
Estimating Functional Coverage in Bounded Model Checking

Daniel Große Ulrich Kühne Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{grosse, ulrichk, drechsle}@informatik.uni-bremen.de

Abstract

Formal verification is an important issue in circuit and
system design. In this context, Bounded Model Checking
(BMC) is one of the most successful techniques. But even if
all specified properties can be verified, it is difficult to deter-
mine whether they cover the complete functional behavior
of a design. We propose a pragmatic approach to estimate
coverage in BMC. The approach can easily be integrated in
a BMC tool with only minor changes. In our approach, a
coverage property is generated for each important signal. If
the considered properties do not describe the signal’s entire
behavior, the coverage property fails and a counter-example
is generated. From the counter-example an uncovered sce-
nario can be derived. In this way the approach also helps
in design understanding. Our method is demonstrated on
a RISC CPU. Based on the results we identified coverage
gaps. We were able to close all of them and achieved 100%
functional coverage.

1. Introduction

Today, formal verification is standard in many industrial
design flows. One prominent technique in this context is
Model Checking (MC) [11]. Model checking is an auto-
matic method for verifying that a finite state system satisfies
a temporal property. In Symbolic Model Checking [7, 6]
Binary Decision Diagrams (BDDs) [5] are used to repre-
sent the state space symbolically. This approach has been
used successfully in practice. However BDDs may suffer
from the memory explosion. As an alternative Boolean Sat-
isfiability (SAT) based methods have been proposed. In
Bounded Model Checking (BMC) [4] the system is unfolded
for k time frames and together with the property converted
into a SAT problem. If the corresponding SAT instance is
satisfiable a counter-example of length k has been found.
Due to significant improvements in the tools for SAT solv-
ing SAT-based MC methods can be applied to large designs
and are widely used in industry [18, 3].

In MC the functional properties are specified in tempo-
ral logic. Thus, each property describes parts of the cir-
cuit’s behavior unambiguously. However the most impor-
tant question that arises here is ”have I written enough prop-
erties?” [17]. In simulation-based verification computing

coverage is well understood since coverage corresponds to
an activation during the execution of input vectors. Also
formal techniques have been used to analyze test-benches
with respect to functional coverage [12]. For MC estimating
coverage is more difficult since the correspondence of cov-
erage is not obvious because the complete underlying Finite
State Machine (FSM) is traversed during the proof. Nev-
ertheless there exist several notions of coverage for model
checking [9]. For CTL-based approaches the covered states
of the FSM are computed [15, 16]. By mutation-based cov-
erage modifications are applied to the FSM and it is checked
if this is detected by the specified properties [8, 9]. But most
of the existing metrics suffer from complexity problems as
in the case of CTL model checking or are still very hard to
use by verification engineers in practice.

Recently, a first approach for measuring the coverage
for BMC has been proposed in [13]. There the focus is
mainly to relate errors in the design to the source code
level. A component is considered covered, if there is a at
least one property that is invalidated, if this component is
changed. The notion of “change” is described using a mul-
tiplexor construct based on the ideas of [2]. The approach
cannot specify exact functional coverage. Instead, compo-
nents are identified that influence the behavior of the circuit.
Thus, the approach cannot present the uncovered scenarios
in form of counter-examples.

In [10] a method for coverage analysis of safety prop-
erty lists has been presented. This method works only on
the specified LTL properties without using the design. The
properties are synthesized into a checker circuit that has ex-
actly one output. This output is 1 iff all properties hold.
Then, the checker circuit is duplicated. The two checker
circuits use the same variables except for the output signal
that is analyzed in the current step. Based on this construc-
tion the method can identify a forgotten case, i.e. a trace
where a particular output signal is not constrained by the
properties. Therefore the method looks for traces where
both checker outputs are 1, but the values of the analyzed
output signal differ at exactly one time point. The presented
method is efficient because the design is not needed. How-
ever, if the method has identified a forgotten case there is
no information about the circuit behavior. Furthermore the
method needs to introduce a new LTL construct for specify-
ing that a signal is allowed to be unconstrained in a certain
case.

