Measuring the Quality of a SystemC Testbench
by using Code Coverage Techniques

Daniel GroBe' Hernan Peraza'

Wolfgang Klingauf? Rolf Drechsler!

Y Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Dept. E.LS, Technical University of Braunschweig, 38106 Braunschweig, Germany

1{grosse, drechsle} @informatik.uni-bremen.de

Abstract

The system description language SystemC enables to
quickly create executable specifications at adequate lev-
els of abstraction for both hardware/software integration
and fast design space exploration. Besides the modeling
of a system, verification has become a dominant factor in
circuit and system design. Since SystemC is a versatile
language based on C++, testbenches at different abstrac-
tion levels can easily be built. But the fault coverage of a
manually developed testbench is hard to quantify. In this
paper, an approach for measuring the quality of SystemC
testbenches is presented. The approach is based on dedi-
cated code coverage techniques and identifies all the parts
of a SystemC model that have not been tested. Experimen-
tal results show the applicability of our methodology.

1. Introduction

To cope with the design complexity of hardware/soft-
ware systems that consist of up to one billion transistors,
raising the level of abstraction in modeling has been exer-
cised during the past years in the computer aided design
community. In this context, C/C++-based languages have
found entrance into industry. Here, the system description
language SystemC is the de facto standard and was stan-
dardized by the IEEE [13]. Additionally to the inherent
SystemC feature of specifying hardware and software in
one language the concept of Transaction Level Modeling
(TLM) [2] is supported by SystemC. TLM allows to de-
scribe the communication in a system in terms of abstract
operations (transactions).

Besides the modeling aspect the verification — i.e. en-
suring the correct functional behavior — is the most chal-
lenging problem. Since complete formal verification
methods are only applicable to medium sized designs,
simulation-based techniques are used most frequently [6,
17]. Here system level languages like SystemC already of-
fer some features for verification and are therefore superior
to traditional Hardware Description Languages (HDLs).
E.g., in SystemC the testbench can easily be integrated
as part of the model and all features of C++ can be used
for the generation of tests. Also the result analyzer that is
typically build to check the response of the Device Under
Verification (DUV) is a SystemC module. As an add-on
for SystemC the SystemC Verification (SCV) library has
been introduced [15]. Besides advanced verification fea-

2klingauf @eis.cs.tu-bs.de

tures like data introspection and transaction recording the
SCV library enables constraint-based randomization.

Howeyver, all these verification features do not include a
measure how thorough the design was executed during the
simulation. As the size of the testbench grows the designer
needs a reliable feedback about its quality.

In this paper, an approach for SystemC to measure the
quality of the testbench is presented. Our analysis is based
on dedicated code coverage techniques that we have devel-
oped for SystemC models. By exploiting automated code
instrumentation based on a SystemC parser, for each test
run a coverage report is generated that presents the user all
statements in the model that have not been executed during
simulation. The report is based on the analysis of the exer-
cised control flow statements. It includes exact source code
references to unexecuted code blocks in combination with
SystemC specific information like process context and hi-
erarchy information.

The rest of this paper is structured as follows. Related
work is described in the next section. In Section 3 we
present our approach. We start with the overall flow and
continue with a detailed description of the three phases of
our approach. Along the way we provide an example to
show the effects of each phase. Case studies for two Sys-
temC designs are presented in Section 4. The first design is
a RISC CPU and the second design is a TLM-based video
processor. Finally, in Section 5 the paper is summarized.

2. Related Work

In software testing code coverage techniques have been
used to measure the fraction of code that has been ex-
ercised by a test case [1]. From this domain coverage
methods have been derived and extended for HDLs. For
Verilog or VHDL several approaches and tools exists (for
an overview see e.g. [16]). However, to the best of our
knowledge no code coverage method to measure the qual-
ity of a SystemC testbench has been proposed. Note, that
approaches based on standard C++ coverage tools (like
e.g. the GNU COVerage tool gcov [7]) have several draw-
backs. On the one hand the SystemC kernel is also in-
cluded in the coverage analysis. On the other hand Sys-
temC specific data like e.g. context information or hierar-
chy information is only implicitly available and has to be
extracted manually.

In the following we present an approach to overcome
such limits.

