

EVALUATION OF BABBLING IDIOT FAILURES IN FLEXRAY-BASED NETWORKES*

* This work was partially supported by a grant from Iran
 Telecommunication Research Center (ITRC).

Vahid Lari, Mehdi Dehbashi, Seyed Ghassem Miremadi, Mojtaba Amiri

Sharif University of Technology, Tehran, Iran

Abstract: This paper evaluates the error propagation and its effects in babbling idiot
failure in a FlexRay-based network. The evaluation is based on about 35680 bit-flip fault
injections inside different parts of the FlexRay communication controller. To do this, a
FlexRay communication controller is modeled by Verilog HDL at the behavioral level.
Then, this controller is exploited to setup a FlexRay-based network composed of four
nodes. Nodes in this experiment are considered in two forms: 1) node without bus
guardian, 2) node with bus guardian. The results of fault injection show that in first form
about 4.57% of faults lead to the babbling idiot failures. Also in second form about 0.75%
faults lead to babbling idiot failures. After this experiment and evaluation of the results,
one improvement in the bus guardian is done. With this improvement, the results show
that babbling idiot failures are eliminated completely.

Keywords: FlexRay protocol, Babbling idiot failure, Fault injection, Error propagation

1. INTRODUCTION

Safety in distributed systems such as automotive
systems and avionics is of decisive importance due to
system failures which may threat human life. In a
distributed system, each node consists of three parts
(Kopetz, 1998): 1) I/O part, 2) host part, and 3)
communication controller. Among these three parts,
the communication controller has a key role in the
system operation.

In general, communication activities can be triggered
either dynamically, in response to an event (event-
triggered), or statically, at predetermined moments in
time (time-triggered). Examples of time-triggered
protocols are the SAFEbus (Hoyme and Driscoll,
1992), SPIDER (Miner, 2000), and Time-Triggered
Protocol (TTP) (Kopetz and Bauer, 2003). The main
drawback of the time-triggered protocols is their lack
of flexibility (Pop, et al., 2006). Examples of event-
triggered protocols are the Byteflight (Berwanger, et
al., 2000) introduced by BMW Company for
automotive applications, CAN (Bosch, 1991),
LonWorks (Echelon and LonWorks, 2005) and

Profibus (Profibus, 2005). The main drawback of the
event-triggered protocols is their lack of
predictability. A large consortium of automotive
manufacturers and suppliers has proposed a hybrid
type of protocol, namely, the FlexRay
communication protocol (FlexRay, 2005a). FlexRay
allows the sharing of the bus among event-triggered
and time-triggered messages, thus offering the
advantages of both protocols. It is reported that
FlexRay will very likely become the de-facto
standard for in-vehicle communications (Pop, et al.,
2006; Navet, et al., 2005). FlexRay defines a
communication cycle (bus cycle) as the combination
of a time-triggered (or static) window, an event-
triggered (or dynamic) window, a symbol window
and a network idle time (NIT) window. The time-
triggered window is similar to TTP, and employs a
time-division multiple-access (TDMA) mechanism.
The event-triggered window of the FlexRay protocol
is similar to Byteflight protocol and uses a flexible
TDMA (FTDMA) bus access method. The symbol
window is a communication period in which a
symbol can be transmitted on the network. The NIT

window is a communication-free period that
specifies the end of each communication cycle.

The importance of safety in critical distributed
applications signals to pay specific attention to the
reliability of communication protocols. One way to
evaluate the reliability of communication protocols is
by fault injection. In (Salmani and Miremadi, 2005a),
simulation-based fault injection has been used for the
assessment of message missing in the CAN protocol.
Effects of masquerade failures have been
investigated using simulation-based fault injection in
the CAN protocol (Salmani and Miremadi, 2005b).
Evaluation of TTP/C communication controller by
heavy-ion fault injection (hardware-based fault
injection) has been performed in (Sivencrona, et al.,
2003a). The purpose of the experiments in that paper
was to validate the fail silence property of the TTP/C
by injecting faults in a single node. The relationship
between cluster size and occurred slightly-off-
specification (SOS) failures has been assessed using
heavy-ion fault injection (Sivencrona, et al., 2003b).
In (Ademaj, et al., 2003), the TTP/C protocol with
bus and star topology has been investigated using
SWIFI fault injection. Here, the effects of SOS
failures with respect to the start of frame
transmission have been studied. In (Pallierer, et al.,
2005; Armengaud, et al., 2005a; Armengaud, et al.,
2005b), a generic tool was developed for monitoring
and diagnosis of a FlexRay-based system as well as
for a CAN-based system. This tool has been used by
the FlexRay consortium to perform extended fault
injection for evaluating of the FlexRay
communication protocol. One important limitation of
this tool is that faults can not be injected inside
different parts of the FlexRay protocol.

