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What is Least-Square based SLAM?

a

« continuously estimate a
map from sensor data

* input ( ):
— landmark observations
— odometry Yo

 output (blue):
— landmark positions
— robot pose
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| east Square based SLAM

landmark-
observations

odometry
robot poses

VAT
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What is Least-Square based SLAM?

a

Overview

 |east-square based SLAM
* |[inearization

* sparsity

i

+ least-square on manifolds |
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Simultaneous Localization and Mapping

- invented by C.F. Gauss ‘
— celestial body prediction % !
— surveying the kingdom of
Hanover 0N & -

e contribution

— probabilistic view as
maximum likelihood
(Gaussian distribution)

— reduce to linear(-ized)
equation system

— solve that (Gauss-Seidel iter-
ation, Gaussian elimination)
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| east Square based SLAM

state /observations
!

X)—z

Question to the audience
« How do the vectors X and Z look like?

Udo Frese (7)
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| east Square based SLAM




| east Square based SLAM

t=argmax p(X =x|Z =z)

= arg min(% (z—f(x)) 07 (z- f(x)))

X

~0=—(z- fG) 0" f( vi

0=—(z—f()) O f( ) gradient of f
with respect to x;
0= (Y 0 (z- £ ()

Jacobian of f
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|. observation| odometry

|. observation| odometry

bservation| odometry

|. observation| odometry

\dmarks

poses

_ landmarks

poses




| east Square based SLAM

o s A
0= (5 0z £(2)

()= £(7)+ L () 7)

dx

oﬂ(xfgl(z—f(x) Y (xXi-5)]

dx dx

mformatlon matrix information vector

x fc+— j
O df xx+£ O z— v (5€x
dx dx

J

q
)v
e
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| east Square based SLAM

Ly 0 L5 L5 0 2= 161+ Lk
(d—i(x) 0" df; (¥ )j j—’;(%)TQl(z—f( +=3 %)%j
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| east Square based SLAM

(Lo L)

dx

df (T - »
——(¥) 07z~ /(%)

* Linearized Maximum Likelihood / SLAM
— solve the above equation

* Nonlinear Maximum Likelihood / SLAM
—setx” =X
— iterate the above equation until convergence
— non-linear minimum df / v
— gold-standard 0= E(x) 0 (Z - f(x))

Udo Frese (15)



Lea are based SLAM

* terated least square
converges to the non-linear & ..
maximum likelihood solution, 2.
unless stuck in local minima -

» gold-standard to compare
with

* slow, except when sparsity
based methods are used




Linearization*




Linearization

The (Extended) Kalman Filter from a Least-
Square based Perspective

* KF implements rekursive (i.e. incremental)
least square

+ applies Woodbury formula for updating the
inverse of a matrix to the information
matrix

Udo Frese (18)



Linearization

]
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Linearization

i
 EKF is a KF working on the linearization...

£x)= £+ (3N -5)

Bt — +K(z—(f(i)+2—{c(%)(x _X)D
=x +K(z—f(?7)—z—];(f)(x _55))
» ..at the prior estimate

* you can't change linearization point by
changing the Jacobian only

» otherwise a term as in the IEKF appears
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Linearization

 EKF is a KF working on the linearization at
the prior estimate

* IEKF is a KF working on the linearization
at the posterior estimate

» =Wwhen thinking about linearization
— only the linearization points count

— marginalization steps do not matter

— block/sequential update does not matter,
| \ except through the linearization point A

Udo Frese (23)



for the different observations?

Question to the Audience: Which linearization points arTsed

Z, Z u, e 29 U, Z, Z.
Im a Im b odo Im a Im b odo Im a Im b
Batch
- 2292272927292 227292°29222°22°22222°2222222°292222227
EKF
ock 177222222222222222222222222222222222222727
EKF
. 2292272972972 922292729222°22°22222°2222222°2922222727
single
EKF  199092222222222222222222222222222222222222
single
EKF 1099299229229 22222292222222922222229222222227227
block
'ﬁ“mb 2222227292922 2°29222722°22°22222°22222°22°2°22227
-Margq.
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Linearization

Z, z, u, Z, Z, u, Zs Z,
Im a Im b odo Im a Im b odo Im a Im b
i | TN I B B
LS
EKF X[z 4 | X|Z1.40 | X214
X X X|z X|Z4 5,Uq | X|Z4 5,U . . ]
block | | | 1,2 | 1,21 | 1,2°%1 u, u1,2 u1’2
EKF X|Zy 2, | X|Z4 4 | X244, | X|Z4 &,
= X| x|z, X|Zy5 | X|Z4 20Uy 1.3 1.4 1.4 1.5
gle Uy U, Uq o Uqo
IEKF X|Zy a2 | X|Z4 40 | X244 | X|Z4 5 | X|Z4 &,
- x|z, X|Z4 5 X|Z4 5 1.3 1.4 1.4 1.5 1.6
gle U, U, U, . Uq 2
IEKF X|Zy 4y | X|Z4 40 | XIZ1 40 | X|Z4 60 | X|Z4 &,
X|Z4 5 X|Z4 5 x|z, 5 1.4 1.4 1.4 1.6 1.6
block u, U, u, Uj , U, ,
Levenb.| x|z, 6 | X|Z1 6 | XIZ16 | X216 | X216 | X|Z160 | X216 | X|Z16:
-Margq. | u,, U U o U o U o U, 5 U, 5 Uq o
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Linearization

o still, all EKF variants use different, 1.e.
Inconsistent linearization points for
different observations, because they
cannot change relinearize an observation
once It is integrated.

