured in

rad/s and u ∈ [−1,1] outputs a percentage of the maximum allowed

voltage.

• Support-mode: A negative gi creates a positive loop gain where u now

operates in the same direction as ϖ̇. This causes the CSL to work with

or “support” outside forces. Support-mode combined with a gf ∈ [0,1]
builds up an artificial momentum in the movement direction. This seems

to be the intuitive solution to compensate for the dead-zone problem.

Though in practice the support mode only reduces the probability of

getting stuck in a dead-zone, it nonetheless fails to exit one on its own.

Using a CSL for controlling a rotational joint has a few advantages over

conventional control:

• The CSL has no implementation overhead, is computationally cheap,

and requires little memory. It can be implemented within a few lines of

code, and even entirely analog implementations with only a few electronic

components exist[41].

• No initial calibration is needed. Since the CSL works with the angular

velocity, the absolute value of ϖ is irrelevant and does not have to be

calibrated in advance.
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• The CSL does not require explicit targets but intuitively finds its own

target values by interacting with the environment. Depending on which

mode is active the CSL transitions toward stable or unstable fixpoints.

• The target values found by a CSL correspond to energy-e!cient postures.

Stable fixpoints found in r-mode do not cost any energy to hold as the

motor is simply turned o”. Unstable fixpoints found in c-mode require

some energy to reach, but once converged only little energy is needed to

stabilize small disturbances.

• Since the CSL finds its own target values, robotic systems with multi-

ple joints can control each joint independently. Communication is out-

sourced to the environment and the morphology. This allows for a decen-

tralized control paradigm where each limb has its processing units like

in the humanoid robot Myon[47].

• The CSL is designed for emergence. A simple sensorimotor coupling like

the CSL can give rise to surprisingly complex behavior. As an example,

a complex standing-up motion emerges within a robotic leg whose three

joints are independently controlled by c-mode CSLs[40].

CSLs are themselves dynamical systems. Rather than being parameters,

the configuration angles ϖ become system states along with ϑ when using

CSL to control joints. gi and gf are the new system parameters. Defining a

finite set of CSL modes means that the parameter space discretizes and the

cardinality of possible actions to take significantly decreases. The dynamical

system considered within this thesis therefore becomes:

ṡ = fm(s), where s = [ϖL, ϖR,ϑ] ∈ A3 and m ∈ {r, c}.
The exploration strategy called Attractor-based Behavior Control builds upon

this concept.

3.4 Attractor-based Behavior Control

The Attractor-based Behavior Control[39] (ABC) is an exploration framework

that systematically switches CSL modes to discover di”erent equilibrium states

of the dynamical system by only traveling along heteroclinic orbits. The oth-

erwise continuous state space is therefore e”ectively discretized to only a few
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equilibria per degree of freedom (DOF). This enables a sparse but nonetheless

topologically rich representation of the sensorimotor manifold.

3.4.1 A Toy Example

A simple two-dimensional dynamical system serves as a playground to demon-

strate the principles of the ABC. It is defined on the state space S = R2, with

the state vector as s = [ϖL, ϖR] and the following dynamics:

ϖ̇L = − cos(ϖL) and ϖ̇R = − cos(ϖR).
This system can be visualized as a potential landscape, where the height

z(ϖL, ϖR) corresponds to the integral of the dynamics:

z(ϖL, ϖR) = sin(ϖL) + sin(ϖR).
Figure 12 (a) shows the landscape as a surface in R3, while (b) displays both the

equipotential contours and the associated vector field representing the system’s

dynamics f(s) = −∇z as the gradient.

(a) (b)
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Figure 12: A toy dynamical system in the form of a surface z(ωL, ωR) = sin(ωL) +
sin(ωR) whose negative gradient ⌐∇z = f(s) is the system’s vector field. (a) shows

the three-dimensional surface of z, whereas (b) depicts the state space with z visu-

alized as contour lines and f as a vector field.

This landscape provides an intuitive visualization of the system’s behav-

ior. A mass placed on this landscape would naturally roll downhill toward the
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nearest local minimum (valleys) and locate a stable fixpoint, mimicking the

system’s trajectory under gradient descent or in r-mode control. Conversely,

an air bubble trapped under the surface in water would float toward the near-

est local maximum (peak) and locate an unstable fixpoint, which corresponds

to the c-mode controlled trajectory. This can also be achieved by multiply-

ing the corresponding velocity component by −1 and turning gradient descent

into gradient ascent. Independent r-mode and c-mode control along di”erent

axes enables the targeting of saddle points, where the system exhibits stable

dynamics along one eigenvector and unstable along another.

The following notation represents the current state mode or CSL modes of

a two-dimensional system:

m = (mL,mR) with mL,mR ∈ {r, c},
where mL and mR are the left and right joint’s CSL modes. Table 2 lists all

combinations of state modes and which equilibrium the corresponding trajec-

tories converge toward.

Table 2: State modes and related equilibria for a two-dimensional systems

Symbol m Equilibrium

(r,r) stable fixpoint

(c,c) unstable fixpoint

(r,c) saddle point (left is stable)

(c,r) saddle point (right is stable)

3.4.2 Heteroclinic Orbits

A heteroclinic orbit is defined as the trajectory that joins two di”erent equi-

libria s⌐i and s⌐j.

(s⌐i → s⌐j) = s(ti ⌐ tj) where s(ti) = s⌐i and s(tj) = s⌐j.
An instantaneous change of the CSL-mode from contraction to release or

vice versa is also called switching. Switching while residing in an equilibrium

evidently transitions along a heteroclinic orbit. The new CSL mode repels the
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current state and instead attracts a di”erent type of equilibrium:

r→ c corresponds to s → s

c→ r corresponds to s → s

The ABC exploration only switches the mode of a single joint. This ap-

proach o”ers two key advantages:

1. Non-switched, passive joints remain near their equilibrium states through-

out the transition. Release-mode-controlled joints passively maintain sta-

bility, while c-mode-controlled joints require only minimal energy input

to compensate for instability.

2. With a single active variable the system is less prone to disturbances.

Mode switches applied to specific states are repeatable allowing for reli-

able traversal of the SMM—given the symmetry is properly broken.

3.4.3 Breaking the Symmetry

When switching CSL modes within an equilibrium state, the system exhibits

a fundamental symmetry: the transition may occur with equal probability in

either direction along the state axis, positively (+) or negatively (−). With-

out further control, the resulting direction depends on random noise, so this

symmetry must be deliberately broken to achieve predictable and reliable tran-

sitions.

Di”erent methods to accomplish this exist. [39] introduces directional pref-

erence through a constant bias in the motor signal. This augments the mode

space to {r+, r−, c+, c−}. Another option is the kick-fly-catch paradigm[43]

where an initial high-gain impulse induces motion in the desired direction

(kick), then the passive dynamics carry the movement by disabling the motor

and saving energy (fly), and finally the c-mode controlled CSL stabilizes the

state at the target equilibrium (catch).

Building on these methods, I formalize a directional switching notation.

The switch mode d of a two-dimensional system is defined as:

d = (dL, dR) with dL, dR ∈ {+,−, ⋅},
where dL and dR are the desired movement directions of the left and right

joints respectively. They can be:
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+, meaning active, positive movement,

−, meaning active, negative movement, or

⋅ , meaning no active change for this joint, it stays passive

To avoid confusion within this thesis, the term “passive” refers to non-switching

joints, and the term “relaxed” refers to r-mode controlled joints. A joint might

be actively switched into a relaxed r-mode state and is therefore not passive.

