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Abstract: This paper evaluates the error propagation and its effects in babbling idiot 
failure in a FlexRay-based network. The evaluation is based on about 35680 bit-flip fault 
injections inside different parts of the FlexRay communication controller. To do this, a 
FlexRay communication controller is modeled by Verilog HDL at the behavioral level. 
Then, this controller is exploited to setup a FlexRay-based network composed of four 
nodes. Nodes in this experiment are considered in two forms: 1) node without bus 
guardian, 2) node with bus guardian. The results of fault injection show that in first form 
about 4.57% of faults lead to the babbling idiot failures. Also in second form about 0.75% 
faults lead to babbling idiot failures. After this experiment and evaluation of the results, 
one improvement in the bus guardian is done. With this improvement, the results show 
that babbling idiot failures are eliminated completely. 
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1. INTRODUCTION  
 
Safety in distributed systems such as automotive 
systems and avionics is of decisive importance due to 
system failures which may threat human life. In a 
distributed system, each node consists of three parts 
(Kopetz, 1998): 1) I/O part, 2) host part, and 3) 
communication controller. Among these three parts, 
the communication controller has a key role in the 
system operation. 
 
In general, communication activities can be triggered 
either dynamically, in response to an event (event-
triggered), or statically, at predetermined moments in 
time (time-triggered). Examples of time-triggered 
protocols are the SAFEbus (Hoyme and Driscoll, 
1992), SPIDER (Miner, 2000), and Time-Triggered 
Protocol (TTP) (Kopetz and Bauer, 2003). The main 
drawback of the time-triggered protocols is their lack 
of flexibility (Pop, et al., 2006). Examples of event-
triggered protocols are the Byteflight (Berwanger, et 
al., 2000) introduced by BMW Company for 
automotive applications, CAN (Bosch, 1991), 
LonWorks (Echelon and LonWorks, 2005) and 

Profibus (Profibus, 2005). The main drawback of the 
event-triggered protocols is their lack of 
predictability. A large consortium of automotive 
manufacturers and suppliers has proposed a hybrid 
type of protocol, namely, the FlexRay 
communication protocol (FlexRay, 2005a). FlexRay 
allows the sharing of the bus among event-triggered 
and time-triggered messages, thus offering the 
advantages of both protocols. It is reported that 
FlexRay will very likely become the de-facto 
standard for in-vehicle communications (Pop, et al., 
2006; Navet, et al., 2005). FlexRay defines a 
communication cycle (bus cycle) as the combination 
of a time-triggered (or static) window, an event-
triggered (or dynamic) window, a symbol window 
and a network idle time (NIT) window. The time-
triggered window is similar to TTP, and employs a 
time-division multiple-access (TDMA) mechanism. 
The event-triggered window of the FlexRay protocol 
is similar to Byteflight protocol and uses a flexible 
TDMA (FTDMA) bus access method. The symbol 
window is a communication period in which a 
symbol can be transmitted on the network. The NIT 



 

     

window is a communication-free period that 
specifies the end of each communication cycle. 
 
The importance of safety in critical distributed 
applications signals to pay specific attention to the 
reliability of communication protocols. One way to 
evaluate the reliability of communication protocols is 
by fault injection. In (Salmani and Miremadi, 2005a), 
simulation-based fault injection has been used for the 
assessment of message missing in the CAN protocol. 
Effects of masquerade failures have been 
investigated using simulation-based fault injection in 
the CAN protocol (Salmani and Miremadi, 2005b). 
Evaluation of TTP/C communication controller by 
heavy-ion fault injection (hardware-based fault 
injection) has been performed in (Sivencrona, et al., 
2003a). The purpose of the experiments in that paper 
was to validate the fail silence property of the TTP/C 
by injecting faults in a single node. The relationship 
between cluster size and occurred slightly-off-
specification (SOS) failures has been assessed using 
heavy-ion fault injection (Sivencrona, et al., 2003b). 
In (Ademaj, et al., 2003), the TTP/C protocol with 
bus and star topology has been investigated using 
SWIFI fault injection. Here, the effects of SOS 
failures with respect to the start of frame 
transmission have been studied. In (Pallierer, et al., 
2005; Armengaud, et al., 2005a; Armengaud, et al., 
2005b), a generic tool was developed for monitoring 
and diagnosis of a FlexRay-based system as well as 
for a CAN-based system. This tool has been used by 
the FlexRay consortium to perform extended fault 
injection for evaluating of the FlexRay 
communication protocol. One important limitation of 
this tool is that faults can not be injected inside 
different parts of the FlexRay protocol. 
 
