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Abstract

The clock rate of modern chips is still increasing and at
the same time the gate size decreases. As a result, already
slight variations during the production process may cause
a functional failure. Therefore, dynamic fault models like
the gate delay fault model are becoming more important.
Meanwhile classical algorithms for test pattern generation
reach their limits regarding run time and memory needs.

In this work, a SAT-based approach to calculate test pat-
terns for gate delay faults is presented. The basic transfor-
mation is explained in detail. The application to industrial
circuits – where multi-valued logic has to be considered –
is studied and experimental results are reported.

1 Introduction

Increasing clock rates and decreasing gate sizes in mod-
ern chips imply tight constraints on the physical realisa-
tion. Slight process variations during production may al-
ready cause a violation of these constraints. As a result, a
delay in the propagation of signal values may occur. Such
a functional defect is often only detectable while the chip is
operating at speed. Input stimuli to identify such a failure
are typically calculated on a gate level representation of the
circuit. Dedicated logical fault models such as the Path De-
lay Fault Model (PDFM) and the Gate Delay Fault Model
(GDFM) have been developed to model such delay effects.

Delay effects along individual paths from inputs to out-
puts are considered in the PDFM. Testing all such paths is
desirable. But due to the large number of paths already in
medium sized circuits, only a small subset can be consid-
ered. Therefore the GDFM is very important in practice.

This model has been proposed to detect delay effects occur-
ring at gates. Thus, addressing all faults is possible, even
for large industrial circuits.

Generating test patterns for such dynamic fault models
is computationally very intensive. Even calculating a test
pattern for a static Stuck-At Fault (SAF) is an NP-complete
problem [6]; although it is sufficient to model the circuit
in a single time frame. But for dynamic fault models the
dynamic behavior within (at least) two consecutive time
frames has to be considered. The circuit is initialised by
using a first test pattern, then a second test pattern is ap-
plied at speed to evaluate the functional correctness of the
circuit.

At the same time, the size of the circuits that have to
be modelled is steadily increasing and doubles every 18
months. As a result, classical ATPG algorithms reach their
limits. On the other hand, tools to solve the Boolean satis-
fiability (SAT) problem have been significantly improved in
the recent past [9, 10, 3]. Consequently, they were applied
to efficiently solve many practical problems ranging from
formal verification [1] and path sensitisation [7] to test pat-
tern generation for SAFs [12].

In this work, we propose a SAT-based approach to cal-
culate test patterns for the GDFM in industrial circuits con-
taining multi-valued logic. For this purpose, the circuit is
unrolled for two time frames. By this, the dynamic be-
havior is modeled adequately without using a special logic.
The classification of a Gate Delay Fault (GDF) is reduced
to injecting a SAF in the second time frame and forcing
a transition after the first time frame. Moreover, the ap-
proach handles industrial circuits containing multi-valued
logic. Therefore, a four-valued logic that includes tri-state
values and unknown values to model environment restric-
tions is applied. As suggested in [4], this multi-valued logic



Figure 1. Miter circuit Cm

is mapped to Boolean values to apply a modern Boolean
SAT solver. Experimental results for large industrial cir-
cuits show the feasibility of the approach.

The paper is structured as follows: The next section ex-
plains the main concepts of SAT-based ATPG, whereas Sec-
tion 3 deals with the GDFM and the reduction to SAFs. Ex-
perimental results are presented in Section 4. In Section 5,
conclusions are drawn.

2 SAT-based ATPG

In this section, SAT-based ATPG as introduced in [8, 13,
12] is briefly reviewed. The general transformation of an
ATPG problem into a SAT problem is considered in Sec-
tion 2.1, whereas in Section 2.2 the stuck-at fault model
(SAFM) is introduced. Section 2.3 shows the use of struc-
tural information to reduce the complexity of the SAT in-
stance. In Section 2.4, a multi-valued encoding for cir-
cuits with unknown signal values and signals with high
impedance is presented.