The following notation represents a heteroclinic orbit from state mode mi

to mj that is generated by a switch d:

mi
d↢↢→mj or s⌐i d↢↢→ s⌐j.

The active directional component dictates which CSL mode changes.

3.4.4 ABC Graph Structure

Within the ABC framework, only one joint undergoes active switching, while

others remain passive (non-switching). For a system with n degrees of freedom

(DOF), the number of possible transitions grows linearly as 2n. The two-

dimensional case yields four possible switch modes:

d ∈D = {(+, ⋅ ), (−, ⋅ ), ( ⋅ ,+), ( ⋅ ,−)}
Given an ABC-based exploration, a directed graph structure G emerges

across the state space:

G = (V,E)
V = ⌟vi = (si⌐,mi) ⊂ S × {r, c}⌟
E = {eij = (vi, vj,d) ∈ V × V ×D ⌐ vi d↢↢→ vj}

A node vi ∈ V represents an equilibrium si⌐ and its corresponding state mode

mi. The node also refers to a specific body posture denoted with capital

letters (A, B, C, etc.). The directed edges eij ∈ E encode the heteroclinic

orbits vi
d↢↢→ vj between two nodes induced by applying a d-switch to vi.

Each node has 2n (here 4) of such outgoing edges according to the number of

possible switch modes. In a theoretical unbounded, non-bifurcating system,

this creates the periodic lattice pattern with alternating stability properties of

Figure 13.
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Figure 13: The combination of switch modes and state modes spans a graph

structure with a lattice pattern in the sensorimotor space. The state modes make

up the nodes of the graph and represent equilibrium states. The edges are switch

modes and join the di!erent equilibria via heteroclinical orbits.

The directed graph structure serves as a discrete abstraction of the un-

derlying continuous sensorimotor manifold, preserving its essential topological

properties. Bidirectional, or mutual, edges indicate state pairs belonging to

the same connected submanifold. Unidirectional edges represent bifurcation

borders between distinct submanifolds. The sparsely connected graph provides

a computationally compact representation for processors that scales favorably

with system dimensionality. The energy-e!cient properties of nodes and edges

turn the ABC graph into a useful tool for autonomous motion planning in the

robotic context.

3.4.5 Stall

The state space of robotic systems is often constrained by physical limitations

called stall. These can be hard constraints like mechanical joint limits:

ϖ ∈ [ϖmin, ϖmax],
or soft constraints like self-collision. Self-collision is a conditional movement

limitation that occurs when the robots’s own body restricts the movement of

a joint. These restrictions may depend on the position of the other limbs and

therefore emerge as potentially complex, hard-to-predict shapes in the state
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space.

Within the ABC graph, the stall can be represented as self-referencing

loops:

mi
d↢↢→mi or mi⟲d .
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4 Robotic Platform

This section describes the robotic platform designed to implement and develop

the concepts presented in this thesis. The physical system is called Brilliance

and is depicted in Figure 14(a), with a corresponding schematic representation

of its planar geometry provided in (b).

(a) (b)

Figure 14: (a) a photo of the physical robot used in the thesis called Brilliance.

(b) a schematic representation of the morphology that contains relevant geometrical

markers such as COM ( ), GCP ( ), and joints ( , ).

The following subsections systematically detail the experimental apparatus

and methodology. First, I present the complete hardware specifications and

electronic components at the heart of the robot. Next, I examine the mechan-

ical design, manufacturing process, and physical assembly of the morphology.

Finally, I outline the o%ine computational pipeline developed for construction

of the SMM and visualization of collected sensorimotor data through anima-

tion and graphical representations featured throughout this work.

4.1 Hardware and Electronics

Motors The robotic platform employs two Dynamixel XL330-M288-T mo-

tors at each joint. Figure 15 (a) displays a photo of these lightweight, compact

actuators. The motors operate in voltage control mode where the PWM duty

cycle can be directly set. They provide real-time feedback of joint angle ϖ and

angular velocity ϖ̇. This way, the CSL can directly control the motor voltage

output u(t). The current i(t) is measured at a resolution of 1mA and en-

ables monitoring of the robot’s energy consumption. Table 3 lists the essential

specifications. Further details can be found in the motor’s manual[48].
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Table 3: Specifications of Dynamixel XL330-M288-T motors

Parameter Value

Dimensions 20mm × 34mm × 26mm

Weight 18 g

Gear ratio 288.4 ⌐ 1
Recommended voltage 5V

Stall torque 0.52Nm

No-load speed 103 rev/min

Current resolution 1mA

Position resolution 0.088°
Velocity resolution 0.229 rev/min

PWM control resolution 0.113% resolution

Processor The AccelBoard6D (AB6D) is a newly developed processing unit

designed to enhance sensorimotor computation. The circuit board seen in

Figure 15 (b) has compact dimensions of 30mm × 30mm. At its core, the

system integrates an STM32U575 microcontroller from STMicroelectronics,

featuring a 32-bit ARM Cortex-M33. This processor provides 2MB of flash

memory, 786 kB of SRAM, and a range of hardware accelerators and peripheral

support. The AB6D features an inertial measurement unit (IMU), combining

a 3-axis accelerometer and a 3-axis gyroscope. The system incorporates a

µSD card slot which enables non-volatile storage of sensorimotor data during

operation and boot loading of behavior programs. For this thesis, the software

is developed in C using the STM32CubeIDE[49]. For comprehensive details on

the board’s design and technical details, refer to [50]. The main loop is timed

at a frequency of fs = 100Hz, including sensor sampling, algorithmic updates,

and motor commands.

Battery The system is powered by the compact lithium-polymer battery in

(c) with a nominal voltage of 3.7V. Its physical dimensions of 30mm × 30mm

align precisely with the AB6D circuit board. Voltage regulation is achieved

via the MT3608 DC-DC step-up converter module from (d), which elevates

the battery output to the required 5V operating voltage for both the motor

and processing unit.
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(a) (b)

(c) (d)

Figure 15: The hardware and electronic components used for the robot are (a) the

motors, (b) the processor circuit board, (c) the battery, and (d) the step-up voltage

converter.
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4.2 Morphology

Morphology refers to the robot’s physical structure and shape. The design

approach simulates a planar robotic system through careful component ar-

rangement: all motors are aligned to restrict rotational motion to the sagittal

xy-plane, while the limb geometries are linearly extruded along the z-axis to

create functional three-dimensional structures. Figure 16 depicts the design

process for the right leg limb.

The limb geometry is designed with the arc representation, a parametric

modeling method that extends conventional polygon-based approaches. It con-

structs smooth, continuous limb outlines by tangentially concatenating circular

arcs. Simple linear connections are also possible when the curvature parame-

ter is set to zero. Figure 16 (a) illustrates the parametrized arc shape called

Cashew, defined by four key parameters:

d: Distance between left and right arc centers

r1, r2: Radii of the left and right arcs respectively

ς: Central angle of the connecting arcs which determines their curvature

(with ς = 0 yielding linear connections)

This parametric model is transformed into STL meshes containing interface el-

ements to connect to other parts (b), enabling rapid fabrication using standard

3D printing technology with a print time of approximately 2 h per limb. Final

assembly utilizes a tool-free plug-and-clamp system (c). The complete math-

ematical framework and design methodology for this arc-based representation

are detailed in prior work[51].

