
On the Construction of Small Fully Testable Circuits with Low Depth

Görschwin Fey1 Anna Bernasconi2 Valentina Ciriani3 Rolf Drechsler1

1 Inst. of Computer Science 2 Dep. of Computer Science 3 Dep. of Information Technology

University of Bremen University of Pisa University of Milano

28359 Bremen, Germany 56127 Pisa, Italy 26013 Crema, Italy

{fey,drechsle}@informatik.uni-bremen.de annab@di.unipi.it ciriani@dti.unimi.it

Abstract

During synthesis of circuits for Boolean functions
area, delay and testability are optimization goals that
often contradict each other. Multi-level circuits are of-
ten quite small while circuits with low depth are often
larger regarding the area requirements. A different opti-
mization goal is good testability which can usually only
be achieved by additional hardware overhead.

In this paper we propose a synthesis technique that
allows to trade-off between area and delay. More-
over, the resulting circuits are 100% testable under the
stuck-at fault model. The proposed approach relies on
the combination of 100% testable circuits derived from
binary decision diagrams and 2-SPP networks. Full
testability under the stuck-at fault model is proven and
experimental results show the trade-off between area
and depth.

1 Introduction

The synthesis of circuits is subject to many often
contradicting objectives. Area and delay are supposed
to be as small as possible while the testability of the
circuit should be very good. While in the past testa-
bility was a secondary optimization goal only, today
the importance of highly testable circuit structures has
significantly grown. This is due to the shrinking fea-
ture size that makes structures more susceptible for
functional failures introduced during the production
process. Such functional flaws can often be detected
by applying a functional fault model at the Boolean
level and generating test patterns with respect to the
fault model. Therefore good testability becomes an-
other goal during synthesis. But often good testability
can only be achieved at the cost of additional hardware.
In this paper testability with respect to the Stuck At
Fault Model (SAFM) is considered.

Several restrictions to the structure of a circuit have
been considered to meet certain goals during synthesis
(see e.g. [16, 11, 9, 12, 10, 6, 14, 13]). Promising ap-
proaches that already consider testability are circuits
based on Binary Decision Diagrams (BDDs), so called
BDD circuits [1], and Sum of Pseudoproduct (SPP) net-
works [6].

A BDD circuit is created by directly mapping the
BDD of the Boolean function onto a network of mul-
tiplexers. As a result the depth of the circuit is quite
large; in fact the depth is equal to the number of pri-
mary inputs. But as an advantage the circuits are quite
compact for a large range of functions. At the cost of
one additional input and one inverter any BDD circuit
can be transformed into a circuit without untestable
stuck-at faults [11].

SPP networks are 100% testable by construction if
certain restrictions are met [8]. Due to implementation
issues often 2-SPP networks are considered that restrict
the number of input to XOR gates to two [6, 7]. As
an advantage over BDD circuits, SPP networks have
a depth of only 3 levels of logic gates. But the final
circuit is often larger due to the tight restrictions on
the network structure.

In this paper, an approach to combine both synthe-
sis techniques is proposed. The resulting circuits are
proven to be fully testable under the SAFM. Experi-
mental results show that the new synthesis technique
allows to trade-off size and depth of the final circuit.

The paper is structured as follows. In Section 2
the previous synthesis approaches are briefly reviewed.
The new approach to combine both methods is pre-
sented in Section 3. Full testability of the resulting
circuits under the SAFM is proven in Section 4. Ex-
perimental results are reported in Section 5 and, finally,
the paper is summarized in Section 6.



2 Preliminaries

In this section, the Stuck-At Fault Model (SAFM)
as well as BDD circuits and SPP networks are briefly
reviewed.