Although researchers have performed different
evaluations for protocols, none of them have
performed babbling idiot failure evaluation in the
FlexRay protocol. This paper evaluates conditions in
which faults in the FlexRay protocol cause the
babbling idiot failure. In the babbling idiot failure, a
node sends messages without obeying the bus access
rules imposed by the bus access methodology, thus
corrupting the messages transmitted by the non-
faulty nodes (Temple, 1998). This evaluation is done
by 35680 bit-flip fault injection inside different parts
of the FlexRay protocol. To do this, a FlexRay
communication controller was modeled by Verilog
HDL at the behavioral level. A FlexRay-based
network composed of four nodes was established
using this controller. Faults were injected only in one
of the nodes. The evaluations are done in three
phases: in the first phase the error propagation in the
FlexRay network and its relation to the babbling idiot
failure is analyzed. The dependency of the babbling
idiot failure to fault injection locations (FlexRay
protocol parts) is investigated. The effects of bus
guardian in decreasing the babbling idiot failure are
assessed in the second phase. Also in this phase, one
weakness of the bus guardian for controlling
message transmissions in dynamic window is

identified. Finally, in third phase, a method for
improving bus guardian is presented and the effects
of this method on the babbling idiot failure are
evaluated.

This paper is organized in six sections. Section 2,
introduces FlexRay protocol, and section 3, presents
the failure and error models found in this protocol.
The experimental organization is given in section 4,
and the results are presented in section 5. The last
section concludes the work.

2. FLEXRAY PROTOCOL

A consortium of major automotive companies which
includes BMW, Bosch, DaimlerChrysler, General
Motors, Motorola, Philips, and Volkswagen, is
currently developing the FlexRay protocol. The
FlexRay network is very flexible with regard to
topology and transmission support redundancy. It can
be configured as a bus, a star or a multistar. It is not
mandatory that each station possess neither replicated
channels nor a bus guardian, even though this should
be the case for critical functions such as steer-by-
wire. In this section, protocol operation and protocol
structure have been explained briefly.

2.1 Protocol Operation

At the media access control (MAC) level, FlexRay
defines a communication cycle as the concatenation
of a time-triggered (or static) window, an event
triggered (or dynamic) window, a symbol window
and a network idle time (NIT) window. The
communication cycles are executed periodically. The
time-triggered window uses a TDMA MAC
mechanism; a station in FlexRay might possess
several slots in the time-triggered window, but the
size of all the slots is identical (Figure 1). In the
event-triggered part of the communication cycle, the
mechanism is Flexible TDMA (FTDMA): the time is
divided into so-called minislots, each station
possesses a given number of minislots, and it can
start the transmission of a frame inside each of its
own minislots. A minislot remains idle, if the station
has nothing to transmit which actually induces a loss
of bandwidth (Cena and Valenzano, 2004). The
symbol window is used to transmit specific symbols
on the network. The NIT window is a
communication-free period that concludes each
communication cycle.

The FlexRay frame consists of three parts: the header
segment, the payload segment and trailer segment.
The FlexRay header segment consists of 5 bytes.
These bytes contain a reserved bit, payload preamble
indicator, null frame indicator, sync frame indicator,
startup frame indicator, frame ID, payload length,
header CRC and cycle count.

Fig. 1. Communication cycle in FlexRay protocol

The payload segment contains 0 to 254 bytes (0 to
127 two-byte words) of data. Because the payload
length contains the number of two-byte words, the
payload segment contains an even number of bytes.
The FlexRay trailer segment contains a single field, a
24-bit CRC for the frame. The Frame CRC field
contains a cyclic redundancy check code (CRC)
computed over the header segment and the payload
segment of the frame. The computation includes all
fields in these segments.