2.1 SAT Formulation

To find a test for a given circuit C and a fault F , the
faulty and the correct circuit are joined to form a miter cir-
cuit Cm [2] as shown in Figure 1. In a miter circuit, the
faulty and correct circuit share the same inputs (i1, ..., in).
The output behaviour of the two circuits is then analysed
by comparing the corresponding outputs (o1, ..., om) using
XOR gates. The output o of the miter is true, iff at least one
output value differs in the faulty circuit and the correct cir-
cuit. An assignment to i1, ..., in is a legal test, iff o evaluates
to true.

To apply a SAT solver, this miter circuit must be trans-
formed into a Boolean formula represented in Conjunctive

Figure 2. Stuck-at fault

Normal Form (CNF). A CNF is a conjunction of clauses.
A clause is a disjunction of literals, whereas a literal is a
Boolean variable or its complement. Each signal line x in
Cm is represented by a Boolean variable x and each single
gate g in Cm can be converted into a CNF Φg by building
the characteristic function χg of g. Each assignment of the
variables attached to g which evaluates χg to true is a legal
description of g. The following example clarifies the proce-
dure.

Example 1 Given an AND gate with the inputs a, b and the
output c, the CNF Φc

AND for this gate can be created by the
following Boolean transformations.

Φc
AND = (a ∧ b ≡ c)

= ((a ∧ b)⊕ c)

= (((a ∧ b) ∧ c) ∨ ((a ∧ b) ∧ c))

= ((a ∧ b ∧ c) ∨ ((a ∨ b) ∧ c))

= ((a ∧ b ∧ c) ∨ (c ∧ a ∨ c ∧ b))
= (a ∨ b ∨ c) ∧ (c ∨ a) ∧ (c ∨ b)

The CNF of other Boolean gates can be created similarly.

The CNF for Cm is therefore the conjunction of the
CNFs for each gate.

ΦCm =
∏

g∈Cm

Φg

To find a test which detects F , an additional contraint must
be added. The output o of the miter circuit must be set to 1.
As described above, this guarentees that at least one output
of C differs in the faulty version and the correct version.
This constraint is given by Φf .

A legal test for F is derived by applying a SAT solver to
ΦCm ∧ Φf . Every satisfiable assignment can be converted
to a test by evaluating the values of the Boolean variables
attached to the inputs. If there does not exist a satisfiable
solution, the fault is redundant.

2.2 Stuck-at Faults

The SAFM is a static fault model and describes a sig-
nal line, which stucks permanently at a fixed value 0 or 1.
Therefore, there exist two different types of SAFs depend-
ing on their fixed value: stuck-at-0 (SA0) and stuck-at-1
(SA1).



A well-known approach for generating test patterns for
the SAFM is the D-algorithm [11]. Here, the Boolean logic
is extended by the values D and D. The value D (D) is
applied to a signal line if the line is assigned to 1 (0) in
the correct and 0 (1) in the faulty circuit. The following
example clarifies the procedure:

Example 2 Consider the OR gate shown in Figure 2. A
SA1 fault occurs at line d. To find a corresponding test for
the given fault, the values of the inputs must be fixed to the
non-controlling value of the gate. This implies D on the
output.

2.3 Using Structural Information

Solving the CNF of a full miter circuit is very complex.
Therefore, some optimisations are done to improve the solv-
ing process. First, only a part of the miter circuit is included
in the SAT instance. Including the fanout-cone of F and the
fanin-cone of all influenced outputs is sufficient. The re-
maining part of the circuit is not relevant for generating a
test. Moreover, it is sufficient to duplicate the fanout-cone
of the fault, because the fault effect can only be propagated
therein. In this way, the size of the SAT instance, i.e. the
number of clauses and literals, can be reduced and the run
time and memory needs of the solving process decrease.

Another important improvement is the inclusion of struc-
tural information in the SAT instance as shown in [13].
There, the concept of D-chains – originally proposed for
the D-algorithm [11] – was applied in the ATPG algorithm
TEGUS.