2.1 Stuck-At Fault Model

Let C be any combinational logic circuit, a fault in
the SAFM [4] fixes exactly one input or output pin of a
node in C to the constant value 0 or 1, independently
of the values applied to the primary inputs of the cir-
cuit. The construction of complete test sets requires
the determination of the faults which are not testable,
i.e. redundant faults. A node v in C is called fully
testable, if there does not exist a redundant fault with
fault location v. If all nodes in C are fully testable,
then C is fully testable. Redundancies may also inval-
idate tests for testable faults and often correspond to
locations of the circuit where area is wasted [4]. For
this reason, synthesis procedures which result in non-
redundant circuits are desirable.

2.2 BDD-Circuits

A Boolean function f : Bn → B can be represented
as a BDD [5]. A BDD is an acyclic graph where each
node is either a leaf or an internal node. Each internal
node v has the two successors low(v) and high(v) and is
labeled by a variable xi. An internal node v represents
the Boolean function, i.e. the Shannon decomposition
carried out at v:

f = xiflow(v) + xifhigh(v)

The leaves are labeled by 0 and 1 and represent the
corresponding constant Boolean functions. A BDD is
called ordered when the variables occur in the same
order and at most once on all paths from an internal
node to the leaves. The BDD is called reduced if it does
not contain isomorphic subgraphs. A reduced ordered
BDD is a canonical representation of Boolean functions
that allows for efficient manipulation [5]. In the follow-
ing the term BDD refers to reduced ordered BDDs. A
simple BDD for the function f = x1x2 + x3 is shown
in Figure 1(a). Note that in contrast to the usual pre-
sentation, the BDD is shown upside down to illustrate
the correspondence to the BDD circuit.

A BDD circuit can be derived by replacing each
BDD node by a multiplexor as illustrated in Figure
1(b). As shown in [1], a BDD circuit is fully testable
under the SAFM, if and only if both combinations 10

x1

x2

x3

0 1

f

(a) BDD graph

x1

x2

x3

0 1

0 1

0 1

0 1

y

(b) BDD circuit

x1

x2

x3

0 1

0 1

0 1

y

t

(c) Fully testable
BDD circuit

Figure 1. Creating a 100% testable BDD cir-
cuit

and 01 can be applied to the inputs of each multiplexer.
It is possible to create fully testable BDD circuits by
adding one additional input and one inverter. This was
shown in [11] and has been implemented as the tool
MuTaTe. Figure 1(c) illustrates this transformation.

2.3 SPP Networks

A pseudoproduct is a product (AND) of Exclusive
OR (EXOR) factors, and an SPP form is a sum (OR) of
pseudoproducts. Any arbitrary Boolean function can
be expressed as a disjunction of pseudoproducts; this
leads to a sum of pseudoproducts form. For example
(x1⊕x2) ·x5 · (x1⊕x4⊕x7) + x5 ·x4 + (x1⊕x3⊕x4) ·
(x3 ⊕ x5 ⊕ x6) is an SPP expression.

Sum of Pseudoproduct (SPP) forms allow to repre-
sent Boolean functions with much shorter expressions
than standard Sum of Products (SOP) forms.

Although SPP forms are compact, they have been
defined for EXOR gates with unbounded fan-in that
seem to be impractical in the current technology [18].
It follows that SPP-like forms with a fixed maximum
number of literals in the EXOR factors are much more
interesting. Therefore k-SPP forms, where the number
of literals in the EXOR factors is restricted to an upper
bound by a chosen constant k, have been introduced
in [6, 7]. Experimental results show that the k-SPP
synthesis algorithm generates still compact networks
in a short time, even for k = 2. Therefore we focus on
2-SPP forms, that are still much more compact than
SOP forms.

More formally, in a Boolean space {0, 1}n described
by n variables x1, x2, . . ., xn, a 2-EXOR factor is an
EXOR with at most two variables, one of which pos-
sibly complemented (an EXOR with just one literal



x3
x4

00

01

11

10

 00  01  11  10

11 0

0

0 00

0

0

1 0 1 0

0

x1 x2

x3 x4

x1

x4
x3

0

1

x1
x2

Figure 2. Karnaugh map of function f with a 2-

SPP cover (x1⊕x2)x3x4 +x1(x3⊕x4), minimal with

respect to the number of 2-pseudoproducts, and the

corresponding 2-SPP circuit representation.

corresponds to the literal itself). Given two Boolean
variables x1, x2, all the possible 2-EXOR factors are
essentially x1, x1, x2, x2, (x1 ⊕ x2) and (x1 ⊕ x2) (in
fact, x1 ⊕ x2 = x1 ⊕ x2, and x1 ⊕ x2 = x1 ⊕ x2).