Y (Y 0z~ £(%)

> (Z’{c( yor a’{c( )jla’x
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Linearization

]

* robot at (0,0,0) observes landmark at (x,y)
&

1 cosfx+sinby
(szzzf q :K—siné’ercosHyj @ X
\V
* linearized at (0,1,0) and (0,2,0)
l=1lx+6y=x O~-6k+1ly=—-0+y
l=Ix+6y=x O~ —-k+1ly~=-20+y

» by subtracting both right equations it can be
seen, that there is “apparent” 6 information
0~(-0+y)-(-20+y)=0

Udo Frese (27)



Linearization

* Inconsistent linearization points lead to
apparent absolute orientation information
In the covariance/information matrix

 iIn SLAM the real orientation information
becomes smaller and smaller, hence the
filter becomes inconsistent

 the problem is more about inconsistent
linearization points than about wrong
linearization points

* delayed state relinearization or submaps
can help

Udo Frese (28)



* “which equation is linearized
at which point” perspective is
helpful

* Inconsistent linearization
points generate “apparer_;__%
orientation information” in

SLAM

* submaps and delayed state
relinearization may help

—







Sparsity

a

* huge matrices in LS SLAM

* how can we make
computation fast enough?

» understand the block and
sparsity pattern fore -

e use Tim Davis’'s csmatrix
sparse matrix package®

for ()

" That

rese (31)



|. observation| odometry idmarks | poses

tion| odometry

A1Jawopo |(uoneAIasql
|. observation| odometry

df (-
(%)

L  Udo Frese (32)



| east Square based SLAM

Question to the audience:

 \What information on Q and df/dX is coded In
this Bayes net?

landmarks

landmark-
observations

odometry
robot poses

NA AT

Vsl

Udo Frese (33)







| east Square based SLAM

 exploit that C is block diagonal, i.e.
measurements are independent

ZJ;()Qf()
=3 0

 information “adds up” in the information
matrix

Udo Frese (35)
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my landmark  my pose
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« Compute the Jacobians
without O blocks

 Sort the blocks of the result
into the right blocks of the
Information matrix.

Udo Frese (37)



| east Square based SLAM

(d—f 0 L)) Ly o= s+ Lw)

* how to do the inversion?

 solve an equation instead (MATLAB \)
* use Tim Davis’ csparse package
 available for C++ or MATLAB

» selected parts of the inverse can be
computed by the Gollub algorithm

Udo Frese (38)



 certainly exploit sparsity for
multiplications in LS, EKF
* with csparse for inversion,

LS becomes competitive
concerning computatlon tlme

» covariance information |s
available via Gollub
algorithm
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Manifolds
problem: some states are not vectors

« 2D orientation has 2r periodicity

» 3D orientation has 3-DOF, represented as
— 3 Euler angles with singularity
— unit quarternion q, with |q|=1
— quarternion g=0, where |q| does not matter
— 3x3 matrix, Q with QTQ=l
« 3D direction (—inverse depth) has 2-DOF,
— 2 angles with singularity
— unit vector v, with |v|=1
— vector v20, where |v| does not matter

Udo Frese (41)
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Manifolds

 all these states need special treatment
* look locally like R", but globally different
 they are called manifolds in mathematics

Udo Frese (43)



Manifolds

» observation / dynamic functions view the
state S as

— structured, such as an object oriented class

— with components that have a specific name,
type, and meaning

 generic algorithms (e.g. EKF update
equation, LS, etc.) view the state S as
— a flat vector
— with as many numbers as DOF
— without anything additional to consider

Udo Frese (44)



Manifolds

|dea

 treat S as a encapsulated black-box
data-type and use an operator
[+]: SxXR" — S to provide flat vector access
for the generic algorithm

 [+] applies a local perturbation parameterized
by a flat vector to the state

* n corresponds to DOF of the state
* encapsulation as in OO-design
« axiomatization as in mathematics

Udo Frese (45)



Manifolds

« motivated by “symmetries and perturbations”"

* some prior work but without the framework
view?

* related to Lie-algebras and manifolds

* but thorough mathematical structure is still
unclear to me

1 J.A. Castellanos, J.M.M. Montiel, J. Neira, J.D. Tardos The SPmap: A Probabilistic
Framework for Simultaneous Localization and Map Building, IEEE Transactions on
Robotics and Automation, 1999

2 E. Kraft. A quaternion-based unscented kalman filter for orientation tracking, 2003

Udo Frese (46)



Manifolds

Example: 3-D Orientations SO(3)

 matrices:

Rot(v) = cos(]v‘)[ +

sin(

Y

| sin
e quarternions: ROf(V)= COS{gsa> V

2

)

v

v] +

* Rot(v) is a rotation around v by an angle of |v|

Y

(1-cos()

Qv/z)j

2
Y

1 4%

Udo Frese (47)



Manifolds

)
Question to the audience: Is there a singularity

at v=07? Or anywhere else?