Although researchers have performed different 
evaluations for protocols, none of them have 
performed babbling idiot failure evaluation in the 
FlexRay protocol. This paper evaluates conditions in 
which faults in the FlexRay protocol cause the 
babbling idiot failure. In the babbling idiot failure, a 
node sends messages without obeying the bus access 
rules imposed by the bus access methodology, thus 
corrupting the messages transmitted by the non-
faulty nodes (Temple, 1998). This evaluation is done 
by 35680 bit-flip fault injection inside different parts 
of the FlexRay protocol. To do this, a FlexRay 
communication controller was modeled by Verilog 
HDL at the behavioral level. A FlexRay-based 
network composed of four nodes was established 
using this controller. Faults were injected only in one 
of the nodes. The evaluations are done in three 
phases: in the first phase the error propagation in the 
FlexRay network and its relation to the babbling idiot 
failure is analyzed. The dependency of the babbling 
idiot failure to fault injection locations (FlexRay 
protocol parts) is investigated. The effects of bus 
guardian in decreasing the babbling idiot failure are 
assessed in the second phase. Also in this phase, one 
weakness of the bus guardian for controlling 
message transmissions in dynamic window is 

identified. Finally, in third phase, a method for 
improving bus guardian is presented and the effects 
of this method on the babbling idiot failure are 
evaluated. 
 
This paper is organized in six sections. Section 2, 
introduces FlexRay protocol, and section 3, presents 
the failure and error models found in this protocol. 
The experimental organization is given in section 4, 
and the results are presented in section 5. The last 
section concludes the work. 
 
 

2. FLEXRAY PROTOCOL  
 
A consortium of major automotive companies which 
includes BMW, Bosch, DaimlerChrysler, General 
Motors, Motorola, Philips, and Volkswagen, is 
currently developing the FlexRay protocol. The 
FlexRay network is very flexible with regard to 
topology and transmission support redundancy. It can 
be configured as a bus, a star or a multistar. It is not 
mandatory that each station possess neither replicated 
channels nor a bus guardian, even though this should 
be the case for critical functions such as steer-by-
wire. In this section, protocol operation and protocol 
structure have been explained briefly. 
 
 
2.1 Protocol Operation 
 
At the media access control (MAC) level, FlexRay 
defines a communication cycle as the concatenation 
of a time-triggered (or static) window, an event 
triggered (or dynamic) window, a symbol window 
and a network idle time (NIT) window. The 
communication cycles are executed periodically. The 
time-triggered window uses a TDMA MAC 
mechanism; a station in FlexRay might possess 
several slots in the time-triggered window, but the 
size of all the slots is identical (Figure 1). In the 
event-triggered part of the communication cycle, the 
mechanism is Flexible TDMA (FTDMA): the time is 
divided into so-called minislots, each station 
possesses a given number of minislots, and it can 
start the transmission of a frame inside each of its 
own minislots. A minislot remains idle, if the station 
has nothing to transmit which actually induces a loss 
of bandwidth (Cena and Valenzano, 2004). The 
symbol window is used to transmit specific symbols 
on the network. The NIT window is a 
communication-free period that concludes each 
communication cycle. 
 
The FlexRay frame consists of three parts: the header 
segment, the payload segment and trailer segment. 
The FlexRay header segment consists of 5 bytes. 
These bytes contain a reserved bit, payload preamble 
indicator, null frame indicator, sync frame indicator, 
startup frame indicator, frame ID, payload length, 
header CRC and cycle count. 
 
 



 

     

 
Fig. 1. Communication cycle in FlexRay protocol  
 
The payload segment contains 0 to 254 bytes (0 to 
127 two-byte words) of data. Because the payload 
length contains the number of two-byte words, the 
payload segment contains an even number of bytes. 
The FlexRay trailer segment contains a single field, a 
24-bit CRC for the frame. The Frame CRC field 
contains a cyclic redundancy check code (CRC) 
computed over the header segment and the payload 
segment of the frame. The computation includes all 
fields in these segments. 
 