Definition 1. A 2-pseudoproduct is a product of 2-
EXOR factors; and a 2-SPP form is a sum of 2-
pseudoproducts.

Definition 2. A set of points whose characteristic
function can be represented as a 2-pseudoproduct is a
2-pseudocube.

This is a generalization of the concept of cubes. An
SOP form is a particular 2-SPP form where each EXOR
factor contains only one literal.

In the space {0, 1}n the number of different 2-EXOR
factors with exactly 2 literals is 2 ·

(
n
2

)
= n(n − 1).

Thus in the worst case, 2-SPP forms require a quadratic
number of different 2-EXOR gates.

The 2-SPP synthesis problem can be stated as:
given a set of points in the Boolean space {0, 1}n,
find its minimal cover composed of 2-pseudocubes,
where a minimal cover is represented by a sum of 2-
pseudoproducts with a minimal number of literals or
with a minimal number of 2-pseudoproducts.

Example 1. For the function f represented by the
Karnaugh map in Figure 2, the following 2-SPP cover
is an expression minimal with respect to the number of
2-pseudoproducts: (x1 ⊕ x2)x3x4 + x1(x3 ⊕ x4). The
2-SPP circuit representation is shown on the right side
of the figure. On the other hand, a 2-SPP form mini-
mal with respect to the number of literals is x2x3x4 +
x1(x3 ⊕ x4). Finally, a minimal SOP form of such
function is x2x3x4 + x1x3x4 + x1x3x4.

In [7] a 2-SPP minimization algorithm is proposed.
As in the Quine-McCluskey approach, the generation
of prime 2-pseudoproducts is performed in steps of

successive unions of 2-pseudoproducts. A minimal 2-
SPP form is generated by choosing a minimal subset of
prime 2-pseudoproducts that covers the original func-
tion.

A heuristic minimization procedure for 2-SPP forms
based on the iteration of a suite of operations that
generalize the expansion-irredundant-reduction cycle of
heuristic SOP minimization is presented in [2]. The
proposed procedure has been implemented with good
results on industrial benchmarks, enabling us to mini-
mize 2-SPP forms for which we cannot afford to com-
pute an exact solution.

Beside synthesis, testability is a major aspect of the
design process. In [8] it is shown that a 2-SPP network
minimal with respect to the number of literals is fully
testable under the SAFM. The proof of full testability
presented in [8] exploits the properties of a minimal
network, i.e. primality, irredundancy and minimality
with respect to the number of literals. In [2] it has
been shown that primality and minimality are not nec-
essary for guaranteeing full testability. Indeed weaker
properties are sufficient for obtaining fully testable 2-
SPP networks. Thus the 2-SPP networks (possibly not
optimal) derived with the heuristic presented in [2] are
still fully testable under the SAFM.

Since the heuristic method generates 2-SPP forms
that are compact and fully testable, we use this algo-
rithm for synthesizing the 2-SPP part of the MuTaTe-
SPP networks that are introduced in the next section.

3 Combining BDD Circuits and 2-SPP
Networks

As an advantage 2-SPP networks and BDD circuits
that are created according to MuTaTe are fully testable
under the SAFM. The drawback of BDD circuits is the
large depth whereas 2-SPP networks may have a large
number of gates. By combining both techniques these
problems can be mitigated while retaining full testa-
bility under the SAFM. An approach to combine both
synthesis methods to create MuTaTe-SPP networks is
introduced in this section.