In order for the c-mode to properly react to gravitational pull the limbs need

to have a significant mass. Since the PLA filament is relatively lightweight,

magnets allow the customization of the individual limb mass. With four mag-

nets of about 20 g per piece attached to the side, one leg limb has a mass of

45 g. The torso limb including all electronic components, weighs 100 g. The

fully assembled robot therefore has a total mass of 190 g.

Table 4 presents the complete parameter set for the Brilliance morphol-

ogy. Two important factors influenced the decision to use this particular body

shape. First, comparative locomotion studies[33] demonstrated that this mor-

phology achieves faster locomotion among four candidate designs. Second,
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(a)

ω

d

r1

r2

(b)

(c)

Figure 16: The design pipeline of Brilliance’s right leg limb. (a) shows the math-

ematical schematic of the underlying arc shape. This shape is then modeled into a

printable 3D mesh (b) including connectors for the plug-and-clamp kit. The physical

limb on the fully assembled robot can be seen in (c).

Table 4: Parameters of the Brilliance morphology (1u = 18.8132mm)

Limb d [u] r1 [u] r2 [u] ς [rad]

Torso 7 1 1 0

Left leg 5.506 09 1.258 59 0.890 901 3.071 62

Right leg 4.969 73 1.6988 0.633 274 −2.516 11
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when positioned as shown in Figure 14, the morphology is constrained to its

current submanifold.

Said manifold is displayed in Figure 17. (a) shows the three-dimensional

surface in the [ϖL,ϖR,ϑ]-space, whereas (b) o”ers a two-dimensional projection

onto the configuration space with ϑ as colored contour lines. This constraint

to the submanifold o”ers several practical advantages:

1. Non-overlapping submanifolds can unambiguously be projected from (a)

to the two-dimensional configuration space (b) improving visualization.

2. The morphology is prevented from toppling over. A falling impact intro-

duces large physical forces on the body which could potentially damage

the robotic platform.

3. Any heteroclinic transition can be assumed as bidirectional. As the in-

verse transition does not have to be tested, the exploration process is

simplified.

4. Normally, ϑ is needed to disambiguate postures of similar configuration.

But when constrained to a non-overlapping submanifold, ϑ can be ne-
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Figure 17: Within this thesis, the Brilliance morphology is constrained to this

submanifold. (a) shows the submanifold as a surface in the three-dimensional state

space. This surface can be projected onto the ω-configuration space as in (b). The

black marker shows the state that reflects the robot’s posture from Figure 14.
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glected further reducing system complexity. The IMU data does not have

to be processed.

4.3 Simulation Framework

I developed a custom software framework to support essential o%ine compu-

tation and analysis tasks for this thesis. The core functionalities are:

1. Mathematical modeling and visualization of robot morphologies as de-

scribed above.

2. It implements a stabilization algorithm that computes the equilibrium

body orientation ϑ⋊ for any given state [ϖL, ϖR, ϑ] using the rigid body

dynamics model specified in Equation 4.

3. The computation of the SMM is achieved through exhaustive state space

iteration. It constructs a directed graph representation of all stable states

at a given resolution, serving as a ground truth reference for physical

system validation or for visualization such as Figure 17.

4. The framework processes and visualizes sensorimotor data recorded dur-

ing robot operation. This includes the reconstruction of the exploration

graph generated by the ABC algorithm’s online execution and possible

merging of exploration graphs from multiple experimental runs at di”er-

ent initial poses.

5. Finally, it supports locomotion planning by analyzing the explore graphs

and synthesizing locomotion cycles.
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5 Self-Exploration

This section presents the practical implementation of the Attractor-Based Con-

trol (ABC) for the Brilliance morphology. The exploration algorithm illus-

trated in Figure 18 as a flowchart initiates from a fully-relaxed (r,r) posture

s 0. This state forms the first node of the exploration graph G.

Detect Equilibrium s⌐i

Update Graph s⌐(i−1) di!↢ s⌐i

Next Switch Mode di+1Initial Posture s 0

Start

Transitioning...

i← i + 1

Figure 18: The ABC-based exploration’s update function as a flowchart.

The exploration process follows an iterative cycle of these steps:

1. The new switch mode di changes the CSL mode of one of the joints.

2. Transition along heteroclinic orbit s⌐(i−1) di↢↢→ s⌐i occurs.

3. The algorithm waits until an equilibrium state is detected.

4. The new node and edge are added to G.

The subsequent subsections detail the individual steps of this process.

Firstly, I present an equilibrium detection system capable of identifying both

fixpoint stability (r-mode) and oscillations (c-mode) from a single input sen-

sor stream. Next, I analyze the dead-zone phenomena, discussing both its

challenges for an ABC implementation and its potential utility through asym-

metric exploitation. Finally, I evaluate the algorithm’s performance on the

physical robot with experiments, paying particular attention to visualization

of the emergent topological patterns.
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5.1 Equilibrium Detection

The equilibrium detection algorithm processes a continuous stream of joint

angle measurements ϖ(t) to identify when the system reaches either (1) a stable

fixpoint ϖ characteristic of r-mode convergence or (2) an unstable fixpoint ϖ

around which c-mode controlled joints typically oscillate.

Before equilibrium detection, the raw joint angle measurements ϖ(t) un-
dergo exponential smoothing to filter high-frequency noise while preserving

the underlying low-frequency dynamical movements. The discrete IIR-filter

implements:

ϖ̃(t) =
⌞⌞⌞⌞⌟⌞⌞⌞⌟

ϖ(0), t = 0
(1 − ϱ) ϖ̃(t − 1) + ϱϖ(t), t > 0

where ϱ ∈ [0,1] represents the smoothing factor. The unfiltered adoption of

the initial value ϖ̃(0) = ϖ(0) prevents the introduction of startup biases.

5.1.1 Fixpoint Detection

For joints under r-mode control, the Fixpoint Detection (FPD) algorithm iden-

tifies asymptotic convergence by monitoring angular velocity ϖ̇(t). Within a

stable fixpoint ϖ̇ = f(ϖ ) = 0 holds, so the detection criterion requires the sys-

tem to maintain its absolute di”erence $ϖ of consecutive angle measurements

within a small tolerance threshold $ϖT for a minimum duration tmax.

The FPD parameters and variables as well as the loop-wise update function

are given in Algorithm 1. Each new filtered measurement ϖ̃(t) provides the

current angular di”erence:

$ϖ = ϖ̃ − ϖold ≈$tϖ̇.

A convergence counter tT increments when ⌝$ϖ⌝ < $ϖT and resets to zero

otherwise. The detection condition is mathematically expressed as:

tT ≥ tmax.

Upon convergence, the algorithm returns ϖ = ϖold as the estimated fixpoint.

Smaller $ϖT reduces steady-state error but increases detection time. Smaller

tmax accelerates detection but raises false-positive risk.