Analysis Instrumentation
@ AST traversal
code generation \
Input
p—— Output
stem!
sou};ce code Augmented
DUV
- Cover
Coverage Analysis Simulation Compilation / library
Report - Pra— -
Interpretation Kernel running gce
\ SystemC
libraries

Figure 1. Overall flow of our approach

3. Measuring the Quality of a SystemC Test-
bench

In this section the code coverage-based approach for
measuring the quality of the testbench is introduced. Our
approach consists of three phases: SystemC analysis, code
instrumentation and coverage analysis. Before the details
on the three phases are given the overall flow is presented.
Throughout the description of the phases a simple example
is used to demonstrate the effects of each phase.

3.1. Overall Flow

The overall flow of our approach is depicted in Figure
1. In the analysis phase the SystemC code of the DUV
is parsed, analyzed and transformed into an abstract syn-
tax tree (AST) representation. This AST is traversed in
the consecutive code instrumentation phase. During the
traversal the original SystemC DUV is augmented with
SystemC specific code that enables the collection of cov-
erage information during simulation. Then, the rewritten
SystemC DUYV, the coverage library of our approach and
the SystemC libraries are compiled into an executable. By
running this executable simulation is performed and the
data structures available through our coverage library are
filled. Finally, in the coverage analysis phase the collected
data is interpreted and the coverage report is generated.
By the report the verification engineer is informed which
statements have not been executed due to the tests defined
in the testbench. This information is presented with exact
source code references to unexecuted blocks in the original
SystemC DUYV including hierarchy. Furthermore the fre-
quency of the execution of statement blocks can be given
for further analysis.

In the following we describe the three phases in more
detail.

3.2. SystemC Analysis

For the transformation of the SystemC DUV into an
AST the front-end from [5, 8] is used that is part of the
design environment SyCE [3]. The parser of the front-
end was build with PCCTS (Purdue Compiler Construc-
tion Tool Set) [14]. PCCTS enables the description of the
SystemC syntax in form of a grammar, provides facilities

din ——»| |~ peout

reset ———| PC

—— pcinc

le —

clock

Figure 2. Program counter.

for AST construction and finally generates a parser. Note
that the front-end has an exact source code reference in-
cluding character positions of each token. Therefore, a
special C++ preprocessor has been implemented to allow
for identification of the SystemC macros before they are
expanded. The correct source code information annotated
to each node in the AST is very important for our approach.
Without this information only a non-reliable feedback for
the verification engineer would be possible. In the follow-
ing the analysis phase is demonstrated by an example.

Example 1 Since we use a program counter of a RISC
CPU also as example for the other phases we give some
details on this module. Figure 2 shows the program
counter (PC) with all its inputs and outputs. In order to
address the 2048 entries of the program memory, the PC
has an 11 bit register which holds the address of the cur-
rent instruction. QOutput pcout holds this address. pcinc
outputs the address increased by one. An address can be
loaded into the PC via the input din, if the input le (load
enable) is set to 1. Using the reset signal, the PC can be
set to 0. On every positive edge of the clock signal the cur-
rent address is increased if the input en (enable) is set to
1. In Figure 3 the method that computes the next _state
of the PC is shown. This method is sensitive to the pos-
itive clock. pc is the internal register of the PC module.
Figure 4 depicts a sample of the AST of this method, which
has been generated by our tool. Please note that for each
AST node only a fragment of the available information is
shown. The second number in each line corresponds to the
line number of the parsed element.

As can be seen, the structure of the SystemC program is
reflected and this representation is well suited for code in-
strumentation.

9 void prog-count::next_state (){
10 if (reset.read()){
11 pc = 0; //reset to adress 0

12 }else{

13 if (en.read ()){

14 if(le.read ()){

15 pc = din; //load address
16 telse{

17 // increase counter
18 pc = pc.read () + 1;
19 }

20 telse{

21 pc = pc.read();

22 }

23 }

Figure 3. Parts of the original SystemC DUV

1 10 IF

2 10 LPAREN

3 10 ID == "reset”
4 10 DOT

5 10 ID == ”read”
6 10 LPAREN

7 10 RPAREN

8 10 RPAREN

9 10 LCURLY

10 11 ASSIGNEQUAL
11 11 ID == ”pc”
12 11 OCTALINT
13 11 SEMICOLON
14 12 RCURLY

15 12 ELSE

16 12 LCURLY

17 13 IF

18 13 LPAREN

19 13 ID == ”en”
20

Figure 4. AST of next_state method

3.3. Code Instrumentation

In the code instrumentation phase the SystemC DUYV is
augmented with according instructions to allow for cover-
age analysis. The main steps in this phase are described in
the following.