2.2 Protocol Structure

The FlexRay protocol controller consists of six parts:
controller host interface (CHI), protocol operation
control (POC), coding and decoding (CODEC),
media access control (MAC), frame and symbol
processing (FSP) and clock synchronization process
(CSP).

The CHI manages data and control flow between the
host processor and the FlexRay protocol engine
within each node. The CHI contains two major
interface blocks: the protocol data interface and the
message data interface. The protocol data interface
manages all data exchange relevant to the protocol
operation and the message data interface manages all
data exchange relevant to the exchanges of messages.
The protocol data interface manages the protocol
configuration data, the protocol control data, and the
protocol status data. The message data interface
manages the message buffers, the message buffer
configuration data, the message buffer control data,
and the message buffer status data. In addition, the
CHI provides a set of services that define self-
contained functionality that is transparent to the
operation of the protocol (FlexRay, 2005a).

The core parts of the protocol are moded by POC.
Proper protocol behavior can only occur if the mode
changes of the core parts are properly coordinated
and synchronized. The purpose of the POC is to react
to host commands and protocol conditions by
triggering coherent changes to core parts in a
synchronous manner, and to provide the host with
the appropriate status regarding these changes
(FlexRay, 2005a).

The CODEC contains two sections: coding section
and decoding section. Coding section is responsible
for encoding the communication elements into a bit
stream and how the transmitting node represents this
bit stream to the bus driver for communication onto
the physical media. Decoding section is responsible
for receiving communication elements, make bit
streams and investigate correctness of bit streams.

The MAC controls access to the bus. In the FlexRay
protocol, media access control is based on a recurring
communication cycle. Within one communication
cycle, FlexRay offers the choice of two media access
schemes. These are a TDMA scheme and a FTDMA
scheme. The communication cycle is the
fundamental element of the media access scheme
within FlexRay. It contains the static segment, the
dynamic segment, the symbol window and the NIT
(FlexRay, 2005a).

The FSP is the main processing layer between
CODEC and CHI. This part checks the correct timing
of received frames and symbols with respect to the
TDMA scheme, applies further syntactical tests to
received frames, and checks the semantic correctness
of received frames (FlexRay, 2005a).

Finally, the CSP uses a distributed clock
synchronization mechanism in which each node
individually synchronizes itself to the cluster by
observing the timing of transmitted sync frames from
other nodes. A fault-tolerant algorithm is used for
synchronizing the clock. So, CSP is responsible for
generating Microticks, Macroticks and Cycles.
Figure 2 shows relation between these parts.

3. FAILURE AND ERROR MODELS

Error models
The FlexRay protocol has different mechanisms for
detecting errors in the controller. At the end of each
time slot, FSP part checks the presence of any error
in that slot and informs the host about it. This
protocol defines three main errors that can occur in
each slot: syntax error, content error and boundary
violation error. The syntax error denotes the presence
of a syntactic error in a time slot, the content error
denotes the presence of an error in content of a
received frame and boundary violation error denotes
whether a boundary violation occurred at boundary
of the corresponding slot.

Fig. 2. FlexRay structure (FlexRay, 2005a)

Babbling idiot failures
A node that sends messages at arbitrary points in
time, colliding with frames sent from other nodes
(transmission conflict), exhibits the most serious
failure in a distributed system based on a broadcast
bus. Nodes that are affected by this kind of failure
mode are called babbling idiots (Temple, 1998;
Ademaj, et al., 2003). Babbling idiots send messages
without obeying the bus access rules imposed by the
bus access methodology thus corrupting the
messages being transmitted by the non-faulty nodes
(Temple, 1998). Such a failure makes impossible the
communication of non-faulty nodes within the
cluster.

4. EXPERIMENTAL ORGANIZATION

 This section discusses the basic characteristics of the
experiment.

4.1 Experimental setup

In order to perform an experiment on the FlexRay
controller a network consisting of nodes that have
this controller should be set up. So, a model of
FlexRay controller has been implemented at
behavioral level according to the FlexRay protocol
specification (FlexRay, 2005a). This controller has
been implemented by hardware description language,
Verilog, and Modelsim 6.1 simulator.