In this paper we propose a pragmatic approach for the es-
timation of coverage in BMC. The basic idea is the follow-
ing: First, for each output o of the circuit all proven prop-
erties are identified which argue over o. Then it is checked
whether there exists a scenario where o is not determined
by the set of properties. Here, not determined means that an
input and state assignment has been found where no conse-
quent of the set of properties specifies the value of o unam-
biguously. We show that this idea can be integrated easily
in a BMC verification tool. Furthermore the approach auto-
matically generates uncovered scenarios in form of counter-
examples. Analyzing these counter-examples and adding
corresponding properties allows the verification engineer to
stepwise close the coverage gap.

The rest of the paper is structured as follows. In Section
2 BMC is briefly reviewed. Section 3 describes the new
approach for estimating coverage in BMC. Then, in the next
section experimental results on the formal verification and
coverage estimation of a RISC CPU are provided. Finally
in Section 5 the paper is summarized.

2. Bounded Model Checking

In this paper we use BMC as described in [18]. Thus, a
property only argues over a finite time interval. For a design
with its transition relation Tδ , a BMC instance for a property
p over the finite interval [0, c] is given by:

c−1∧
i=0

Tδ(si, si+1) ∧ ¬ p

This verification problem can be formulated as a SAT prob-
lem by unrolling the circuit for c time frames and generating
logic for the property. In contrast to [4] there is no restric-
tion for the state s0 in the first time frame during the proof.
This may lead to false negatives, i.e. counter-examples that
start from an unreachable state. In such a case these states
are excluded by adding additional assumptions to the prop-
erty. But, for BMC as used here, it is not necessary to deter-
mine the diameter of the underlying sequential circuit, i.e. if
the SAT instance is unsatisfiable the property holds.

In the following we assume that each property is an im-
plication, i.e. the property has the form A ⇒ C. A is the
antecedent and C is the consequent of the property and both
consist of a timed expression. A timed expression is for-
mulated on top of variables that are evaluated at different
points in time within the time interval [0, c] of the property.
The operators in a timed expression are the typical HDL
operators, e.g. logic and, logic or, arithmetic operators and
relational operators.

3. Estimating Coverage

First in this section we provide the basic idea for our
coverage approach. Then, we describe our method in detail
and discuss the method by using two examples.

3.1. Idea

After proving a set of properties the verification engineer
wants to know if the properties describe the complete func-
tional behavior of the circuit. Thus, typically the properties
are manually reviewed and the verification engineer checks
that properties have been specified for each output (and im-
portant internal signals) which prove the expected behavior
in all possible scenarios. Here, the goal of our approach is
to automatically detect scenarios, i.e. assignments to inputs
and states, where none of the properties specify the value of
the considered output.

This idea is realized by the generation of a coverage
property for each considered output. If this coverage prop-
erty holds there exists no scenario where the value of the
output o is not determined by the properties. It is shown
that the union of all properties that argue over the output o
admit no behavior else than the one defined by the circuit.
This is done by introducing a multiplexor for each bit that
is driven by the output o and the inverted value of o. Then
the coverage check can be performed by proving that the
multiplexor is forced to select the original value of o, as-
suming all involved properties. In the following section this
is described in more detail.

3.2. Coverage Property

To estimate the coverage we generate a coverage prop-
erty for each output o of the design. This coverage property
for the output o is constructed as follows:

1. The set of properties Po that argue over the output o is
identified.

2. The maximum time point tmax is determined. tmax is
defined as the latest time point in the consequent of all
properties in Po, at which o is constrained.

3. A multiplexor for each bit of the considered output o
is inserted in the original design. Let o consist of the
single bit signals o0, . . . , on−1. Then, the bit oi of the
output is connected to the data input d1 of the i-th mul-
tiplexor, whereas the negation of oi is connected to the
data input d0. If o is a single bit signal then we add the
new input sel to the design that is connected to sel0
(which is the select input of the multiplexor). Other-
wise we add sel0, . . . , seln−1 as new inputs and the
signal sel =

∧n−1
i=0 seli.