Figure 19 demonstrates the FPD algorithm’s performance during an exem-

plary state transition recorded on the physical robotic platform. The system
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5 Self-Exploration 5.1 Equilibrium Detection

Algorithm 1 Fixpoint Detector (FPD)

Parameters Default

$ϖT Angular di”erence tolerance 1 × 10−4 rad

tmax Number of time steps to detect a fixpoint 50

Variables Initial Value

t Time step counter 0

ϖold Sensor value from last call 0

tT Time steps with ⌝v⌝ <$ϖT 0

Update(ϖ̃)

1: if t > 0 then

2: $ϖ = ϖ̃ − ϖold
3: if ⌝$ϖ⌝ <$ϖT then

4: tT ← tT + 1
5: else

6: tT ← 0

7: end if

8: end if

9: ϖold ← ϖ̃

10: t← t + 1
Detect()

1: return (tT ≥ tmax)
Equilibrium()

1: return ϖold
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5 Self-Exploration 5.1 Equilibrium Detection

begins at t = 0 in a fully relaxed (r,r) configuration. After the (+, ⋅ )-switch
command, the following dynamics are observed: the left leg enters c-mode

control rotating against the ground and pulling the left joint up. The right

leg passively remains in r-mode, and ϖR undergoes positive rotation due to

ground interaction. The velocity profile ϖ̇R(t) shows asymptotic convergence

with the FPD algorithm triggering its first detection at t = 12.12 s estimated

fixpoint of ϖ = 0.436 rad. As the left leg keeps actively stabilizing its position

the resulting oscillation indirectly transfers to the right leg, which is why the

detection criterion occasionally resets.

(r, r)

(+, ⌐ )
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Figure 19: During the heteroclinic orbit transition (r, r) (+, ⋅ )!!!↢ (c, r) seen here, the

right leg angle ωR is passively rotated due to ground contact and converges toward

the stable state ω ≈ 0.436 rad, with raw ωR in orange, smoothed ω̃R in black, and the

gray regions indicating where a detection (tT ≤ tmax) happens. The FPD confirms

the first detection at t = 12.12 s. Even within the stable fixpoint, the right leg angle

experiences some disturbances due to indirect motion transfer from the active left

leg. (sampling frequency fs = 100Hz, smoothing factor ϖ = 0.02)
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5 Self-Exploration 5.1 Equilibrium Detection

5.1.2 Oscillation Detection

In c-mode, the system exhibits qualitatively di”erent behavior. While theo-

retically the c-mode CSL should maintain perfect equilibrium at the unstable

fixpoint ϖ with ϖ̇ = 0, practical implementation reveals more complex behavior.

Hardware latency in the control loop, combined with inevitable environmen-

tal perturbations, induces persistent oscillations about the true equilibrium.

These oscillations manifest as irregular, quasi-periodic signals characterized

by alternating local maxima (peaks) and minima (valleys), corresponding to

directional changes in the angular di”erence across time. The Oscillation De-

tection (OCD) algorithm identifies these velocity reversals, with its formal

parametrization and loop-wise update function specified in Algorithm 2.

The angular di”erence $ϖ is computed identically to the FPD case, using

the di”erence of subsequent smoothed angle measurements. Maxima occur

when $ϖ transitions from positive to negative whereas minima correspond

to negative-to-positive transitions. The OCD algorithm maintains a variable

a ∈ {−1,0,1} representing the previous velocity direction1. A velocity reversal

is identified when:

$ϖa < 0.
Opposing signs indicate a change in direction between consecutive velocities.

The unstable equilibrium position ϖ is estimated through averaging of

oscillation extrema. The estimation process builds upon the cumulative aver-

aging rule:

ϖavg ← (n − 1) ϖavg + ϖ̃
n

and n← n + 1,
where the average estimate ϖavg is updated with every new sample ϖ̃. n repre-

sents the total count of averaged samples.

The algorithm implements a two-phase bu”er: odd-numbered extrema are

stored temporarily in ϖodd. Subsequent even-numbered extrema trigger the

update using both values of the extremal pair, where maximum and mini-

mum compensate each other. This way, after two extrema or one period an

estimation for the equilibrium exists, and with further periods, it becomes

increasingly more accurate.

1Due to noise and smoothing, a = 0 denotes the degenerate case of exactly zero velocity

which is limited to floating-point precision artifacts.
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5 Self-Exploration 5.1 Equilibrium Detection

Algorithm 2 Oscillation Detector (OCD)

Parameters Default

nP Number of periods before convergence 2

Variables Initial value

t Time step counter 0

ϖold Sensor value from last call 0

a Direction sign (-1, 0, +1) of v 0

nE Number of detected extrema 0

ϖodd State of last odd extremum 0

ϖavg Average of detected extrema, est. equilibrium 0

Update(ϖ̃)

1: if t > 0 then

2: $ϖ = ϖ̃ − ϖold
3: if $ϖa < 0 then

4: if mod (nE,2) = 0 then ▷ Extremum is odd

5: ϖodd ← ϖ̃

6: else ▷ Extremum is even

7: ϖavg ← (nE−1)εavg + εodd + ε̃
nE+1

8: end if

9: nE ← nE + 1
10: end if

11: a← sign($ϖ)
12: end if

13: ϖold ← ϖ̃

14: t← t + 1
Detect()

1: return (nE ≥ 2nP)
Equilibrium()

1: return ϖavg
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5 Self-Exploration 5.2 Dead-zone

The detection criterion is mathematically expressed as:

nE ≥ 2nP,

where nE is the number of so far detected extrema and nP is the parame-

ter that declares how many periods are completed before convergence. This

method is insensitive to oscillation amplitude variations and tolerates irregular

periodicity, as is commonly the case with c-mode controlled equilibria.

Figure 20 examines the same heteroclinic transition presented in Figure

19, with a focus on the left leg’s c-mode dynamics. Following the (+, ⋅ )-switch
command, the c-mode controller drives positive angular displacement against

ground contact forces within the left leg. Then at t = 7.28 s, the overshoot

beyond the true equilibrium becomes large enough to trigger a controller re-

sponse in the opposite direction and marks the first extremum. Repeating

this dynamic, the system settles into irregular saw-tooth-shaped oscillations

with period T ≈ 8.2 s (disregarding the irregularity) and amplitude A ≈ 0.8 rad.
The gray line shows the ϖavg(t) estimation. The estimate after one full period

ϖavg(t = 12.9 s) = 5.02 rad is already close to the equilibrium estimation after 5

periods ϖavg(t = 37.1 s) = 4.98 rad.
5.2 Dead-zone

The irregularity in Figure 20 observed at t = 25.7 s exemplifies a typical dead-

zone entrapment. For c-mode controlled joints, the absence of motion provides

clear evidence of the motor getting stuck likely due to friction. Here, a previ-

ously described fixpoint detection identifies the convergence, and the controller

responds with a voltage ramp to restore movement.

Although not originally anticipated as part of this work, dead-zone e”ects

posed a critical practical challenge during the implementation of the ABC

exploration algorithm, necessitating analysis and compensation. This section

formalizes the dead-zone concept, elaborates its implications within the context

of ABC exploration, and presents a gravity-aware compensation strategy.