Coverage Library First, the global variable cov is de-
fined that holds an instance of our coverage class COVER.
This class provides data structures like hash tables for cov-
erage statistics as well as wrapper functions to take care
of the control flow inside the methods of the DUV. Fur-
thermore, the class has methods to analyze the collected
coverage data and to generate the report for the user.

AST Traversal and Code Instrumentation While
traversing the AST, first the member functions that be-
long to a SystemC module are identified. Then, in each
function the conditions of the control flow statements are
substituted with wrapper functions. The idea is to per-
form a call-back during the simulation and thereby noti-
fying the coverage class which control branch has been
taken. The following control statements are distinguished:

IF, IF/ELSE, SWITCH-CASE, FOR loop, WHILE loop.
Next, the wrapper functions are explained.

Wrapper Functions For the IF, IF-ELSE, FOR loop and
WHILE loop the condition of the control statement is re-
placed by a wrapper function call. The arguments of the
wrapper functions are:

1. the condition of the control statement (as Boolean and
string),

2. the type of control statement,

»

start position and end position of the block(s) that
are executed if the control condition evaluates to
true/false,

file name of the current method,
class name if available,

current method name,

N o e

this pointer, in case of a member function. The
this pointer is used to distinguish between several in-
stances of the same module.

The following example demonstrates the application of a
wrapper function for an IF-ELSE control statement.

Example 2 Consider again the program counter in Fig-
ure 3 and focus on the if statement in line 10 and the
corresponding else-branch starting in line 12. The condi-
tion of the if statement is the expression reset .read ().
This expression is replaced by the wrapper function
wrapperStatement (. ..). The instrumented code is
depicted in Figure 5. The first and second argument of this
function hold the condition as a Boolean and as a string,
respectively. The third argument reflects the type of the
condition statement — here t IFELSE. Then, the next four
numbers mark the if-block, i.e. the if-block starts in line 10
at the absolute character position 125 and ends in line 12
at character position 203. The next two numbers give the
same information for the else-block, but only the end po-
sition of the else-block is used; the else-block ends in line
12 at character position 419. Then, the file name where
the method is implemented (prog_count . cc), the class
name (prog_count), the method name (next_state)
and the this pointer are given.

In a SWITCH-CASE statement at the beginning of each
case block we instrument a wrapper function that has as
additional argument the value of the current case. Note
that the approach is able to handle also nested variants of
all types of control statements. In the next section the cov-
erage analysis phase is explained.

3.4. Coverage Analysis

After the compilation of the instrumented SystemC
code the coverage analysis is executed during simulation.
Based on the instrumented wrapper functions the instance
of the cover class collects all the coverage data. The main
data structures in the cover class are based on Standard
Template Library (STL) maps. As unique keys the ar-
guments of the wrapper functions are transformed into a
string representation. To each coverage point we associate
two counters to track the frequency of the evaluation of the

2 #include “label.h”

3 extern COVER =xcov;

4

5 #include”prog_count.h”

6 ...

7 void prog_count::next_state (){

8 if (cov—>WrapperStatement(reset.read(),”
reset.read ()”, tIFELSE
,10,125,12,203,22,419,”prog_count.cc
”, "prog_count”, "next_state”,this))
{

9 pc = 0;

10 }else{

11 ...

Figure 5. Instrumented code of the next_state
method

<< COVERAGE REPORT >>

IF-ELSE Statement: xIF-BLOCK NOT EXECUTEDx
File name: prog_count.cc

Class: prog_count

Instance: pc

Func. Member: next_state

Condition: le.read ()
IF start: line 14 pos 246
IF end: line 16 pos 322

count total: 87
count TRUE: 0 count FALSE: 87

Figure 6. Coverage report for program
counter.

corresponding condition to true or false. For case state-
ments obviously only one counter is needed. Finally, in
the coverage report that is started by a call from sc_main
after the end of the simulation, the coverage data is ana-
lyzed. For IF, IF/ELSE a warning is generated if the con-
dition was always true/false and thus a block was never
executed. In case of FOR loops or WHILE loops we in-
form the user if the condition was false all the time and
therefore the loop body was skipped. For SWITCH-CASE
statements each case is identified that was never activated.
In total this allows to argue about the quality of the tests
defined by the testbench. If blocks have been identified
that have been never executed these blocks are dead code
or the testbench has to be improved.