4. The output o is renamed to o orig and the name of the
output of the inserted multiplexor is set to o. Thus in
the following all properties that use o are dealing with
the output of the multiplexor instead of the originally
considered output. The transformation for the single
bits of o is depicted in Figure 1.

5. Now the coverage property for the considered output o
is generated. In the antecedent all properties of Po are
assumed. Possibly a property pi has to be shifted such

sel0

o
o_orig0

0

sel1

o
o_orig1

1

. . .

1

0

1

0

Figure 1. Insertion of the multiplexor.

that output o in the consequent of pi is constrained at
the maximum time point tmax. If the output o is con-
strained in the consequent of the property pi at m time
points with m > 1, then pi is handled as m separate
properties, i.e. each such property consists of the an-
tecedent of pi and m different consequents. The re-
sulting properties are denoted as p̂i. Furthermore in
the antecedent of the coverage property the signal sel
is set to 1 during the time interval [0, tmax − 1]. This
guarantees that in all properties p̂i the original output o
is used for all time points up to tmax−1. In the conse-
quent of the coverage property we force the signal sel
to be 1 at time point tmax. More formally the coverage
property is|Po|∧

i=1

p̂i ∧
tmax−1∧

t=0

Xtsel = 1

 → Xtmaxsel = 1,

where Xj denotes the application of the next operator
for j times.

Following these steps we have formulated the coverage
estimation problem as a BMC problem. Now if the cover-
age property for the considered output o holds we can con-
clude that o is covered by the properties (given as the set
Po). We show this by contraposition: if the output o is not
covered then the coverage property fails. Assuming that the
output o is not covered we know that all properties in Po

hold due to construction (since these have been proven and
are assumed in the antecedent) but there exists a scenario
where o is not determined. More precisely the value of o
can be different from the original value of o that is defined
by the circuit, since none of the properties predicts the cor-
rect behavior. In other words o can be substituted by o′,
where o′ differs in at least one bit from o. But this is equiv-
alent to the fact that signal sel can be set to 0 and thus the
coverage property fails.

Complete coverage in terms of our approach is achieved
by considering all outputs of a circuit. If all outputs are suc-
cessfully proven to be covered by the properties then we say
that the functional behavior of the circuit is fully specified.

1

0
FF dout

din

we

Figure 2. 1-bit memory.

1 property WRITE =
2 always (
3 we == 1
4) −> (
5 next (dou t) == d i n
6) ;

Figure 3. PSL property for the 1-bit memory.

1 property COV =
2 / / @inser tMuxForS igna l : dou t s e l
3 always (
4 ((we == 1) ? (next (dou t) == d i n) :

1) &&
5 s e l == 1
6) −> (
7 next (s e l == 1)
8) ;

Figure 4. Coverage property.

3.3. Examples

As a first example consider the 1-bit memory shown in
Figure 2. If the signal we (write enable) is set to 1, the flip-
flop is updated with the value of the input din. Otherwise it
keeps its value. To verify an implementation of this simple
memory cell, a PSL (property specification language [1])
property has been specified (see Figure 3). It states that
whenever we is set, the value of din can be seen at the output
dout one cycle later. The property holds.

It can now be checked whether the behavior of the mem-
ory cell is covered by this property. Therefore, a coverage
property is generated (see Figure 4). In line 2 a special com-
mand enclosed in a comment instructs the verification tool
to insert a multiplexor at signal dout with a select signal
named sel. In the antecedent of the coverage property it is
assumed that property WRITE holds (line 4)1. Furthermore
it is assumed that the sel signal is set to 1 in the first cycle,
i.e. the original value of dout is routed to the output. Under
these assumptions it has to hold that the select signal is 1 in
the next cycle (line 7).

As a result, the coverage property fails and a counter-
example is generated which is shown in Figure 5. The case
that has not been covered can be deduced from the trace.

1This is expressed in PSL using the c-like ?-operator for an if-then-else
construct, i.e. the property A ⇒ C is transformed to A ? C : 1 due to
syntactical restrictions of our PSL parser.

we

FF

dout

dout_orig
sel

0 1 2

din

Figure 5. Counter-example for coverage of
the memory cell.