5.2.1 Formal Definition

The dead-zone phenomenon arises from several physical mechanisms. At its

core, static friction, or stiction for short establishes a force threshold that must
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Figure 20: During the heteroclinic orbit transition (r, r) (+, ⋅ )!!!↢ (c, r) seen here, the

left leg angle ωL is actively switched into c-mode and pulls the left joint o! the ground

by rotating positively. Instead of settling at an unstable fixpoint, a sawtooth-shaped

oscillation arises due to overshoot and controller response. The cyan line shows the

raw ωL, the smoothed ω̃L is given in black, and the grey line shows the development

of ωavg. After one period, an estimate ω ≈ ωavg = 5.02 rad exists. The irregularity

at t = 25.7 s is an example of the motor getting stuck in a dead-zone. (sampling

frequency fs = 100Hz, smoothing factor ϖ = 0.02)

be exceeded to initiate relative motion between contacting bodies, such as be-

tween the leg and the ground or within a motor’s bearing. Complementing this

e”ect, mechanical backlash introduces temporary motion loss during direction

reversals, particularly evident in gear trains where meshing clearances cause

measurable delays when changing rotational direction.

The dead-zone D(u) is a nonlinearity around the origin modeled mathe-
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5 Self-Exploration 5.2 Dead-zone

matically (slightly modified from [18]) as:

D(u) =
⌞⌞⌞⌞⌞⌞⌞⌟⌞⌞⌞⌞⌞⌞⌟

u − u+, u > u+
0, −u− ≤ u ≤ u+

u + u−, u < −u−
,

where u+ and u− represent positive and negative activation thresholds. In the

context of DC motor control, this manifests as a nonlinear relationship between

input voltage u and angular velocity ϖ̇:

ϖ̇ = k ⋅D(u),
with k denoting the motor’s velocity constant. The function is illustrated in

Figure 21 (a) and features these characteristic regions:

1. an inactive region with a width of wD = u+ + u−,
2. a critical input u+ and u− on either side, where the motor slips into

motion

3. a moving phase, that displays the linear relationship between u and ϖ̇.

⌐u⌐
+u+0

0

D(u)

u

Figure 21: Mathematical model of the dead-zone
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5.2.2 Dead-zone-induced Uncertainty

The ABC’s reliance on extrinsic forces for r-mode transitions creates a partic-

ular sensitivity to dead-zone e”ects. When joints under r-mode control (where

u = 0) experience insu!cient external torque, the joint angle gets stuck in

states that the system may falsely identify as pseudo-stable equilibria.

Figure 22 demonstrates this phenomenon through an experimental mo-

tion sequence, contrasting theoretical predictions with observed behavior. (a)

presents show the postures connected by switch mode transitions, and (b)

shows the actual trajectory in the configuration space. Beginning at relaxed

posture A, the application of the (+, ⋅ )-switch reliably drives the system to

(c,r)-mode posture B, where the right joint gets passively rotated due to ground

contact. However, application of the inverse (−, ⋅ )-switch applied to the B pos-

ture fails to return the system to posture A. Due to dead-zone, the right joint

preserves the positive angular o”set, and the system reaches the pseudo-stable

posture S.

The pseudo-stable states arising from dead-zones introduce uncertainties in

the sensorimotor exploration process. These dead-zone states like S, are sus-

ceptible to disruption by minor environmental perturbations that overcome the

dead-zone forces and cause slippage. The therefore stochastic nature of these

pseudo-stable states leads to unreliable transition outcomes. Repetitions of

this experiment yield varying final pseudo-stable postures across di”erent tri-

als. Identical switch actions d from the same source states si produce divergent

destination states. Consequently, G can no longer deterministically represent

the graph edges as si
d↢↢→ sj, and more complex probabilistic representations

become necessary.

5.2.3 Dead-zone Asymmetry

During deployment, the motors rotational axes are parallel to the ground so

that gravitational forces introduce significant direction-dependent biases and

asymmetries to the dead-zone profile: when gravitational torque aligns with

the intended direction, the critical threshold decreases (sometimes even going

negative). For gravity-opposed rotations, it increases.

The dead-zone profiles are analyzed through dead-zone diagrams as in Fig-

ure 23. The diagrams examine the relationship between applied motor voltage
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Figure 22: The transition A
(+, ⋅ )!!!↢ B

(−, ⋅ )!!!↢ S illustrates how dead-zones introduce

uncertainties to the ABC exploration. In (a), the featured states are schematized

as postures, and (b) shows the trajectory (in white) in the configuration space. The

underlying colored contour lines represent ε, computed in simulation. In theory,

the (⌐, ⋊ )-switch should transition from B to A, but because the right leg is stuck,

it does not fall back to the ground, and the system terminates in the pseudo-stable

posture S instead.
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Figure 23: Asymmetric dead-zone diagrams for the ωL-joint sampled at five dif-

ferent angles. When the motion direction is supported by gravity the dead-zone’s

critical threshold decreases, and motion that is opposed by gravity has an increased

threshold.
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u(t) and resulting angular velocity ϖ̇(t). The data points are collected by ap-

plying a slow voltage ramp (rate: 0.3V/s) to the motor in either direction,

originating from a state of rest. A video recording of the corresponding exper-

iment is available on YouTube2. The figure reveals five dead-zone profiles for

the ϖL-joint, each di”erently influenced by gravity:

(a) With the limb elevated to an unstable equilibrium, the dead-zone remains

almost symmetric with close to no gravitational biases, as its orthogonal

force components on the limb are negligible.

(b) At the intermediate posture between the unstable (a) and the stable

fixpoint (c), gravity pulls on the mass of the left leg in the positive

direction. This creates an asymmetric deadband shifted into the negative

direction with u− increased and u+ decreased.
(c) This is the stable fixpoint posture A from Figure 22. As the left leg

touches the ground, u+ suddenly increases as the positive rotation must

now overcome the combined mass of both leg and torso to lift them o”

the ground. u− also reaches its peak because at this angle gravity pulls

orthogonally on the legs weight.

(d) The intermediate posture between (c) and (e) mirrors the asymmetry in

(b) but with opposite alignment.

(e) This is the unstable fixpoint pose B from Figure 22. Similar to (a) but

with the limb positioned beneath the torso. In this state the dead-zone

is again almost symmetric.

These experiments provide several key insights:

1. In any non-equilibrium configuration, the critical input voltage is asym-

metric. Due to gravity, movement toward the stable equilibrium requires

less input than moving toward the unstable equilibrium.

2. Progressively approaching the stable fixpoint further decreases the criti-

cal input threshold.

3. When moving toward the stable fixpoint, a sudden threshold increase

emerges upon attaining it.
2https://youtu.be/rwmsoSQIzQU
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5.2.4 Dead-zone Control

This work presents a novel control strategy for r-mode controlled joints suf-

fering from dead-zones. The method exploits the dead-zone’s asymmetry to

distinguish pseudo-stable from true equilibrium states and guides the controller

toward stable convergence.

The Dead-zone Control algorithm (DZC) specified in Algorithm 3 for ini-

tialization and for iterative updates implements a three-phase state machine

(denoted as “phases” to avoid confusion with “states” of dynamical systems):

ramp The voltage increases linearly according to the slope parameter $u un-

til the output velocity exceeds vmax, indicating dead-zone escape and

triggering the activation of the wait-phase.

wait Motors are disabled until the Fixpoint Detector confirms angular sta-

bility. Upon detection, the algorithm assumes pseudo-stability, and the

ramp phase activates in the opposite direction: d← ¬d (where ¬ inverts

the direction).

idle The terminal phase indicating true stable convergence where motors re-

main disabled as in conventional r-mode control.