To achieve full testability of a 2-SPP network, the
primary inputs of the network must be controllable.
The BDD network is testable according to functional
arguments on the BDD. MuTaTe-SPP networks consist
of an upper part that resembles the structure of the
BDD circuit and a lower part that consists of a 2-SPP
network.

Figures 3 and 4 illustrate how to derive a MuTaTe-
SPP network from a given Boolean function f :



f

U

L

Figure 3. Separating the BDD
f

U

L

I

s0 s1 sk

S

t

n

M

M

IS

1

n2

Figure 4. Creating the circuit

1. Create the BDD of the function.
2. Separate the BDD into an upper and a lower part.
3. Nodes in the upper part are collected in the set

U , nodes in the lower part are collected in the set
L (see Figure 3).

4. Map the BDD onto a circuit according to MuTaTe.
5. Assemble all gates that correspond

• to nodes in U in a subcircuit M and
• to nodes in L in a subcircuit S

(the dotted boxes in Figure 4 show the subcir-
cuits).

6. Resynthesize the subcircuit S as a 2-SPP network.

Besides the test input t, a subset of the primary
inputs is also passed to the subcircuit S. The out-
puts of the subcircuit S are denoted by s0, . . . , sk.
The Boolean functions represented by these outputs
are identical to the functions previously represented by
nodes in the BDD.

How to separate the BDD into two parts to retrieve
a small circuit that is not too deep is subject to heuris-
tics. Here, a first approach is proposed. The BDD is
minimized by standard reordering techniques, i.e. sift-
ing [15], and a certain depth for the final circuit is
chosen. By this, the number of levels of BDD variables

that can be assembled in the upper part of the circuit
to reduce the size of the 2-SPP network is fixed.

The experimental results show that trading area for
delay, i.e. the depth of the circuit, becomes possible
by using the new approach. Moreover, by construc-
tion these circuits are fully testable with respect to the
SAFM as will be proven in the next section.

4 Testability

Before proving the full testability of the composed
MuTaTe-SPP networks, we briefly recall the already
mentioned testability results concerning BDD and 2-
SPP circuits, with respect to the SAFM.

A BDD circuit is fully testable if and only if both
combinations 10 and 01 can be applied to the inputs of
each multiplexer cell [1]. Since at least one of the two
combinations is always applicable, as a simple compu-
tation shows, 100% testability of a BDD circuit can be
achieved by adding one additional input and one in-
verter as shown in [11] and has been implemented as
the tool MuTaTe.

On the other hand, any 2-SPP circuit minimal with
respect to the number of literals is fully testable under
the SAFM [8]. Fortunately, as shown in [2], the mini-
mality of the circuit is not necessary and indeed weaker
properties are sufficient for obtaining fully testable 2-
SPP networks. More precisely, a 2-SPP network is
fully testable in the SAFM if and only if the corre-
sponding algebraic expression is (i) AND-irredundant,
i.e., the deletion of a factor in any 2-pseudoproduct
changes the represented function; (ii) OR-irredundant,
i.e., the deletion of any 2-pseudoproduct changes the
represented function; and (iii) EXOR-irredundant, i.e.,
the deletion of any literal in a 2-EXOR factor changes
the represented function. This result is of importance
because the three irredundancy properties can be guar-
anteed even when the synthesis is performed applying
heuristic algorithms, instead of exact minimization pro-
cedures. In particular the tool developed in [2], and
applied in this paper to obtain MuTaTe-SPP networks,
has been designed in order to yield, in reasonable com-
putational time, AND-OR-EXOR-irredundant1 2-SPP
expressions resulting in fully testable, although not
minimal, networks.

Combining these testability results, we can prove:

Theorem 1. MuTaTe-SPP networks are fully testable
with respect to the SAFM.

1A 2-SPP circuit that is AND-irredundant, OR-irredundant,
and EXOR-irredundant is called AND-OR-EXOR-irredundant.



Proof. Let C be a MuTaTe-SPP network comput-
ing a Boolean function f . As shown in Figure 4, C
is composed of a 2-SPP subcircuit S, with outputs si,
0 ≤ i ≤ k, and a MuTaTe-subcircuit M , with primary
output f . To prove the full testability of C we must
consider two cases.