 
2.2 Protocol Structure 
 
The FlexRay protocol controller consists of six parts: 
controller host interface (CHI), protocol operation 
control (POC), coding and decoding (CODEC), 
media access control (MAC), frame and symbol 
processing (FSP) and clock synchronization process 
(CSP). 
 
The CHI manages data and control flow between the 
host processor and the FlexRay protocol engine 
within each node. The CHI contains two major 
interface blocks: the protocol data interface and the 
message data interface. The protocol data interface 
manages all data exchange relevant to the protocol 
operation and the message data interface manages all 
data exchange relevant to the exchanges of messages. 
The protocol data interface manages the protocol 
configuration data, the protocol control data, and the 
protocol status data. The message data interface 
manages the message buffers, the message buffer 
configuration data, the message buffer control data, 
and the message buffer status data. In addition, the 
CHI provides a set of services that define self-
contained functionality that is transparent to the 
operation of the protocol (FlexRay, 2005a).  
 
The core parts of the protocol are moded by POC. 
Proper protocol behavior can only occur if the mode 
changes of the core parts are properly coordinated 
and synchronized. The purpose of the POC is to react 
to host commands and protocol conditions by 
triggering coherent changes to core parts in a 
synchronous manner, and to provide the host with 
the appropriate status regarding these changes 
(FlexRay, 2005a). 
 
The CODEC contains two sections: coding section 
and decoding section. Coding section is responsible 
for encoding the communication elements into a bit 
stream and how the transmitting node represents this 
bit stream to the bus driver for communication onto 
the physical media. Decoding section is responsible 
for receiving communication elements, make bit 
streams and investigate correctness of bit streams.  
 

The MAC controls access to the bus. In the FlexRay 
protocol, media access control is based on a recurring 
communication cycle. Within one communication 
cycle, FlexRay offers the choice of two media access 
schemes. These are a TDMA scheme and a FTDMA 
scheme. The communication cycle is the 
fundamental element of the media access scheme 
within FlexRay. It contains the static segment, the 
dynamic segment, the symbol window and the NIT 
(FlexRay, 2005a). 
 
The FSP is the main processing layer between 
CODEC and CHI. This part checks the correct timing 
of received frames and symbols with respect to the 
TDMA scheme, applies further syntactical tests to 
received frames, and checks the semantic correctness 
of received frames (FlexRay, 2005a). 
 
Finally, the CSP uses a distributed clock 
synchronization mechanism in which each node 
individually synchronizes itself to the cluster by 
observing the timing of transmitted sync frames from 
other nodes. A fault-tolerant algorithm is used for 
synchronizing the clock. So, CSP is responsible for 
generating Microticks, Macroticks and Cycles. 
Figure 2 shows relation between these parts. 
 
 

3. FAILURE AND ERROR MODELS  
  
Error models 
The FlexRay protocol has different mechanisms for 
detecting errors in the controller. At the end of each 
time slot, FSP part checks the presence of any error 
in that slot and informs the host about it. This 
protocol defines three main errors that can occur in 
each slot: syntax error, content error and boundary 
violation error. The syntax error denotes the presence 
of a syntactic error in a time slot, the content error 
denotes the presence of an error in content of a 
received frame and boundary violation error denotes 
whether a boundary violation occurred at boundary 
of the corresponding slot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. FlexRay structure (FlexRay, 2005a) 
 



 

     

Babbling idiot failures 
A node that sends messages at arbitrary points in 
time, colliding with frames sent from other nodes 
(transmission conflict), exhibits the most serious 
failure in a distributed system based on a broadcast 
bus. Nodes that are affected by this kind of failure 
mode are called babbling idiots (Temple, 1998; 
Ademaj, et al., 2003). Babbling idiots send messages 
without obeying the bus access rules imposed by the 
bus access methodology thus corrupting the 
messages being transmitted by the non-faulty nodes 
(Temple, 1998). Such a failure makes impossible the 
communication of non-faulty nodes within the 
cluster. 
 
 

4. EXPERIMENTAL ORGANIZATION 
 

 This section discusses the basic characteristics of the 
experiment. 
 