In the following example the results of the coverage
analysis are shown for the program counter.

Example 3 A restbench has been written for the program
counter shown in Figure 3. The testbench includes three
tests. We applied our approach for this example. The au-
tomatically generated coverage report is shown in Figure
6. As can be seen the scenario to load a value into the pro-
gram counter by setting load enable to 1 was not executed.
We added another test for this behavior and thereby closed
this gap.

Program Counter

address+1
address |—

N
0 Data Memory
(RAM)
Muxe
1 ata
rite data

reset
push
pop

Stack Point

address

Control Unit

SEER—

clock

Program Memory

Figure 7. RISC CPU including data and pro-
gram memory

4. Case Studies

In this section we apply the approach to two examples.
The first example is a hardware oriented model, a RISC
CPU is considered. The second example is a system for
color region recognition in video data.

4.1. Hardware Model: RISC CPU

Before we apply our method to the RISC CPU the ba-
sic data of the CPU is briefly reviewed (see [9] for more
details).

Specification

In Figure 7 the components of the RISC CPU are
shown. The CPU has been designed as a Harvard archi-
tecture. The data width of the program memory and the
data memory is 16 bit. The size of the program mem-
ory is 4 KByte and the size of the data memory is 128
KByte. The length of an instruction is 16 bit. We briefly
describe the five different classes of instructions in the fol-
lowing: 6 load/store instructions, 8 arithmetic instructions,
8 logic instructions, 5 jump instructions and 5 other in-
structions. For the RISC CPU a compiler has been im-
plemented which generates object code from an assembler
program. This object code runs on the SystemC model,
i.e. the model of the CPU executes an assembler program.

Testbench Quality

Based on successful simulation of each component the
designer starts with the simulation at the system level. For
this purpose usually a high-level testbench is created that
enables a black-box test of the design. For the CPU such
a testbench corresponds to the execution of a set of as-
sembler programs including the analysis of the simulation
results. In the following we describe how the high-level
testbench was created and how this process was improved
by our approach. The SystemC model of the RISC CPU

1 DL R[6], O

2 IDH R[6], O

3 LDL R[2], O

4 IDH R[2], O

5 IDD R[3],R[2]

6 loopl:

7 ADD R[2],R[2],R[1]
8 IDD R[4],R[2]

9 ADD R[5],R[4],R[0]
10 SHR R[5],R[5]

11 XOR R[6],R[4],R[5]
12 STO R[2], R[6]

13 SUB R[3],R[3],R[1]
14 JNZ loopl

15 HLT

Figure 8. Assembler program for gray code

was automatically instrumented with code to analyze cov-
erage. The following non-trivial assembler program was
formulated to test the CPU.

Example 4 The assembler program shown in Figure 8
converts a set of numbers into gray-code. The gray code
encodes numbers such that in the binary encoding adja-
cent numbers have a hamming distance of 1. The number
n of elements to be converted is given in the data memory
at address 0. After clearing the register R[6] and R[2], n
is loaded into register R[3]. Then, in the loop each single
number is converted. The idea is to invert each bit if the
next higher bit of the input value (read from the data mem-
ory into register R[4]) is set to one. Therefore the input is
shifted by one and a bitwise XOR operation is performed.
The result R[6] of the conversion is stored in the data mem-
ory to the same position as the input.

After simulation of the gray code program on the CPU
our approach reported unexecuted code fragments in the
following modules: stack_point, mux4, mux5, mux6,
mux7 and alu. The handling for the cases of push and
pop operations in the stack_point module was not
tested, since the inputs from the control unit to this module
have been zero during the complete simulation. To test this
behavior another program that uses push and pop instruc-
tions has to be added.