The implemented controller has usual capabilities of
FlexRay protocol such as sending and receiving the
static and dynamic frames and symbols. This
controller according to the specifications in
(FlexRay, 2005a) has six parts to perform its
functions: controller host interface (CHI), protocol
operation control (POC), clock synchronization
process (CSP), frame and symbol process (FSP),
media access control (MAC), coding and decoding
(CODEC). In addition, instead of a real application, a
data generator is implemented to generate static
frames with fixed length and dynamic frames with
variable length at the start of the communication
cycles.

Then, a cluster is formed consisting of four nodes
with single bus topology. Any node is allowed to
send and receive frames on communication channel.
As depicted in figure 3, faults are injected in node 2
and their error propagation effects are observed in
node 4. After each fault injection, the results in node
4 will be saved. As discussed each node on this
network consists of three main parts: Host that

Fig. 3. Experimental setup

Fig. 4. Block diagram of a node with BG

generates the frames, an interface between host and
controller, namely, the controller host interface (CHI)
and at the lowest part there is the communication
controller (CC). In this experiment, faults are
injected in five parts of the communication controller
of the node 2, including CHI, POC, CSP, MAC and
CODEC. Because of the FSP part doesn’t have any
effect in error propagation; there is no fault injection
in the FSP part. The effects of fault injection are
observed in communication controller of the node 4
by FSP part.

In this paper, for experimental setup, nodes are
configured in two forms: 1) node without bus
guardian, 2) node with bus guardian. In the latter
form, each node includes a bus guardian (BG) that
controls transmission behaviour of CC. The
functionality of the BG is composed of a subset of
the functionality of a CC with an additional process
which supervises the local CC (FlexRay, 2005b). The
BG operates with an independent clock
synchronization process and supervises the CC. Also,
BG and CC have separate clock oscillators. The BG
is able to receive frames on channel, but it does not
transmit frames on channel. Figure 4 shows the block
diagram of a node with BG that composed of a node,
a BG and a bus driver (BD).

The BG generates the BGE signal, which enables the
output (transmission) of the BD. Additionally the BG
supervises the TxEN signal from CC. In case of a
misaligned slot scheduling of the CC the BG
generates an error interrupt to the host (FlexRay,
2005b).

Figure 5 shows the bus guardian schedule for one
communication cycle. The BG enables transmission
to the communication medium for all configured
slots according to bus guardian configuration
parameters (set of numbers of active static slots).The
BG enables transmission for the entire duration of the
dynamic segment. The BG disables transmission for
the entire duration of the symbol window and the
NIT (FlexRay, 2005b).

Fig. 5. Bus guardian schedule (FlexRay, 2005b)

Tx
D

R
xD

Tx
EN

R
xD

Tx
EN

B
G

E

4.2 Fault injection tool

The SINJECT fault injection tool (Zarandi, et al.,
2003) is used to inject fault, at behavioural level, in
nodes, collecting the results, and analyzing them.
A fault injection process usually consists of three
steps:
1- When the given workload is applied, the
behaviour of a fault-free network is computed and
stored.
2- During the second step, to consider faults effects,
the given workload are applied again to the network,
the fault is injected, and the behaviour of the network
is observed.
3- During the third step of the fault injection process,
the faulty network behaviour is compared with the
behaviour of the fault-free network, which is
gathered at first step, and therefore the fault effects
are specified and saved.

5. EXPERIMENTAL RESULTS

As discussed, for doing this experiment a network
consisting of four nodes was set upped. Afterwards,
totally 35680 bit-flip faults were injected in five
different parts of communication controller of node
2. These five parts included: CHI, CSP, MAC, POC,
and CODEC. Each experiment last for 3
communication cycles, in cycle 1 the faults were
injected and the effects of them observed in cycle 1
through 3. In each communication cycle 6 slot IDs in
static window and 6 slot IDs in dynamic window
were allocated to different nodes.

In this section the results of these experiments are
evaluated. The evaluations are done in three phases.
In the first phase the error propagation in a FlexRay-
based network and its relation to the babbling idiot
failure is evaluated without any bus guardian. Then,
in second phase, the babbling idiot failure is assessed
in presence of a bus guardian. Finally, by analyzing
the results of second phase, an improvement is added
to bus guardian for reducing the babbling idiot
failure in FlexRay-based networks. This
improvement and its results are discussed in third
phase.