1. A fault occurs in the 2-SPP subcircuit S.

Since any AND-OR-EXOR-irredundant 2-SPP
network is fully testable in the SAFM, and since
all inputs of S are primary inputs, any fault occur-
ring in S can be propagated to at least one output
si of the subcircuit. Now observe that by apply-
ing an appropriate combination of values to the
input variables of the MuTaTe subcircuit M , any
output of S can be propagated through M , other-
wise a SAFM on the corresponding signal line in
the BDD circuit according to MuTaTe would not
be testable either, in contradiction to the results
from [11]. Thus the fault observed in one of the
outputs of S can be propagated to the primary
output of C and tested.

Therefore, all faults in S are testable.

2. A fault occurs in the MuTaTe subcircuit M .

Now, suppose that a fault occurs in the subcir-
cuit M of the MuTaTe-SPP network C. All signal
lines in M directly correspond to lines in the inter-
mediate BDD circuit that was constructed in step
(4) of the algorithm in Section 3. This interme-
diate circuit is fully testable by construction and
this means that both combinations 10 and 01 can
be applied to the inputs of each of its multiplexer
cells.

Now observe that the outputs s0, . . . , sk of S cor-
respond to lines in the same intermediate fully
testable BDD circuit as well. Therefore all val-
ues needed to get both combinations 10 and 01 at
the inputs of each multiplexer in M can be prop-
agated along them, before the execution of steps
(5) and (6) of the algorithm.

But this property holds even after the execution
of these two final steps. In fact, when S is re-
synthesized as a 2-SPP network, the Boolean func-
tion computed at any of its outputs does not
change. Therefore the propagation properties of
the BDD structure are retained and the combina-
tions 01 and 10 are still applicable to the inputs of
any multiplexer in M .

Thus, all faults in M are testable.

�

5 Experimental Results

The experimental data provided in this section
shows that the trade-off between area and delay can
be controlled using MuTaTe-SPP networks. More-
over, a comparison to BDD circuits and 2-SPP net-
works is presented. All experiments were carried out
on an AMD Athlon 64 3500+ (Linux, 1GB RAM).
The benchmark circuits considered are taken from the
LGSynth93 benchmarks suite, additionally symmetric
Boolean functions are considered, e.g. s10t45 has 10 in-
puts plus 1 test input for MuTaTe and evaluates to one
if 4 or 5 inputs assume the value 1.

Experimental data to evaluate parameter settings
for MuTaTe-SPP networks is shown in Table 1. For
each circuit the number of inputs (IN) and outputs
(OUT) is reported. Data for 2, 3 and 4 input variables
that are considered in the BDD-part of the MuTaTe-
SPP network is reported in columns 2 variables, 3 vari-
ables and 4 variables, respectively. The variables are
taken from the topmost levels of the BDD that initially
represents the function of the circuit. For each config-
uration the number of gates (NODES), literals (LITS)
and the depth of the circuit (DEPTH) as determined
by SIS [17] are reported. The number of gates counts
complex gates like multiplexers as a single gate.

The depth of a circuit can be calculated in a straight-
forward manner. If two variables of the BDD part are
joined into a subcircuit M , the depth of M is 2 or 3,
since an additional inverter at an output may be neces-
sary due to complement edges [3]. The subcircuit S is
composed of the EXOR factors and an SOP-node and,
therefore, has a depth of 2. Thus, the depth of the cir-
cuit is 4 or 5. The same argumentation applies when
joining 3 or 4 variables of the BDD into subcircuit M .

The number of variables considered in M influences
the size of the final circuits. In case of the LGSynth93
benchmarks, 7 out of the 13 circuits considered are
most compact when 4 variables are joined into M .
Trading area for depth works well for e.g., 9sym, ex1010
and inc. In general, the heuristic for partitioning the
inputs between the BDD part and the SPP part has
to be improved. For example often different a different
splitting should be used for different outputs. Some
outputs may not even depend on the inputs considered
in the BDD part and therefore no reduction in size is
achieved.