For the multiplexor modules we found that in the
method do_select which describes the functionality of
a multiplexor only the ELSE-block for the select condition
was simulated. For the CPU this observation corresponds
to the fact that the select inputs of the multiplexors have
been zero all the time and thus only one data input was
routed to the multiplexor output. As can be seen in Fig-
ure 7 all multiplexors belong to the data path of the CPU.
To also test the effects on the CPU in case of data coming
through the other input, a different data path has to be ac-
tivated. The multiplexor mux5 is part of the stack pointer
data path and thus was tested by using stack pointer op-
erations (see above). For mux4 and mux6 the alternative
data path is activated by adding a program that uses sub-
routine calls. For mux7 we set the select input to one by
an additional program that uses I/O instructions.

In case of the ALU several CASE statements of the
main SWITCH statement have not been executed since not
all operations of the ALU are activated by the considered

™ Erosion BRAM Dilation BRAM Labeling
On-Chip-Peripheral-Bus (OPB)
| I |
Video- DDR-RAM Video-
Input Output
MPEG Video

Figure 9. Color region recognition schematic

assembler programs. Therefore we created another pro-
gram to check to remaining arithmetic operations.

In total by adding additional assembler programs to the
testbench the quality of the testbench was improved. Here
our approach supported the verification engineer by di-
rectly pointing to untested functionality of the RISC CPU.

4.2. High-Level Model: Color Region Recognition

In the second example we applied our approach to a
high-level SystemC model of a video processor System-
on-Chip. In contrast to the RISC CPU (which has been
implemented as an RTL design), this model resides at the
transaction-level of abstraction.

Specification

The configurable model EmVid consists of a set of Sys-
temC cores that can be integrated to build a video pro-
cessor. For video input and output, abstract TLM chan-
nels are used. The video processing IP cores use the Sys-
temC High-level Interface Protocol (SHIP) [10] for data
exchange over these channels. Communication with the
main memory (DDR RAM) is established by ST‘s TAC
protocol [12]. In the following, we consider a System-on-
Chip for color region recognition that is based on EmViD
cores. The system processes video frames in real-time and
draws rectangles around detected regions. A high-level
schematic of the system is shown in Figure 9. The sys-
tem has been configured as a pipelined architecture and
for the connection of the DDR RAM an IBM CoreCon-
nect On-Chip Peripheral Bus (OPB) is used. The complete
transaction-level interconnect (including an OPB simula-
tion model) is set up using the GreenBus TLM fabric [11].
EmViD can be found on [4].

The video processing starts by reading in an MPEG
video as video input. Then, dilation and erosion is per-
formed. In the labeling stage the regions are recognized
and the rectangles are added. Afterwards the core outputs
the image to a display.

Testbench Quality

As a concrete application we decided to detect skins in
the video data. We set the color range for the recognition
accordingly. The system segmentates the processed video
data in the labeling phase. Therefore adjacent pixels are
analyzed and the image is partitioned into a set of regions
using the defined color information.

Table 1. Video processor execution traces

Config | #ex. video | #ex. detect. | FPS video | FPS detect. | Comment

Bus only model 1 500 500 24.98 24.98 | ascending priority

Bus only model 2 451 872 22.55 43.60 | higher detection priority
Mixed bus/pipeline model 1 500 500 24.98 24.98 | lower pipeline priority
Mixed bus/pipeline model 2 500 999 24.98 49.90 | higher pipeline priority

In the overall video processor system the high-level
testbench consists of the video data (coming from video
files or a camera). We applied our approach to the sys-
tem. We simulated the system with different video files
and observed that depending on the video data different
parts of the system have not been executed. For example,
in the morph_segm module (labeling phase) the segmen-
tation algorithm checks the minimum region size with an
IF-condition. For video data that contains no skins or very
small areas no regions are detected. Here, our approach
presents directly the SystemC file with the exact source
code position of the never executed block(s). Note that this
improves the debugging during the development of such
high-level models significant. Moreover, analyzing the re-
sults of nested control structures — which are used in the
segmentation algorithm — our approach helps the verifica-
tion engineer to test the design thoroughly.

Further Design Analysis

During the analysis of the video processor model, we
also experimented with different communication architec-
ture configurations for the design. As one might expect,
some architectures are better suited than others to meet ef-
ficiency requirements such as a given frame rate. In par-
ticular, when connecting all components to a shared bus
with fixed-priority scheduling (here, the OPB), the overall
video processing performance highly depends on the pri-
ority allocation.