 
4.1 Experimental setup 
 
In order to perform an experiment on the FlexRay 
controller a network consisting of nodes that have 
this controller should be set up. So, a model of 
FlexRay controller has been implemented at 
behavioral level according to the FlexRay protocol 
specification (FlexRay, 2005a). This controller has 
been implemented by hardware description language, 
Verilog, and Modelsim 6.1 simulator. 
 
The implemented controller has usual capabilities of 
FlexRay protocol such as sending and receiving the 
static and dynamic frames and symbols. This 
controller according to the specifications in 
(FlexRay, 2005a) has six parts to perform its 
functions: controller host interface (CHI), protocol 
operation control (POC), clock synchronization 
process (CSP), frame and symbol process (FSP), 
media access control (MAC), coding and decoding 
(CODEC). In addition, instead of a real application, a 
data generator is implemented to generate static 
frames with fixed length and dynamic frames with 
variable length at the start of the communication 
cycles. 
 
Then, a cluster is formed consisting of four nodes 
with single bus topology. Any node is allowed to 
send and receive frames on communication channel. 
As depicted in figure 3, faults are injected in node 2 
and their error propagation effects are observed in 
node 4. After each fault injection, the results in node 
4 will be saved. As discussed each node on this 
network consists of three main parts: Host that  

 
Fig. 3. Experimental setup 

 
 
 
 
 
 
 
 
 
Fig. 4. Block diagram of a node with BG 
 
generates the frames, an interface between host and 
controller, namely, the controller host interface (CHI) 
and at the lowest part there is the communication 
controller (CC). In this experiment, faults are 
injected in five parts of the communication controller 
of the node 2, including CHI, POC, CSP, MAC and 
CODEC. Because of the FSP part doesn’t have any 
effect in error propagation; there is no fault injection 
in the FSP part. The effects of fault injection are 
observed in communication controller of the node 4 
by FSP part. 
 
In this paper, for experimental setup, nodes are 
configured in two forms: 1) node without bus 
guardian, 2) node with bus guardian. In the latter 
form, each node includes a bus guardian (BG) that 
controls transmission behaviour of CC. The 
functionality of the BG is composed of a subset of 
the functionality of a CC with an additional process 
which supervises the local CC (FlexRay, 2005b). The 
BG operates with an independent clock 
synchronization process and supervises the CC. Also, 
BG and CC have separate clock oscillators. The BG 
is able to receive frames on channel, but it does not 
transmit frames on channel. Figure 4 shows the block 
diagram of a node with BG that composed of a node, 
a BG and a bus driver (BD). 
 
The BG generates the BGE signal, which enables the 
output (transmission) of the BD. Additionally the BG 
supervises the TxEN signal from CC. In case of a 
misaligned slot scheduling of the CC the BG 
generates an error interrupt to the host (FlexRay, 
2005b). 
 
Figure 5 shows the bus guardian schedule for one 
communication cycle. The BG enables transmission 
to the communication medium for all configured 
slots according to bus guardian configuration 
parameters (set of numbers of active static slots).The 
BG enables transmission for the entire duration of the 
dynamic segment. The BG disables transmission for 
the entire duration of the symbol window and the 
NIT (FlexRay, 2005b). 
 
 
 
 
 
 
  
 
Fig. 5. Bus guardian schedule (FlexRay, 2005b) 
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4.2 Fault injection tool 
 
The SINJECT fault injection tool (Zarandi, et al., 
2003) is used to inject fault, at behavioural level, in 
nodes, collecting the results, and analyzing them.  
A fault injection process usually consists of three 
steps:  
1- When the given workload is applied, the 
behaviour of a fault-free network is computed and 
stored. 
2- During the second step, to consider faults effects, 
the given workload are applied again to the network, 
the fault is injected, and the behaviour of the network 
is observed. 
3- During the third step of the fault injection process, 
the faulty network behaviour is compared with the 
behaviour of the fault-free network, which is 
gathered at first step, and therefore the fault effects 
are specified and saved.  