On the symmetric circuits that have a very compact
representation as a BDD, including more variables in
the BDD part of the circuit always yields a reduction
in size. Thus, trading area for depth becomes possible.



Results in comparison to pure BDD circuits accord-
ing to MuTaTe and plain SPP networks are consid-
ered next. The depth of the circuits is always equal to
the number of inputs plus one for the MuTaTe circuit
and two for the SPP network. The depth for circuits
created using the new approach was considered above.
Thus, the depth of MuTaTe-SPP networks is always
less or equal to that of the MuTaTe circuit and larger
than that of the SPP network. Figure 5 shows the
number of literals for the different approaches for se-
lected circuits. The lower the number of literals the
smaller circuit. In all cases the circuit created by Mu-
TaTe is smaller than the SPP network. Moreover in
most cases, at least one of the combined MuTaTe-SPP
circuits has a size that is between those of the MuTaTe
circuit and the SPP network. For example, ex1010 and
s10t45 ideally exhibit the expected behavior: a small
BDD circuit, a large SPP network and with increasing
number of variables in the BDD-part of the MuTaTe-
SPP network the size of the circuit shrinks again.

In summary, the new approach can be applied to
construct circuits that have a predefined depth by
spending area to transform the initial BDD circuit into
a MuTaTe-SPP network. The circuits are provably
fully testable under the SAFM.

6 Conclusions

A new synthesis approach to combine SPP networks
and BDD circuits has been proposed. By adjusting the
number of variables in the BDD part of the circuit,
area can be traded for depth. Complete testability with
respect to the SAFM is achieved by construction.

The evaluation of better heuristics to separate the
BDD part of the circuit from the SPP part based on the
initial BDD representation remain future work. One
promising approach is to take into account which pri-
mary inputs are in the support of which output. Also
different ordering heuristics for the BDD that allow for
a compact representation of the lower part as an SPP
network are of interest. Here, using a weighted ap-
proach that counts the density of the ON-set in the
lower part may be of interest.

References

[1] B. Becker. Synthesis for testability: Binary decision

diagrams. In Symp. on Theoretical Aspects of Comp.

Science, volume 577 of LNCS, pages 501–512. Springer

Verlag, 1992.

[2] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa.

Efficient Minimization of Fully Testable 2-SPP Net-

works. In Design Automation and Test in Europe

(DATE), pages 1300–1305, 2006.

[3] K. Brace, R. Rudell, and R. Bryant. Efficient imple-

mentation of a BDD package. In Design Automation

Conf., pages 40–45, 1990.
[4] M. Breuer and A. Friedman. Diagnosis & reliable de-

sign of digital systems. Computer Science Press, 1976.
[5] R. Bryant. Graph-based algorithms for Boolean func-

tion manipulation. IEEE Trans. on Comp., 35(8):677–

691, 1986.
[6] V. Ciriani. Synthesis of SPP Three-Level Logic Net-

works using Affine Spaces. IEEE Trans. on CAD

of Integrated Circuits and Systems, 22(10):1310–1323,

2003.
[7] V. Ciriani and A. Bernasconi. 2-SPP: a Practi-

cal Trade-Off between SP and SPP Synthesis. In

5th International Workshop on Boolean Problems

(IWSBP2002), pages 133–140, 2002.
[8] V. Ciriani, A. Bernasconi, and R. Drechsler. Testabil-

ity of SPP three-level logic networks in static fault

models. IEEE Trans. on CAD, 25(10):2241–2248,

2006.
[9] D. Debnath and T. Sasao. Multiple–Valued Minimiza-

tion to Optimize PLAs with Output EXOR Gates.