We utilized the ability of our coverage analysis to count
the number of executions for the various processes in the
model in order to identify the location of communication
bottlenecks in design configurations with poor frame rates.
Table 1 presents some results of the experiments. Lines 1
and 2 show the frame rates we got with a bus-only model.
While in line 1, the bus access priorities were assigned in
ascending order according to the sequence of video pro-
cessing stages in the model, in line 2 we assigned a higher
priority to the region detection components than to the
video display datapath. As expected, the frames per second
processed for region detection goes up, but as an uninten-
tional side effect due to higher bus workload, the number
of video frames displayed per second drops down.

Lines 3 and 4 show the results we achieved with a mixed
bus/pipeline model as depicted in Figure 9. Here, we
could considerably increase the video display frame rate
by just swapping the bus access priorities of two compo-
nents.

5. Conclusions

In this paper, we have presented an approach to mea-
sure the quality of a testbench for a SystemC design. The
approach is based on dedicated code coverage techniques
using a SystemC front-end. Thus, a reliable feedback for

untested parts of the design are presented to the user. This
data includes exact source code information in combina-
tion with SystemC specific information, like process con-
text and module hierarchy. In summary, our approach
helps to create a high quality testbench. The experiments
showed that our approach is suitable for both RTL and
TLM designs. Moreover, the TLM example revealed that
our analysis methodology also can support design space
exploration.

References

[1] B. Beizer. Software Testing Techniques. John Wiley &
Sons, Inc., 1990.

[2] L. Cai and D. Gajski. Transaction level modeling: an
overview. In CODES+ISSS '03, pages 19-24, 2003.

[3] R. Drechsler, G. Fey, C. Genz, and D. Grofle. SyCE: An
integrated environment for system design in SystemC. In
IEEE International Workshop on Rapid System Prototyp-
ing, pages 258-260, 2005.

[4] EmViD: Embedded Video Detection.
http://www.greensocs.com/GreenBench/EmViD.

[5] G. Fey, D. GroBe, T. Cassens, C. Genz, T. Warode, and
R. Drechsler. ParSyC: An Efficient SystemC Parser. In
Workshop on Synthesis And System Integration of Mixed
Information technologies (SASIMI), pages 148—154, 2004.

[6] R.S. French, M. S. Lam, J. R. Levitt, and K. Olukotun. A
general method for compiling event-driven simulations. In
Design Automation Conference, pages 151-156, 1995.

[7] http://gcc.gnu.org/onlinedocs/gec/Geov.html.

[8] C. Genz and R. Drechsler. System exploration of SystemC
designs. In IEEE Annual Symposium on VLSI, pages 335—
340, 2006.

[9] D. GroBe, U. Kiihne, and R. Drechsler. Hw/sw co-
verification of embedded systems using bounded model
checking. In Great Lakes Symp. VLSI, pages 43-48, 2006.

[10] W. Klingauf. Systematic transaction level modeling of em-
bedded systems with SystemC. In Design, Automation and
Test in Europe, pages 566-567, 2005.

[11] W. Klingauf, R. Giinzel, O. Bringmann, P. Parfuntseu, and
M. Burton. Greenbus: a generic interconnect fabric for
transaction level modelling. In Design Automation Conf.,
pages 905-910, 2006.

[12] S. Microelectronics. TAC: Transaction Accurate Commu-
nication. http://www.greensocs.com/TACPackage, 2005.

[13] Open SystemC Initiative, http://www.systemc.org. Sys-
temC 2.1 Language Reference Manual, 2005.

[14] T. Parr. Language Translation using PCCTS and C++: A
Reference Guide. Automata Publishing Co., 1997.

[15] SystemC Verification Working Group,
http://www.systemc.org. SystemC Verification Stan-
dard Specification Version 1.0e.

[16] S. Tasiran and K. Keutzer. Coverage metrics for functional
validation of hardware designs. IEEE Design and Test of
Computers, 18(4):36-45, 2001.

[17] J. Yuan, C. Pixley, and A. Aziz. Constraint-based Verifica-
tion. Springer, 2006.