The algorithm distinguishes pseudo-stable from true stable states by com-

paring current power consumption with previously saved power thresholds p+
and p−. When velocity exceeds vmax in a certain direction d ∈ {+,−}, the

corresponding directional threshold p(d) updates:

if ⌝ϖ̇⌝ > vmax then p(d) ← u ⋅ i.
True stable states are identified when current power exceeds the stored

threshold (p > p(d)) triggering the idle phase. Conversely, if p > p(¬d)—the

power threshold of the opposite direction—the algorithm infers that the true

stable fixpoint lies opposite and aborts the ramp prematurely. This directional

power comparison e”ectively exploits dead-zone asymmetries for discrimina-

tion of true and pseudo-stable states.

The presented control algorithm focuses on the core novel components nec-

essary to demonstrate the proposed dead-zone compensation. Additional func-

tionality would be required to handle stall detection and symmetry-breaking

mechanisms. While essential for practical implementation, these extensions
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have been omitted here to maintain clarity in presenting the DZC’s core strat-

egy.

Algorithm 3 Dead-zone Control (DZC)

Parameters Default

$u Ramp voltage increment 0.5V/s

vmax Slip target velocity 0.9 rad/s

Variables Initial Value

u Motor voltage 0

d Ramp direction ∈ {+,−} +
p+ Positive power threshold ∨
p− Negative power threshold ∨
Activate()

ramp wait

1: u← 0 1: FPD.Init()

Update(ϖ̃, ϖ̇, i)

ramp wait

1: u← u + d$u

2: p = ui
3: if ⌝p⌝ > p(d) then
4: Activate(idle)

5: else if ⌝p⌝ > p(¬d) then
6: Activate(wait)

7: end if

8: if ⌝ϖ̇⌝ > vmax then

9: p(d) ← ⌝p⌝
10: Activate(wait)

11: end if

12: Motor.Enable()

13: Motor.Voltage ← u

1: FPD.Update(ϖ̃)

2: if FPD.Detected() then

3: d← ¬d
4: Activate(ramp)

5: end if

6: Motor.Disable()
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5.3 Exploration Results

This subsection presents the experimental results of the ABC exploration,

demonstrating the algorithm’s performance on the physical robotic platform.

Figure 24 shows the four immediate heteroclinic cycles surrounding the (r,r)-

mode posture E, where both legs are spread away from the torso limb. The

exploration algorithm successfully identified these adjacent cycles within close

to 7min of operation. The video recording of this exploration can be found on

YouTube3.

The schematic representation in (a) aligns the robot’s postures with their

corresponding states in the topological graph structure, while (b) plots the

actual trajectory through configuration space, with ϖL and ϖR represented on

the x- and y-axes respectively. The contour lines indicate the simulated body

orientation angle ϑ. Red markers highlight pseudo-stable postures encountered

during exploration.

Notably, the transition F
(−, ⋅ )↢↢→ E demonstrates the dead-zone compensation

(DZC) successfully overcoming the uncertainty shown in Figure 22’s transition

B
(−, ⋅ )↢↢→ S. Similarly, the transition H

( ⋅ ,+)↢↢→ E shows the DZC guiding the left

leg from a pseudo-stable state to the true equilibrium in E.

Topological Insight The boundaries where distinct smooth manifold patches

intersect, i. e., discontinuities in the gradient ∇ϑ(ϖL, ϖR)manifest geometrically

as creases on the Mε(ϑ)-manifold’s surface. Crucially, this experiment reveals

that equilibrium states naturally align with these crease features, exempli-

fied by all heteroclinic orbits connecting to posture E↔{B, D, F, or H}. As

observed in Section 3.3.2 (Sensorimotor Manifolds), these discontinuities cor-

respond to postures where a GCP is either introduced to or removed from the

ground surface. Notably, these contact-switching events coincide with r-mode

controlled joints. Through the topological structure of equilibrium states in

the exploration graph alone, a change in ∇ϑ(ϖL, ϖR) can be inferred without

directly measuring ϑ.

3https://youtu.be/uti2gKSJXo4
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Figure 24: The four immediate core cycles around the initial relaxed posture E.

The schematic postures in (a) match the marked equilibria in (b) which shows the

travelled trajectory during exploration in the configuration space. The contour lines

represent the body angle ε from simulation.
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6 Locomotion

This section demonstrates a practical application of the sensorimotor mani-

fold, or rather a discrete approximation thereof. Building upon the exploration

graph G developed in the previous sections, I examine how topological prop-

erties of the manifold enable motion generation. Firstly, a sliding-style gait is

defined through geometric characteristics of key postures. The second subsec-

tion uses only the topological structure of the explore graph to infer candidate

states for locomotion. Finally, a planning strategy is designed and presented

that translates these topological features into controlled movement.

6.1 Sliding-style Locomotion

This section gives a brief description of the locomotion style that is consid-

ered in this thesis: namely, a statically stable sliding gait, where “a statically

stable gait is periodic locomotion in which the biped’s COM does not leave

the support polygon”[3]. In the planar robot case, the support polygon refers

to the line segment between the outermost GCPs. This gait operates entirely

within the sensorimotor manifold, i. e., maintaining minimal angular velocity

(ϑ̇) and acceleration (ϑ̈) throughout the motion. This approach di”ers from

dynamic methods like toppling or running and instead relies on controlled

weight shifting between contact points.

For this, I introduce two key geometric properties of postures: the distance

between the GCPs, as

$p = pR − pL,
and the normalized weight distribution

w = 2cx − pL
$p

− 1,
where w = −1 indicates complete weight on the left contact point (pL) and

w = 1 on the right (pR).

By varying $p and w appropriately, the three key postures in Figure 25

are periodically cycled through to achieve forward motion from left to right:

→A The cycle starts from a balanced configuration (w ≈ 0) with minimal $p.

A→B Extending $p while biasing weight backward (w < 0) enables forward

sliding of the front leg (right).

61



6 Locomotion 6.2 Topologically Inferring Locomotion

B→C The weight is shifted forward (w > 0) while keeping $p extended.

C→A To close the cycle, the robot contracts $p. The forward weight bias

(w > 0) causes the hind leg (left) to slide producing net displacement.

The robot finds itself back in the original posture, ready to repeat.

ωR = 5.12

ωL = ⌐1.65
A

ωR = 5.32

ωL = 0.20

B

ωR = 2.98

ωL = ⌐2.18
C

ωR = 5.12

ωL = ⌐1.65
A

Figure 25: The exemplary cycle of key postures illustrates the sliding-style gait

(postures taken from [51]). By positioning its weight closer to one side (w), the

robot can control which leg will stick and which will slip when varying the distance

between the GCP (”p).

The cycle in Figure 25 given was generated in previous work[51], by hand-

tuning target values for $p and w for each key posture and then locating op-

timal states within the simulated SMM. While simulation enables direct com-

putation of $p and w, the physical robot faces limitations in acquiring these

properties without additional sensors or computationally expensive physics

engines.

6.2 Topologically Inferring Locomotion

This section develops a topological approach to infer locomotion-relevant prop-

erties from the exploration graph structure.

Given Brilliance’s constraint to its submanifold (see Section 4.2), I refine

the heteroclinic orbit notation to emphasize bidirectionality:

s⌐i d←↢↢→ s⌐j.

where d = (dL, dR) follows the established notation with ( ⋅ ) for passive joints.

Active switching on a bidirectional edge can be indicated with ± when both +
and − are possible.
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A core cycle C refers to a connected subgraph of the exploration graph G
containing one instance of each fundamental equilibrium type:

{A ←→ B ←→ D ←→ C ←→ A } = C ⊂ G.