For each gate g on a potential D-chain, an additional
variable gD is introduced. A gate g is on a potential D-chain
if it is on a path from the error location to an output. The
variable gD equals 1 if the fault effect is propagated to an
output via g or, in other words, if the value gc in the correct
circuit and the value gf in the faulty circuit differ:

gD → gc ⊕ gf

In the following, the formulation of this implication in SAT
is represented by ΦgD

D .
If a gate g propagates the fault effect to an output, at

least one successor h1, ..., hn must also propagate the fault
effect. Therefore, the following implication is included in
the SAT instance:

gD →
n∑

i=1

hi

Example 3 Figure 3 shows an example circuit including a
SA1 on line e. The continuous lines distinguish the original
circuit, while the broken lines mark the duplicated fanout-
cone of the fault. For line e and line g, additional variables
eD and gD are added, respectively.

Figure 3. Example circuit with duplicated
fanout-cone

Table 1. Encoding of L4

x cx c∗x Interpretation
0 0 0 x is 0
1 1 0 x is 1
U 1 1 x is unknown
Z 0 1 x is at high impedance

To calculate a test, the constraints described above are
added and the faulty line ef must be fixed to 1. This results
in the following CNF ΦSA1:

ΦSA1 = Φe
OR ∧ Φf

AND ∧ Φg
AND

∧Φgf
AND ∧ ΦgD

D ∧ (ef ) ∧ (gD)

The corresponding test is: {a = 0, b = 0, c = 1, d = 1}

2.4 Multi-Valued Logic

As described above, each signal line in a circuit can
be encoded by one Boolean variable. However, indus-
trial circuits contain multi-valued elements, e.g. tri-state
elements, and restrictions which cannot be modelled by
Boolean logic. Therefore, two additional values U (un-
known) and Z (high impedance) are needed. An unknown
value is often applied to inputs, which cannot be controlled,
e.g. due to the integration in a larger circuit. A Z value can
be produced e.g. by a busdriver. This results in a four-valued
logic L4 = {0, 1, U, Z}.

Because SAT is usually defined for formulas in Boolean
logic, each value of L4 is encoded by two Boolean variables
c, c∗. There are 24 possible encodings for L4. A detailed
discussion is given in [4]. The encoding for a signal x used
in our approach is shown in Table 1.

3 Gate Delay Faults

In contrast to the SAFM, the GDFM is a dynamic fault
model. It describes a delayed signal at a gate. Due to this,



Figure 4. Unrolled example circuit

the faulty value is propagated. There exist two different
types of GDFs: rising and falling. A rising GDF describes
a delayed transition from logic 0 in the initial time frame t1
to logic 1 in the final time frame t2, whereas the falling GDF
describes a delayed transition from logic 1 in t1 to logic 0
in t2.

To detect a GDF, two vectors v1, v2 are needed. The
vector v1 is the test vector for t1 and the vector v2 the test
vector for t2. The initial vector sets the initial value of the
transition, whereas the final vector causes the transition at
speed. To detect a fault, the transition must be propagated
to an output.

As shown in [5], GDFs can be modelled by injecting
SAFs. Therefore, the initial value of the faulty line must
be fixed to the initial value of the GDF. Then, a SA0 (SA1)
fault is injected at the faulty line in t2 for a rising (falling)
GDF to guarentee a detection of a faulty value, i.e. a delay,
in t2 and its propagation to an output.

For this reason, the circuit C is unrolled by duplicating
it. The original circuit C1 represents t1 and the duplicated
circuit C2 represents t2. The sequential behaviour, i.e. the
correct behaviour of latches, is modelled by connections be-
tween the original and the duplicated circuit.

To apply a SAT solver to the problem, the unrolled cir-
cuit Ct must be transformed into a CNF derived from the

following equation:

ΦCt = ΦC1 ∧ ΦC2 ∧ Φseq

The CNF for C1 is represented by ΦC1, whereas ΦC2 is
the CNF for C2. The term Φseq describes the sequential
behaviour of Ct by connecting the pseudo primary outputs
of C1 with the pseudo primary inputs of C2. Note, that
the CNF of the circuit is not derived directly from Boolean
logic, but from the Boolean encoding of the multi-valued
logic presented in Section 2.4.