 
 

5. EXPERIMENTAL RESULTS 
 

As discussed, for doing this experiment a network 
consisting of four nodes was set upped. Afterwards, 
totally 35680 bit-flip faults were injected in five 
different parts of communication controller of node 
2. These five parts included: CHI, CSP, MAC, POC, 
and CODEC. Each experiment last for 3 
communication cycles, in cycle 1 the faults were 
injected and the effects of them observed in cycle 1 
through 3. In each communication cycle 6 slot IDs in 
static window and 6 slot IDs in dynamic window 
were allocated to different nodes.  
 
In this section the results of these experiments are 
evaluated. The evaluations are done in three phases. 
In the first phase the error propagation in a FlexRay-
based network and its relation to the babbling idiot 
failure is evaluated without any bus guardian. Then, 
in second phase, the babbling idiot failure is assessed 
in presence of a bus guardian. Finally, by analyzing 
the results of second phase, an improvement is added 
to bus guardian for reducing the babbling idiot 
failure in FlexRay-based networks. This 
improvement and its results are discussed in third 
phase. 
 
 
5.1 Error propagation and babbling idiot failure 

evaluation without presence of bus guardian 
 
The FlexRay protocol defines three main error 
models: content error, syntax error and boundary 
violation error. In this phase after injecting the faults 
inside the communication controller of node 2, the 
errors that occur in node 4 are observed. Table 1 
shows the results of this experiment. Figure 6 shows 
this information by bar diagram. 
 
The importance of investigating the error 
propagation in this experiment is that the babbling 

idiot failure can be assessed by error propagation 
results. One of the babbling idiot failure factors is 
that a node occupies the communication channel 
more than its time quota. In the FlexRay protocol, the 
boundary violation error occurs when a node 
occupies the bus more than a slot length. If this error 
continues until conflicts with other nodes 
transmission, babbling idiot failure occurs. So, 
boundary violation errors may increase the babbling 
idiot failures. As illustrated in figure 6, fault injection 
inside the CSP part cause most boundary violation 
errors. This part synchronizes the local clock of the 
node with other nodes in the cluster. 
 
The occurrence of babbling idiot failure not only 
defects the operation of fault injected node (destructs 
the scheduling of communication cycle and corrupt 
the sent message), it also influences the operation of 
other nodes. Especially it may corrupt the messages 
that are sent by other nodes. One of the most 
important conditions that have to be kept in 
communication protocols is that nodes do not access 
the bus simultaneously. Otherwise, a transmission 
conflict occurs.  In the FlexRay protocol the 
transmission conflict occurs when a node wants to 
send a message while it receives another one from 
other nodes. The main babbling idiot failure effect is 
transmission conflict. The transmission conflict 
occurrence rate is different in different nodes. 
Usually this error more often occurs in a node that 
should send message after faulty node message 
sending. In this experiment, the babbling idiot 
failures are detected by observing the transmission 
conflicts. Table 2 shows the babbling idiot failures. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 6. Effect of fault injection in FlexRay parts 

without presence of BG 
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Table 2 Babbling idiot failures without presence of BG 
 

FlexRay 
Parts 

No. of 
Faults 

Babbling idiot 
failures 

# % 
CODEC 9300 157 1.69 

MAC 4100 113 2.76 

POC 2800 0 0.00 

CSP 12480 1007 8.07 

CHI 7000 355 5.07 

All Parts 35680 1632 4.57 

 



 

     

Table 1 Effect of fault injection in FlexRay parts without presence of BG 
 

FlexRay 
Parts 

No. of 
Faults 

Syntax Errors Content Errors Boundary 
Violation Errors 

# % # % # % 

CODEC 9300 457 4.91 2 0.02 164 1.76 

MAC 4100 175 4.26 53 1.29 159 3.87 

POC 2800 13 0.46 0 0 0 0 

CSP 12480 2939 23.54 1724 13.81 2994 23.99 

CHI 7000 1745 24.92 204 2.91 635 9.07 

All Parts 35680 5329 14.93 1983 5.55 3952 11.07 
 
 
5.2 Error propagation and babbling idiot failure 

evaluation in presence of bus guardian 
 
In this phase a bus guardian (BG) is used beside each 
node. This device prevents the babbling idiots in 
faulty node. It has a BGE output that is enabled in 
slot IDs that allocated to the node in static window, 
exactly equal to one static slot length. Also this 
output is enabled during dynamic window. The node 
can send a message when the bus guardian output is 
enabled. If the bus guardian disables its output, the 
node will be disconnected from the bus. Thus, the 
bus guardian does not let the node to occupy the bus 
more than its quota. Figure 7 shows error 
propagation results after the use of bus guardian. As 
illustrated the boundary violation errors rate 
decreases noticeably. 
 