5.1 Error propagation and babbling idiot failure

evaluation without presence of bus guardian

The FlexRay protocol defines three main error
models: content error, syntax error and boundary
violation error. In this phase after injecting the faults
inside the communication controller of node 2, the
errors that occur in node 4 are observed. Table 1
shows the results of this experiment. Figure 6 shows
this information by bar diagram.

The importance of investigating the error
propagation in this experiment is that the babbling

idiot failure can be assessed by error propagation
results. One of the babbling idiot failure factors is
that a node occupies the communication channel
more than its time quota. In the FlexRay protocol, the
boundary violation error occurs when a node
occupies the bus more than a slot length. If this error
continues until conflicts with other nodes
transmission, babbling idiot failure occurs. So,
boundary violation errors may increase the babbling
idiot failures. As illustrated in figure 6, fault injection
inside the CSP part cause most boundary violation
errors. This part synchronizes the local clock of the
node with other nodes in the cluster.

The occurrence of babbling idiot failure not only
defects the operation of fault injected node (destructs
the scheduling of communication cycle and corrupt
the sent message), it also influences the operation of
other nodes. Especially it may corrupt the messages
that are sent by other nodes. One of the most
important conditions that have to be kept in
communication protocols is that nodes do not access
the bus simultaneously. Otherwise, a transmission
conflict occurs. In the FlexRay protocol the
transmission conflict occurs when a node wants to
send a message while it receives another one from
other nodes. The main babbling idiot failure effect is
transmission conflict. The transmission conflict
occurrence rate is different in different nodes.
Usually this error more often occurs in a node that
should send message after faulty node message
sending. In this experiment, the babbling idiot
failures are detected by observing the transmission
conflicts. Table 2 shows the babbling idiot failures.

Fig. 6. Effect of fault injection in FlexRay parts

without presence of BG

0
5

10
15

20
25
30

CODEC MAC POC CSP CHI All
Parts

FlexRay Parts

E
rr

or
 R

at
e

(%
)

Syntax Errors Content Errors Boundary Violation Errors

Table 2 Babbling idiot failures without presence of BG

FlexRay
Parts

No. of
Faults

Babbling idiot
failures

%
CODEC 9300 157 1.69

MAC 4100 113 2.76

POC 2800 0 0.00

CSP 12480 1007 8.07

CHI 7000 355 5.07

All Parts 35680 1632 4.57

Table 1 Effect of fault injection in FlexRay parts without presence of BG

FlexRay
Parts

No. of
Faults

Syntax Errors Content Errors Boundary
Violation Errors

% # % # %

CODEC 9300 457 4.91 2 0.02 164 1.76

MAC 4100 175 4.26 53 1.29 159 3.87

POC 2800 13 0.46 0 0 0 0

CSP 12480 2939 23.54 1724 13.81 2994 23.99

CHI 7000 1745 24.92 204 2.91 635 9.07

All Parts 35680 5329 14.93 1983 5.55 3952 11.07

5.2 Error propagation and babbling idiot failure

evaluation in presence of bus guardian

In this phase a bus guardian (BG) is used beside each
node. This device prevents the babbling idiots in
faulty node. It has a BGE output that is enabled in
slot IDs that allocated to the node in static window,
exactly equal to one static slot length. Also this
output is enabled during dynamic window. The node
can send a message when the bus guardian output is
enabled. If the bus guardian disables its output, the
node will be disconnected from the bus. Thus, the
bus guardian does not let the node to occupy the bus
more than its quota. Figure 7 shows error
propagation results after the use of bus guardian. As
illustrated the boundary violation errors rate
decreases noticeably.

According to bus guardian specification (FlexRay,
2005b), this device prevents illegal message
transmissions in static window but in dynamic
window it just controls the dynamic window length
and has no controls on message transmissions in this
window. Thus, the transmission conflicts may still
occur in dynamic window yet. Table 3 shows the
babbling idiot failures after use of the bus guardian.
From this table it can be seen that these failures are
decreased greatly but they are not eliminated
completely. These failures occur in dynamic window
because of weakness of the bus guardian for
controlling message transmission in dynamic
window. In next phase a mechanism is introduced to
eliminate this problem.