In IEEE International Symposium on Multiple-Valued

Logic, pages 99–104, 1999.
[10] D. Debnath and Z. Vranesic. A Fast Algorithm for

OR-AND-OR Synthesis. IEEE Transactions on CAD,

22(9):1166–1176, 2003.
[11] R. Drechsler, J. Shi, and G. Fey. Synthesis of fully

testable circuits from BDDs. IEEE Trans. on CAD,

23(3):440–443, 2004.
[12] E. Dubrova, D. Miller, and J. Muzio. AOXMIN-MV: A

Heuristic Algorithm for AND-OR-XOR Minimization.

In 4th Int. Workshop on the Applications of the Reed

Muller Expansion in circuit Design, pages 37–54, 1999.
[13] R. Ishikawa, T. Hirayama, G. Koda, and K. Shimizu.

New Three-Level Boolean Expression Based on EXOR

Gates. IEICE Transactions on Information and Sys-

tems, (5):1214–1222, 2004.
[14] F. Luccio and L. Pagli. On a New Boolean Function

with Applications. IEEE Transactions on Computers,

48(3):296–310, 1999.
[15] R. Rudell. Dynamic variable ordering for ordered bi-

nary decision diagrams. In Int’l Conf. on CAD, pages

42–47, 1993.
[16] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-

valued Minimization for PLA Optimization. IEEE

Trans. on CAD of Integrated Circuits and Systems,

CAD-6:727–750, Sept. 1987.
[17] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-

gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton,

and A. Sangiovanni-Vincentelli. SIS: A system for se-

quential circuit synthesis. Technical report, University

of Berkeley, 1992.
[18] N. Weste and K. Eshraghian. Principles of CMOS

VLSI Design. Addison-Wesley Publishing Company,

1993.



Table 1. Different parameters for the number of variables considered in U
circuit 2 variables 3 variables 4 variables

name IN OUT NODES LITS DEPTH NODES LITS DEPTH NODES LITS DEPTH

9sym 10 1 22 558 5 28 344 6 20 173 7

9symml 10 1 23 555 5 24 315 6 20 173 7

clip 10 5 60 1221 5 82 1211 6 127 1326 7

cm150a 22 1 7 238 4 9 304 5 15 200 6

cm152a 12 1 12 72 4 17 68 5 25 76 6

cm85a 12 3 24 190 4 27 185 5 32 237 6

ex1010 11 10 110 12066 5 182 11021 6 335 10329 7

inc 8 9 69 691 5 106 604 6 122 512 7

majority 6 1 8 36 4 10 37 5 11 38 6

misex3 15 14 181 15961 5 268 17024 6 438 20070 7

misex3c 15 14 168 17220 5 264 18986 6 435 16609 7

mux 22 1 7 249 4 12 186 5 14 208 6

table3 15 14 177 12908 5 236 14484 6 361 13887 7

s10t45 11 1 41 1281 5 38 868 6 36 606 7

s10t56 11 1 42 1444 5 38 948 6 35 584 7

s11t3-7 12 1 49 1654 5 32 1056 6 37 562 7

s11t34 12 1 50 1453 5 45 1048 6 43 694 7

s11t45 12 1 51 2065 5 46 1501 6 43 941 7

s11t56 12 1 51 2467 5 46 1725 6 43 1157 7

s11t67 12 1 50 2499 5 46 1788 6 43 1047 7

s12t4-8 13 1 59 3502 5 53 2650 6 49 1320 7

s12t78 13 1 61 4423 5 54 3001 6 51 1896 7

s7t23 8 1 19 177 5 17 126 6 18 77 7

s8t34 9 1 26 393 5 21 243 6 22 159 7

s9t56 10 1 34 811 5 30 497 6 28 279 7

 10

 100

 1000

 10000

 100000

 table3       
 s9t56  

 s8t34       
 s7t23 

 s12t4-8        

 s11t67     
 s11t56       

 s11t45  

 s11t34      
 s10t45  

 mux     

 misex3      
 inc   

 ex1010  

 cm85a       
 cm150a        

 clip  

LIT
S

2-SPP
2 variables
3 variables
4 variables

Mutate

Figure 5. Comparison to MuTaTe and 2-SPP networks