Figure 26 isolates the core cycle most suitable for locomotion from the graph

gained in the previous section. (a) is displaying the corresponding physical pos-

tures, and (b) shows the four states in the configuration space (superimposed

with the hand-tuned cycle in white for reference).

The sliding locomotion mechanism critically depends on proper ground

contact of both leg limbs. As established in Section 5.3, this condition can be

inferred through topological analysis of G. Passive r-mode joint displacement

during heteroclinic transitions can occur from two scenarios:

1. Indirect ground-mediated displacement, where body reorientation (ϑ)

induces motion from the active joint to the passive one. Here, the dis-

placement serves as a topological proxy for ground contact.

2. Direct limb-to-limb contact, where the active limb mechanically pushes

the passive one. This is undesirable for locomotion but can be identified

through stall edges and then excluded from consideration.

To quantify the compliance behavior of passive joints during state transi-

tion, I introduce the passive angular displacement metric $ϖ(⋅) for heteroclinic
transitions:

$ϖ(⋅)(ϖ⌐i (dL,dR)←↢↢↢→ ϖ⌐j) =
⌞⌞⌞⌞⌟⌞⌞⌞⌟
⌝ϖLi − ϖLj ⌝, dL = ( ⋅ )
⌝ϖRi − ϖRj ⌝, dR = ( ⋅ )

which measures the absolute angular di”erence of the passive joint angle during

a transition.

Figure 26 holds annotation for the passive angular displacements during

transitions originating from the relaxed D posture. The edge D ←→ B demon-

strates the r-mode controlled right limb undergoing a passive displacement of

0.6558 rad as the actively controlled left limb elevates itself and the torso limb.

Conversely, the transition D ←→ C shows the symmetric case with passive

left-leg compliance and a displacement of 0.5975 rad.

Release-mode joints maintaining ground contact reside precisely at creases

in the sensorimotor manifold (SMM)—the areas where smoothness breaks due
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Figure 26: The presented core cycle from Brilliance’s exploration is most relevant

for locomotion. (a) gives the corresponding postures and bidirectional transitions.

(b) shows the equilibria in configuration space, the hand-tuned gait superimposed

in white, and annotations of the passive r-mode angular distance ”ω(⋅). For the

D←↢B-transition, the right leg is passive, while the left leg is passive for D←↢C.

64



6 Locomotion 6.3 Planning

to changes in ground contact (GCP). Joints situated at these critical positions

maintain ground contact when complying with passive displacement, whereas

exaggeration of the passive displacement would result in immediate lift-o” of

the limb.

This leads to an assumption: a GCP that is ready to be lifted o” the ground

is unlikely to carry much weight. The saddle point postures B and C exhibit

this asymmetric weight distribution (w ≠ 0) by preferentially loading the GCP

of the c-mode controlled joint.

For a core cycle C ⊂ G exhibiting substantial passive displacements $ϖ(⋅)
in both D ←→ B and D ←→ C transitions, as is the case in Figure 26, an

intermediate (c,c)-mode state A exists. Both limbs maintain ground contact

while the torso limb is lifted. In this state, the c-mode-controlled joints actively

regulate their positions against ground contact forces, likely converging to a

contracted GCP distance $p compared to saddle point postures. The c-mode

control maintains balanced weight distribution (w ≈ 0).
The identified equilibrium states—A , B , and C —embody the key char-

acteristics required for the sliding-style gait.

6.3 Planning

The topological analysis enables a formal motion planning recipe that synthe-

sizes a three-posture sliding gait derived from the exploration graph G. Algo-

rithm 4 implements this planning paradigm. To locate suitable core cycles, a

scoring function is introduced:

score(C) =min ⌝ $ϖ(⋅)(D ←→ B ), $ϖ(⋅)(D ←→ C ) ⌝ .
It quantifies the minimum of both passive r-mode displacements within the

cycle. The cycle C⌐ in G with the highest score provides the key postures

A , B , and C corresponding to the unstable fixpoint and two saddle points

respectively.

Practical implementation requires slight angular adjustments (ε) of the

saddle state’s r-mode angle toward the unstable posture A to guarantee they

maintain proper ground contact and to ensure reliable weight transfer during

locomotion execution.
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Algorithm 4 Locomotion Planner

Parameters Default

ε Ground contact adjustment 0.2 rad

Plan(G)

1: C⌐ = argmaxC∈G [ score(C) ]
2: A = (C⌐)
3: B = (C⌐)
4: C = (C⌐)
5: ϖR(B)← ϖR(B) + ε dR, with B

( ⋅ ,dR)↢↢↢→ A

6: ϖL(C)← ϖL(C) + ε dL, with C
(dL, ⋅ )↢↢↢→ A

7: return (A,B,C)
6.4 Locomotion Results

The implemented planning framework successfully generates e”ective locomo-

tion sequences for the Brilliance morphology with the complete angular tra-

jectory specified in Table 5. The motion profile is created by interpolating

between these angles using 5 s transitions controlled through a standard PI-

controller.

Table 5: Brilliance’s locomotion sequence

Pose ϖL [rad] ϖR [rad] ≈ ϑ [rad]

A 4.810 51 −1.649 88 −0.102 35

B 2.731 64 −2.084 21 −0.551 50

C 5.261 94 0.275 29 0.566 22

Figure 27 presents the resulting motion: (a) the key postures at the corners

of the trajectory triangle and (b) the configuration space trajectory. Experi-

mental recordings of the locomotion are uploaded to YouTube4.

The energy analysis in (c) reveals the power consumption across the loco-

motion sequence for the left (pL) and right (pR) sides:

A → B The transition requires minimal energy for either joint as gravity assists

the right leg’s outward folding and the left leg barely moves.

4https://youtu.be/aeyrxt5UZ3w
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Figure 27: Visualization of the synthesized locomotion sequence for the Brilliance

morphology. (a) Shows the gait’s key postures at the corners of the trajectory

triangle, (b) gives the planned trajectory in configuration space, and (c) displays

the power consumption p = ui for each joint during the execution of the sequence.

The left power ptextL is given in cyan and the right ptextR in orange.
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6 Locomotion 6.4 Locomotion Results

B → C Here, the left leg’s gravity-assisted motion contrasts with the right leg’s

active ground-pushing, causing energy expenditure at pR.

C → A Analogously, the closing transition produces a pL-peak as the left leg

actively elevates against gravity while the right only stabilizes.

Integrating across five cycles produces a total average energy expenditure of

E = ⊍
A↢ ⌝pL(t) + pR(t)⌝ dt = 0.2924J

per cycle, where A⟲ denotes the time interval of one cycle starting and ending

at pose A. The average movement speed achieved is approximately 10 cm per

cycle, so 0.67 cm/s.
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7 Conclusion

This concluding section is organized into three parts: firstly, a summary of the

entire thesis’s concepts and results; secondly, a critical analysis of the work’s

constraints and underlying necessary assumptions; and finally, a perspective on

potential extensions that could advance the proposed methodology outlining

promising directions for future research.