5.3 Improvement of bus guardian

The results of section 5.2 showed that there were still
some babbling idiot failures that had not eliminated
by bus guardian. This was because of the bus
guardian weakness in controlling the message
transmissions in dynamic window. In this phase a
method for improving bus guardian will be
presented.

Fig. 7. Effect of fault injection in FlexRay parts in

presence of BG

In dynamic window the messages are sent eventually
and a node may send a message in its IDs if it has a
message for sending, otherwise it does not send a
message. Furthermore the length of message is
unfixed in dynamic window. So, it is difficult to
predict the behaviour of the node by bus guardian
and do some controls on it. By using minisloting
mechanism features in the FlexRay protocol, an
approach can be applied. In this approach the bus
guardian know the slot IDs that the node is permitted
to transmit a dynamic message. At the start of a
minislot that its number is equal to the one of the
node's slot IDs number, bus guardian enables BGE

0
5

10
15
20
25
30
35

CODEC MAC POC CSP CHI All
parts

FlexRay Part

E
rr

or
 R

at
e

(%
)

Syntax Errors Content Errors Boundary Violation Errors

Table 3 Babbling idiot failures in presence of BG

FlexRay
Parts

No. of
Faults

Babbling idiot
failures

%
CODEC 9300 75 0.81

MAC 4100 51 1.24
POC 2800 0 0.00
CSP 12480 125 1.00
CHI 7000 17 0.24

All parts 35680 268 0.75

and observes the bus. If the node sends a message,
bus guardian waits until the end of the message. At
the end of the message it disables the BGE on slot
boundary (the slot boundary is calculated similar to
MAC part of FlexRay protocol). Otherwise, if the
node does not have any message for transmitting, at
the end of that minislot bus guardian disables the
BGE. Figure 8 shows the operation of bus guardian
in these two situations.

Figure 9 shows the results of error propagation after
improving the bus guardian. As this table shows, the
boundary violation errors are completely eliminated.
It means that the node does not occupy the bus more
than its time quota in each time slot. Table 4 shows
the babbling idiot failures that occur after applying
this method to bus guardian. In this table, the
improved bus guardian eliminates the babbling idiot
failures completely.

6. CONCLUSIONS

This paper evaluated the error propagation and its
effects in babbling idiot failure in a FlexRay-based
network. The evaluation was based on about 35680
bit-flip fault injections inside different parts of the
FlexRay communication controller. To do this, a
FlexRay communication controller was modelled by
Verilog HDL at the behavioural level. Then, this
controller was exploited to setup a FlexRay-based
network composed of four nodes. The evaluations
were done in three phases: in the first phase the error
propagation in the FlexRay network and its relation
to the babbling idiot failure without presence of bus
guardian was evaluated. The effects of bus guardian
in decreasing the babbling idiot failures were
assessed in the second phase. Also in this phase, one

weakness of the bus guardian for controlling message
transmissions in dynamic window was identified.
Finally, in third phase, a method for improving bus
guardian was presented and the

Fig. 9. Effect of fault injection in FlexRay parts after

improvement in BG

effects of this method on the babbling idiot failure
were evaluated. Results showed that in first, second
and third phase about 4.57%, 0.75% and 0.00% of
faults led to babbling idiot failures, respectively.

REFERENCES

Ademaj, A., H. Sivencrona, G. Bauer, and J. Torin
(2003). Evaluation of Fault Handling of the
Time-Triggered Architecture with Bus and Star
Topology. Proc. of the International Conference
on Dependable Systems and Networks, pp. 123-
133.

Armengaud, E., F. Rothensteiner, A. Steininger, and
M. Horauer (2005a). A Method for Bit Level
Test and Diagnosis of Communication Services.
Proc. of the IEEE Workshop on Design &
Diagnostics of Electronic Circuits & Systems.

Armengaud, E., A. Steininger, and M. Horauer
(2005b). An Efficient Test and Diagnosis
Environment for Communication Controllers.
Proc. of the Austrochip Conference.

Berwanger, J., M. Peller, and R. Griessbach (2000).
Byteflight-A New High Performance Data Bus
System for Safety-Related Applications. BMW
2000, available in http://www.byteflight.de.