1 property NO CHANGE =
2 always (
3 we == 0
4) −> (
5 next (dou t) == dou t
6) ;

Figure 6. Additional property for the 1-bit
memory.

FF1 FF2FF0 doutdin

Figure 7. FIFO.

Apparently it has not been specified how the memory cell
behaves if the signal we is set to 0. As a consequence the sel
signal can be set to 0 in the second cycle without violating
the property WRITE. After adding an appropriate property
like in Figure 6, the output is fully covered. The additional
property NO CHANGE states that the output remains un-
changed as long as the write enable signal is set to 0.

As a second example we consider a FIFO of depth 3 that
filters some value, i.e. the output is set to 0 if the last three
inputs are 1. See Figure 7 for the implementation of the
FIFO. The two basic properties for the FIFO are shown in
Figure 8. In the first property the regular shifting of the
FIFO is proven if the content of the FIFO is different from
three times 1. The second property proves the filtering of
the FIFO. Note that the comma operator is used here for
concatenation of the three values of the flip flops to one
memory word. Both properties hold.

We check if the output dout of the FIFO is covered with
the coverage property given in Figure 9. Again the multi-
plexor is inserted with the special command in line 2. For
the FIFO and the given properties tmax is 3. Thus, the prop-
erty SHIFT is assumed without shifting because o is already
constrained at time point tmax. However, the property FILT
has to be shifted such that the output dout is constrained

1 property SHIFT =
2 always (
3 next [3] ((FF0 , FF1 , FF2) != ” 111 ”)
4) −> (
5 next [3] (dou t) == d i n
6) ;
7 property FILT =
8 always (
9 (FF0 , FF1 , FF2) == ” 111 ”

10) −> (
11 dou t == 0
12) ;

Figure 8. PSL property for the FIFO.

1 property COV =
2 / / @inser tMuxForS igna l : dou t s e l
3 always (
4 / / SHIFT
5 (next [3] ((FF0 , FF1 , FF2) != ” 111 ”) ?
6 (next [3] (dou t) == d i n) : 1) &&
7
8 / / FILT p r o p e r t y was s h i f t e d
9 n e x t a [0 . . 3] (

10 (((FF0 , FF1 , FF2) == ” 111 ”) ?
11 (dou t == 0) : 1)) &&
12
13 n e x t a [0 . . 2] (s e l == 1)
14) −> (
15 next [3] (s e l == 1)
16) ;

Figure 9. Coverage property for the FIFO out-
put.

in this property at time point tmax (shifting is done using
the next a operator which constraints the following expres-
sion to hold at every time point during the specified interval;
see line 9). The last expression in the antecedent forces the
select input to be 1 up to time point 2 (see line 13). In the
consequent we want to show that the select input is 1 at time
point tmax = 3. The verification tool reports that the cover-
age property holds and therefore the FIFO output is covered
by the given two properties.

Based on these two examples the generation of the cov-
erage property for a simple and a more complex property
with respect to several time points have been shown. In the
following our approach is studied on a RISC CPU.

4. Experimental Results

In this section the application of our method is exempli-
fied through a RISC CPU. First, the basic data of the CPU is
briefly reviewed. Then it is shown how the coverage analy-
sis can be carried out. Finally we discuss in which ways the
coverage gap can be closed.

4.1. RISC CPU

The CPU has been designed as a Harvard architecture.
The data width of the program memory and the data mem-
ory is 16 bit. The size of the program memory is 4 KByte
and the size of the data memory is 128 KByte. The length
of an instruction is 16 bit. Due to page limitation we only
briefly describe the five different classes of instructions in
the following: 6 load/store instructions, 8 arithmetic in-
structions, 8 logic instructions, 5 jump instructions and 5
other instructions.