According to bus guardian specification (FlexRay, 
2005b), this device prevents illegal message 
transmissions in static window but in dynamic 
window it just controls the dynamic window length 
and has no controls on message transmissions in this 
window. Thus, the transmission conflicts may still 
occur in dynamic window yet. Table 3 shows the 
babbling idiot failures after use of the bus guardian. 
From this table it can be seen that these failures are 
decreased greatly but they are not eliminated 
completely. These failures occur in dynamic window 
because of weakness of the bus guardian for 
controlling message transmission in dynamic 
window. In next phase a mechanism is introduced to 
eliminate this problem. 
 
 
5.3 Improvement of bus guardian 
 
The results of section 5.2 showed that there were still 
some babbling idiot failures that had not eliminated 
by bus guardian. This was because of the bus 
guardian weakness in controlling the message 
transmissions in dynamic window. In this phase a 
method for improving bus guardian will be 
presented.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Effect of fault injection in FlexRay parts in 

presence of BG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In dynamic window the messages are sent eventually 
and a node may send a message in its IDs if it has a 
message for sending, otherwise it does not send a 
message. Furthermore the length of message is 
unfixed in dynamic window. So, it is difficult to 
predict the behaviour of the node by bus guardian 
and do some controls on it. By using minisloting 
mechanism features in the FlexRay protocol, an 
approach can be applied. In this approach the bus 
guardian know the slot IDs that the node is permitted 
to transmit a dynamic message. At the start of a 
minislot that its number is equal to the one of the 
node's slot IDs number, bus guardian enables BGE 
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Table 3 Babbling idiot failures in presence of BG 
 

FlexRay 
Parts 

No. of 
Faults 

Babbling idiot 
failures 

# % 
CODEC 9300 75 0.81 

MAC 4100 51 1.24 
POC 2800 0 0.00 
CSP 12480 125 1.00 
CHI 7000 17 0.24 

All parts 35680 268 0.75 
 



 

     

and observes the bus. If the node sends a message, 
bus guardian waits until the end of the message. At 
the end of the message it disables the BGE on slot 
boundary (the slot boundary is calculated similar to 
MAC part of FlexRay protocol). Otherwise, if the 
node does not have any message for transmitting, at 
the end of that minislot bus guardian disables the 
BGE. Figure 8 shows the operation of bus guardian 
in these two situations.  
 
Figure 9 shows the results of error propagation after 
improving the bus guardian. As this table shows, the 
boundary violation errors are completely eliminated. 
It means that the node does not occupy the bus more 
than its time quota in each time slot. Table 4 shows 
the babbling idiot failures that occur after applying 
this method to bus guardian. In this table, the 
improved bus guardian eliminates the babbling idiot 
failures completely. 
 
 

6. CONCLUSIONS 
 

This paper evaluated the error propagation and its 
effects in babbling idiot failure in a FlexRay-based 
network. The evaluation was based on about 35680 
bit-flip fault injections inside different parts of the 
FlexRay communication controller. To do this, a 
FlexRay communication controller was modelled by 
Verilog HDL at the behavioural level. Then, this 
controller was exploited to setup a FlexRay-based 
network composed of four nodes. The evaluations 
were done in three phases: in the first phase the error 
propagation in the FlexRay network and its relation 
to the babbling idiot failure without presence of bus 
guardian was evaluated. The effects of bus guardian 
in decreasing the babbling idiot failures were 
assessed in the second phase. Also in this phase, one 

weakness of the bus guardian for controlling message 
transmissions in dynamic window was identified. 
Finally, in third phase, a method for improving bus 
guardian was presented and the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Effect of fault injection in FlexRay parts after 

improvement in BG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
effects of this method on the babbling idiot failure 
were evaluated. Results showed that in first, second 
and third phase about 4.57%, 0.75% and 0.00% of 
faults led to babbling idiot failures, respectively. 
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