7.1 Summary

In this thesis, I have developed a framework for generating locomotive be-

haviors by leveraging the topological structure derived from attractor-based

exploration. The core innovation lies in utilizing the topological properties of

sensorimotor manifolds (SMM)—the stable state configurations that emerge

when viewing robotic systems through a dynamical systems perspective. The

topology of these manifolds reflects geometric properties of the morphology

embedded in the physical environment, hence providing a powerful represen-

tation for motion planning.

The approach builds upon Cognitive Sensorimotor Loops (CSL) that locate

equilibria from individual joints through two control modes: stable fixpoints

are found in release-mode (r-mode) by complying with outside forces, and

contraction-mode (c-mode) opposes outside forces to converge toward unstable

fixpoints. The Attractor-Based Behavior Control (ABC) algorithm systemat-

ically explores the state space by switching CSL modes to induce heteroclinic

orbits as connections between equilibria. The resulting graph structure serves

as a sparse discretization of the underlying SMM, enabling its practical use for

graph algorithms and robotic applications.

A key contribution addresses the challenges posed by motor dead-zone non-

linearities during physical implementation. Especially during r-mode control,

the dead-zone phenomenon introduces uncertainties into the graph structure

by getting stuck in pseudo-stable equilibria rather than converging to the true

stable ones. The proposed method exploits dead-zone asymmetries to reli-

ably distinguish true stable fixpoints from pseudo-stable states, improving the

robustness of the ABC framework without requiring explicit uncertainty mod-

eling.
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To answer the research question posed in the Section 1 (Introduction),

this thesis demonstrates how a planar, three-limb robot can derive a loco-

motion behavior from its self-explored ABC-graph. Passive angular displace-

ment in r-mode-controlled joints during transitions is indicative of postures

with locomotion-relevant ground contact conditions. The method searches the

graph for core cycles that feature this angular displacement and supply the

key postures for a sliding-style locomotion.

The presented approaches have both been tested and validated on the phys-

ical robot Brilliance. The ABC exploration extended by the dead-zone control

has enabled the robot to successfully self-explore its own sensorimotor manifold

free of dead-zone-induced uncertainties. The purely topology-driven planning

generated a gait consisting of three key postures. The robot was able to move

forward with this gait, demonstrating the e”ectiveness of the suggested strat-

egy.

7.2 Limitations

The current framework incorporates several simplifying constraints to inves-

tigate fundamental principles while at the same time avoiding the curse of

dimensionality. The approach is restricted to planar morphologies with rota-

tional axes orthogonal to the sagittal plane, operating on flat, obstacle-free

terrain, and employing just three limbs with two actuated joints.

The locomotion planning approach has been validated specifically on the

Brilliance morphology serving primarily as a proof of concept. This valida-

tion rests on the key assumption that the exploration graph contains suitable

core cycles exhibiting passive r-mode displacements for both joints—a condi-

tion that may not hold for all morphological designs, particularly those with

significantly disproportionate limb sizes.

Broader evaluation within the scope of this thesis was constrained by time

limitations for physical experimentation and the combinatorial explosion of

possible morphological variations (shape parameters, variation in joint and

center of mass positions, di”erent limb materials, etc.).
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7.3 Outlook

The ABC framework could be extended through analysis of unstable fixpoint

oscillations that emerge during c-mode control. This includes studying the

relationship of CSL parameters (gi, gf ) on oscillation period and amplitude or

using the CSL internal state to detect convergence. Incorporating body veloc-

ity (ϑ̇) for momentum-based motion generation allows for dynamic exploration

and motion planning.

Morphological studies could investigate how shape, mass distribution, and

material properties a”ect locomotion. Energy-optimized motion planning and

more abstract behavior representations could extend the current key-posture

approach. Future work should also explore higher-dimensional systems. The

ABC approach shows potential to tame the curse of dimensionality because

complexity only grows linearly with increasing DOF. To benchmark the ap-

proach’s scalability and performance it can be compared against popular loco-

motion planning methods like reinforcement learning or artificial evolution.

The topological insights gained from studying SMM could eventually be

used to guide robot engineers to make informed design choices to explicitly

model for certain behavioral capabilities. A promising long-term direction

involves architectures consisting of exploration graphs at a lower level building

up to high-level memory structures. The ultimate goal is still to create truly

autonomous systems that can explore themselves and behave in ways that are

adaptive, as Brooks and Asimov envisioned. To view a machine as its own

intelligent being it has to be able to gather information and derive behavior

without explicit programming. The pursuit lies here not only in creating a

versatile addition to a human’s daily life but also in gaining a more profound

understanding of what intelligence truly is. So that one day, we can understand

why Andrew has this streak of artistic ability in him.
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[17] T. Hägglund, “A friction compensator for pneumatic control valves”,

Journal of process control, vol. 12, no. 8, pp. 897–904, 2002.

[18] G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown

dead-zones”, IEEE transactions on automatic control, vol. 39, no. 1,

pp. 59–68, 1994.

[19] Q. H. Xia, S. Y. Lim, M. H. Ang, and T. M. Lim, “Adaptive joint friction

compensation using a model-based operational space velocity observer”,

in IEEE International Conference on Robotics and Automation, 2004.

Proceedings. ICRA’04. 2004, IEEE, vol. 3, 2004, pp. 3081–3086.

[20] J.-Y. Jeon, J.-H. Kim, and K. Koh, “Experimental evolutionary programming-

based high-precision control”, IEEE Control Systems Magazine, vol. 17,

no. 2, pp. 66–74, 1997.

[21] R. R. Selmic and F. L. Lewis, “Deadzone compensation in motion con-

trol systems using neural networks”, IEEE Transactions on Automatic

Control, vol. 45, no. 4, pp. 602–613, 2002.

[22] R. R. Selmic and F. L. Lewis, “Backlash compensation in nonlinear sys-

tems using dynamic inversion by neural networks”, Asian Journal of

Control, vol. 2, no. 2, pp. 76–87, 2000.

[23] W. Gao and R. R. Selmic, “Neural network control of a class of non-

linear systems with actuator saturation”, IEEE transactions on neural

networks, vol. 17, no. 1, pp. 147–156, 2006.

75



References References

[24] T. Kohonen, “Self-organized formation of topologically correct feature

maps”, en, Biol. Cybern., vol. 43, no. 1, pp. 59–69, 1982, issn: 0340-1200,

1432-0770. doi: 10.1007/BF00337288. Accessed: Nov. 30, 2021. [Online].

Available: http://link.springer.com/10.1007/BF00337288.

[25] B. Kuipers, “The Cognitive Map: Could It Have Been Any Other Way?”,

en, in Spatial Orientation, H. L. Pick and L. P. Acredolo, Eds., Boston,

MA: Springer US, 1983, pp. 345–359, isbn: 978-1-4615-9327-0 978-1-

4615-9325-6. doi: 10.1007/978-1-4615-9325-6_15. Accessed: Oct. 5,

2024. [Online]. Available: http://link.springer.com/10.1007/978-

1-4615-9325-6_15.

[26] B. Fritzke, “A Growing Neural Gas Network Learns Topologies”, en,

1997.

[27] M. Toussaint, “A Sensorimotor Map: Modulating Lateral Interactions

for Anticipation and Planning”, en, p. 24, 2006, QID: Q48593941.

[28] R. Peters and O. C. Jenkins, “Uncovering manifold structures in robo-

naut’s sensory-data state space”, in 5th IEEE-RAS International Con-

ference on Humanoid Robots, 2005., IEEE, 2005, pp. 369–374.
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