Since the program counter of the CPU will be used in
the following sections, we give some more details on this
hardware module. In order to address the 2048 entries of
the program memory the PC has an 11 bit register which
holds the address of the current instruction. Output pcout
holds this address. pcinc outputs the address increased by
one. An address can be loaded into the PC via the input
din, if the signal le (load enable) is set to 1. Using the reset
signal, the PC can be reset to 0. On every positive edge of
the clock signal the current address is increased if the signal
en (enable) is set to 1.

4.2. Formal Verification

To verify the functional behavior of the RISC CPU, a
number of PSL properties have been formulated. Figure 10
shows the properties concerning the PC, in particular the
ones for the output pcout. Property RESET checks the cor-
rect reset behavior. Property INC states that the PC is in-
creased if no reset occurs, no new address is loaded and if
the enable signal is set to 1, unless the end of the address
space is reached. Finally, property LOAD checks that a new
address can be loaded into the PC if le and en are set to 1.
All properties have been successfully verified using BMC
[14].

4.3. Coverage Analysis

The properties described above are supposed to cover all
possible scenarios in the behavior of the PC. The coverage
property for the output pcout is generated from the three
properties RESET, INC and LOAD, as described in Section
3.2.

It appears that the coverage property fails. Figure 11
shows a counter-example that has been generated by the
verification tool. From the trace it can be concluded which
scenario has not been specified by the properties discussed
in Section 4.2. As can be seen in the figure, none of the
properties covers the case that the PC is enabled, there is no
reset or load, and the PC points to the end of the address
space.

At the same time, the trace gives information on the ac-
tual behavior of the circuit in the unregarded case. Signal
pcout orig gives the original value of pcout. Obviously, the
PC starts over at address 0 when it exceeds the highest pos-
sible address.

1 property RESET =
2 always (
3 r e s e t == 1
4) −> (
5 next [1] (
6 p c o u t == 0 && p c i n c == 1
7)
8) ;
9 property INC =

10 always (
11 r e s e t == 0 && l e == 0 && pc < 2047
12) −> (
13 next [1] (
14 (prev [1] (en) == 1) ?
15 (p c o u t == prev [1] (pc) + 1) :
16 (p c o u t == prev [1] (pc))
17)
18) ;
19 property LOAD =
20 always (
21 r e s e t == 0 && l e == 1
22) −> (
23 next [1] (
24 (prev [1] (en) == 1) ?
25 (p c o u t == prev [1] (d i n)) :
26 (p c o u t == prev [1] (pc))
27)
28) ;

Figure 10. PSL properties for the program
counter.

le

reset

select

0 2047pcout_orig_not

2047 2047pcout

0 1 2

en

2047 0pcout_orig

Figure 11. Counter-example for program
counter coverage.

Before closing this gap we present the results of the cov-
erage analysis phase in Table 1. In the same way every
hardware block of the CPU has been checked based on the
coverage approach. The first column of Table 1 gives the
name of the module. In the second column the number of
generated coverage properties is provided. The column cov
reports whether all outputs were covered. If not, the last col-
umn provides the solution. As can be seen we found three
gaps in total. The details on closing these gaps and gaps in
general are discussed in the next section.

Table 1. Results of coverage analysis.
module # p cov solution
ALU 17 no added property
program memory 2 yes -
data memory 2 yes -
register bank 4 yes -
program counter 3 no excluded states
stack pointer 3 no excluded states
control unit 19 no added 2 properties,

excluded states

4.4. Closing the Gap

If a gap has been found using the presented coverage ap-
proach, there are different ways how to deal with it. It is
possible that the verification engineer has in fact forgotten
to check a certain scenario. In this case the properties have
to be completed until coverage is achieved. For the RISC
CPU we found that the properties for the ALU did not spec-
ify the value of the carry bit in case of a logical operation.
Therefore, we added an according property. In the same
way we had to add two properties in order to cover the be-
havior of the control unit in terms of our approach (see Table
1). For example it was not properly specified how the I/O
interface behaves during a reset.