Minislot

BGE

Dynamic window

(A)

Dynamic window

(B)

BGE

Message

Minislot

Fig. 8. Improvement of BG in dynamic

window: (A) Node has no message for
transmitting; (B) Node has a message for
transmitting

Table 4 Babbling idiot failures after improvement in BG

FlexRay
Parts

No. of
Faults

Babbling idiot
failures

%
CODEC 9300 0 0.00

MAC 4100 0 0.00
POC 2800 0 0.00
CSP 12480 0 0.00
CHI 7000 0 0.00

All parts 35680 0 0.00

0

5

10

15

20

25

30

CODEC MAC POC CSP CHI All parts

FlexRay Part

Er
ro

rs
 R

at
e

(%
)

Syntax Errors Content Errors Boundary Violation Errors

Bosch GmbH, R. (1991). CAN Specification. v2.0.
Cena, G. and A. Valenzano (2004). Performance

Analysis of Byteflight Networks. Proc. of the
IEEE Workshop Factory Communication
Systems, pp. 157-166.

Echelon, and LonWorks (2005). The LonTalk
Protocol Specification. available in
http://www.echelon.com.

FlexRay Consortium (2005a). FlexRay
Communications System - Protocol
Specification. v2.1 Revision A.

FlexRay Consortium (2005b). FlexRay
Communications System - Preliminary Node-
Local Bus Guardian Specification. v2.0.9.

Hoyme, K. and K. Driscoll (1992). SAFEbus. The
IEEE Aerospace and Electronic Systems
Magazine, vol. 8, no. 3, pp. 34-39.

Kopetz, H. (1998). A Comparison of CAN and TTP.
Vienna University of Technology, Real-Time
System Group, Research Report 23.

Kopetz, H. and G. Bauer (2003). The Time-
Triggered Architecture. Proceedings of the
IEEE, vol. 91, no. 1, pp. 112-126.

Miner, P.S. (2000). Analysis of the SPIDER Fault-
Tolerance Protocols. Proc. of the 5th NASA
Langley Formal Methods Workshop.

Navet, N., Y. Song, F. Simonot-Lion, and C. Wilwert
(2005). Trends in Automotive Communication
Systems. Proceedings of the IEEE, vol. 93, no.
6.

Pallierer, R., M.Horauer, M. Zauner, A. Steininger,
E. Armengaud, and F. Rothensteiner (2005). A
Generic Tool for Systematic Tests in Embedded
Automotive Communication Systems. Proc. of
the Embedded World Conference.

Pop, T., P. Pop, P. Eles, Z. Peng, and A. Andrei
(2006). Timing Analysis of the FlexRay
Communication Protocol. Proc. of the 18th
Euromicro Conference on Real-Time System,
pp. 203-216.

Profibus International (2005). PROFIBUS DP
Specification. available in
http://www.profibus.com.

Salmani, H. and S. G.Miremadi (2005a). Assessment
of Message Missing Failures in CAN-based
Systems. Proc. of the Parallel and Distributed
Computing and Networks, pp. 387-392.

Salmani, H. and S. G. Miremadi (2005b).
Contribution of Controller Area Networks
Controllers to Masquerade Failures. Proc. of the
11th Pacific Rim International Symposium on
Dependable Computing, pp. 310- 316.

Sivencrona, H., P. Johannessen, M. Persson, and
J. Torin (2003a). Heavy-ion Fault Injections in
the Time-triggered Communication Protocol.
Proc. of the Latin American Symposium on
Dependable Computing, pp. 69-80.

 Sivencrona, H., M. Persson, and J. Torin (2003b).
Using Heavy-Ion Fault Injection to Evaluate
Fault Tolerance with Respect to Cluster Size in
a Time-Triggered Communication Systems.
Proc. of the IEEE International Workshop on
Design and Diagnostics of Electronic Circuits
and Systems (DDECS-06), pp. 171-176.

Temple, C. (1998). Avoiding the Babbling-Idiot
Failure in a Time-Triggered Communication
System. In Processing of the 28th Annual
International Symposium on fault-Tolerant
Computing.

Zarandi, H. R., S. G. Miremadi, and A. Ejlali (2003).
Dependability Analysis Using a Fault Injection
Tool Based on Synthesizability of HDL Models.
Proc. of the IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, pp.
485-492.