Rot(v)_[co{;}vsin(lv/z)j

M

Udo Frese (48)



Manifolds

)
Question to the audience: Is there a singularity

at v=07? Or anywhere else?

Rot(v)_[co{;}vsin(lv/z)j

M

* not at O, since sinc(0)=1, and sinc’(0)=0, so
Rot(v) =(1,v) at v=0

* however, singularity at |v|=2r, since changing
the direction of v has no effect then

Udo Frese (49)



Manifolds

Example: 3-D Orientations SO(3)

 matrices:

Rot(v) = cos(]v‘)[ +

gl+ =g Rot(v),

sin(

Y

| sin
e quarternions: ROf(V)= COS{gsa> V

2

)

v

q, [_]% = aROt(%_l%)

v] +

* Rot(v) is a rotation around v by an angle of |v|

Y

(1-cos()

Qv/z)j

2
Y

1 4%

Udo Frese (50)



Manifolds

"Axioms”

(I): s[+] _ must be local diffeomorphism for all s
(11): [+] must be locally a “linear approximation”
(111): [-] must be the inverse of [+]

[+]: SxR"—> §
() s ["'](Vl "‘Vz)z (S [+]V1 )["']Vz
[-]:SxS — R

(H]) S [+](S2 [_]Sl ) =5

Udo Frese (51)
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Manifolds

p(X = | Z = Z)
) p(Z=z| X =x)p(X =x)
p(Z =2)
ocp(Z:Z X =x)p(X =x)
oC p(Z =z )
- p(N = zj—_f(X)| X =2x)
= p(N =z|-]f(x))
< expl- L (- () 0 (1))




Manifolds

fc:argmaxp(X_x|Z_Z)

—argmln( (z[—] ( )) ( [‘]f (x)))
—argmm( (=] (x[+)0)) 07 (- (&l +Jo )))
IRRTERRY PR D (L T

L)y o AEEALR

do

A LD ()0 . )

0




Manifolds

0 df(Z[—]f(f[+]5))(5)TQ ( a ]f( [+]5))

A Gl )~ - () + QLG )5

do
o= JCEVCL) o5 (.

do

L GEPR) o - AV ) )

do

information matrix information vector

(=) d(z[-]1(x[+]6)) (0) 5)

b3)



Manifolds

5= LR oy g1 AR )

do s

MDD oy - (L1 o)

do

=9 [+]—[d(ZHf &) gy o1 Al b)) (o)jl

do 75

VB oy 0 (1o

do

Udo Frese (56)



Manifolds

Comparison
» vectorspace LS

(jj; w0 Y s >j Y (5 0" (=~ 1)

« manifolds LS

- [+]—(d(z[_]f G gy o+ dCEN L) (O)jl

do do

HVBEDD oy 0 (1)

do

 viewing it as a mapping of perturbations in x
to perturbations in f(x)

Udo Frese (57)



Manifolds

Comparison simplified (Z is vectorspace)
» vectorspace LS

dx
« manifolds LS

e WUELRD oy o AUEP) )

do do

WP o (- (o)

do

=5 (Lo Lw) Leyot-6)

Udo Frese (58)



Manifolds

Question to the audience: Where is the diffe-
rence to treating X [+]o as a parameterization
for x and applying VS-LS to 67

» vectorspace LS

(Lo L)

L5 0" (- 1)

dx dx

 manifolds LS




Manifolds

Question to the audience:
» vectorspace LS 5_ g{df (x[+16) Yo & [+]5)(5)j1
5 5

Y0 (57 01(z - (s, [+5)

5
. manifolds LS . _ x[+(d(f(%[+]5))(o)TQ1 d(f(%[+]5))(o)j1
ds i
WGP 0y o (o 1)

do

* VS-LS would accumulate in 6 and might run
into singularities, M-LS accumulates in x and
only parameterizes each small step




Manifolds

* how to get the Jacobian?

* numerically by evaluating z[-]f(x[+]o) for
small unit vectors d==¢l.

* or by evaluating on o points, such as UKF

« whole UKF can be directly used on
manifolds by replacing — with [-] and + with

[+]

Udo Frese (61)



Manifolds
127

* 3-D orientations, 3-D
directions, ..., pose
parameterization problems

* encapsulate the structure of
manifolds by defining
perturbation operators [+], [-]

» mostly existing formulas ~
work by replacing + with [+]
and — with [-] with common
sense applied e \

-+ iterations are accumulated in |
the state g

|




Sum
Tl |

 |east square (LS) is the gold-
standard approach

* |linearization problems come
mainly from inconsistent
linearization points

LS can be made efficient b
exploiting sparsity i

* singularity problems of
rotations, directions can be

encapsulated by a
perturbation opr [ [-] j

) oL

I,' / E i, ..-r_-:r:: = S | | |' ' N _. ¥, ba
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