It is also possible that some scenarios have been left out
intentionally, possibly because the specification itself is in-
complete. In this case the assumptions of the coverage prop-
erty can be extended to exclude these states explicitly. Re-
ferring to the example in Section 4.3, the specification did
not define the behavior of the PC at the end of the address
space. It is left to the programmer of the CPU to avoid
an address overflow. This is expressed by excluding the
state 2047 in the coverage property. Thereby, the program
counter was fully covered. In Table 1 this procedure is de-
noted as ”excluded states”. As can be seen in the table, in
three of the modules there have been gaps that were consid-
ered harmless. For example one of the gaps in the control
unit was related to inactive parts of the data path. In these
cases the coverage was completed by excluding the respec-
tive states directly in the coverage properties.

In total by the presented coverage approach we found
three coverage gaps. Following the described steps we
achieved 100% coverage.

5. Conclusions

In this paper we have presented a pragmatic coverage
approach for bounded model checking. The approach gen-
erates for each considered output a coverage property af-
ter a slight modification of the original design using mul-
tiplexors. Thus, the approach can be easily integrated in a
standard verification tool. Besides the coverage result it-
self the main strength of the presented coverage approach
is that uncovered scenarios are generated automatically in

form of counter-examples. Closing the coverage gap can
be performed by the verification engineer stepwise by ana-
lyzing the counter-examples. This clearly improves design
understanding.

References

[1] Accellera Property Specification Language Reference Man-
ual, version 1.1. http://www.pslsugar.org, 2005.

[2] M. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith, and
M.S.Abadir. Debugging sequential circuits using Boolean
satisfiability. In Int’l Conf. on CAD, pages 204–209, 2004.

[3] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L.
McMillan. An analysis of SAT-based model checking tech-
niques in an industrial environment. In Correct Hardware
Design and Verification Methods (CHARME), pages 254–
268, 2005.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 1579
of LNCS, pages 193–207. Springer Verlag, 1999.

[5] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[6] R. Bryant. Binary decision diagrams and beyond: Enabling
techniques for formal verification. In Int’l Conf. on CAD,
pages 236–243, 1995.

[7] J. Burch, E. Clarke, K. McMillan, and D. Dill. Sequential
circuit verification using symbolic model checking. In De-
sign Automation Conf., pages 46–51, 1990.

[8] H. Chockler, O. Kupferman, and M. Vardi. Coverage metrics
for temporal logic model checking. In Tools and algorithms
for the construction and analysis of systems, number 2031 in
Lecture Notes in Computer Science, pages 528 – 542, 2001.

[9] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage met-
rics for formal verification. In Correct Hardware Design and
Verification Methods (CHARME), pages 111–125, 2003.

[10] K. Claessen. A coverage analysis for safety property lists.
Presentation at Workshop on Designing Correct Circuits
(DCC), 2006.

[11] E. M. Clarke, O. Grumberg, and A. Peled. Model Checking.
MIT Press, 1999.

[12] G. Fey and R. Drechsler. Improving simulation-based ver-
ification by means of formal methods. In ASP Design Au-
tomation Conf., pages 640–643, 2004.

[13] G. Fey and R. Drechsler. SAT-based calculation of source
code coverage for BMC. In GI/ITG/GMM-Workshop, 2006.

[14] D. Große, U. Kühne, and R. Drechsler. Hw/sw co-
verification of embedded systems using bounded model
checking. In Great Lakes Symp. VLSI, pages 43–48, 2006.

[15] Y. V. Hoskote, T. Kam, P. Ho, and X. Zhao. Coverage esti-
mation for symbolic model checking. In Design Automation
Conf., pages 300–305, 1999.

[16] N. Jayakumar, M. Purandare, and F. Somenzi. Dos and
don’ts of ctl state coverage estimation. In Design Automa-
tion Conf., pages 292–295, 2003.

[17] S. Katz and O. Grumberg. Have I written enough properties
- a method of comparison between specification and imple-
mentation. In Correct Hardware Design and Verification
Methods (CHARME), pages 280–297, 1999.

[18] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey. Cost-
efficient block verification for a UMTS up-link chip-rate co-
processor. In Design, Automation and Test in Europe, vol-
ume 1, pages 162–167, 2004.