Considering the constraints for modelling a GDF repre-
sented by Φfm, the CNF Φtest for a GDF test is given by:

Φtest = ΦCt ∧ Φfm

Example 4 Figure 4 shows a circuit in original form (up-
per part) and in unrolled form (lower part) with a falling
GDF at line e. After duplicating the circuit, the pseudo pri-
mary output g is the input of the corresponding pseudo pri-
mary input a2 in the duplicated alle elements of the circuit.
To initialise the test in the initial time frame, line e1 is fixed
to 1, whereas a SA1 fault is injected at e2 to propagate the
delayed signal in the final time frame to an output.

The CNF ΦCt for the unrolled circuit is given by the con-
junction of the following CNFs ΦC1, ΦC2 and Φseq:

ΦC1 = Φe1
AND ∧ Φf1

OR ∧ Φg1
NAND

ΦC2 = Φe2
AND ∧ Φf2

OR ∧ Φg2
NAND

Φseq = (g1 ∨ a2) ∧ (g1 ∨ a2)

The constraints for modelling the falling GDF on line e are
shown in the following equation:

Φfm = (e1) ∧ Φg2f
NAND ∧ Φg2D

D ∧ (e2f ) ∧ (g2D)

A corresponding test for the falling GDF on line e is:

v1 = {a1 = 1, b1 = 1, c1 = 1, d1 = X}
v2 = {b2 = 1, c2 = 1, d2 = X}

Note, that in practice an additional constraint must be
added. The values of a primary input must be equivalent in
both time frames. This is due to the test equipment, where
it is hard to change the test value on the primary inputs at
speed during the test procedure. This constraint is consid-
ered in our approach and given by the following CNF Φeq:

Φeq = (b1 ∨ b2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (c1 ∨ c2)
∧(d1 ∨ d2) ∧ (d1 ∨ d2)

The test presented above is therefore invalid, because d has
no valid assignment in practice. A valid test is:

v1 = {a1 = 1, b1 = 1, c1 = 1, d1 = 0}
v2 = {b2 = 1, c2 = 1, d2 = 0}



Table 2. Memory usage and run time for ATPG
Stuck-at Gate delay

circuit in out la tri time mem time mem
p44k 739 56 2175 0 3:13h 89.6MB >20h 111.6MB
p77k 171 507 2977 0 0:34m 133.1MB 4:49h 153.3MB
p80k 152 75 3878 0 59:15m 180.0MB 5:40h 284.9MB
p88k 331 256 4309 412 16:12m 128.3MB 2:22h 183.3MB
p99k 167 94 5747 0 13:25m 124.6MB 1:03h 178.8MB
p462k 1815 1193 29205 597 3:41h 748.9MB 13:41h 901.4MB
p565k 964 210 32409 169 2:41h 948.8MB 5:35h 1.246GB

Table 3. Instance sizes
Stuck-at Gate delay

Max Mean Max Mean
circuit Vars Cls Vars Cls Vars Cls Vars Cls
p44k 101,491 328,732 60,446 209,001 201,692 667,582 86,661 299,822
p77k 240,912 827,614 848 2,765 42,507 154,039 6,689 22,462
p80k 356,452 1,293,556 7,483 22,697 611,070 2,218,834 20,768 67,777
p88k 93,133 298,652 5,047 15,676 222,865 760,032 17,976 55,152
p99k 34,640 129,746 5,301 16,139 268,238 886,489 10,288 31,919

p462k 391,113 1,361,732 7,336 22,399 764,654 2,525,819 31,159 92,039
p565k 1,705,996 5,536,393 4,663 15,638 259,513 916,592 11,920 35,727

4 Experimental Results

The techniques presented in the previous sections have
been implemented in C++. Experimental results for this
implementation on some industrial benchmark circuits from
NXP Semiconductors GmbH, Hamburg, Germany are pro-
vided in this section. The experiments were carried out on
an AMD Athlon 3500+ (2.2 GHz, 4096MByte, Linux). As
the ATPG core engine, an improved version of the tool PAS-
SAT [12] was used. Note, that a fault simulator is used for
identifying other faults, that are detected by a generated test
as it is industrial practice. As a result, the set of tested faults
depends on the ATPG algorithm.

Table 2 presents the run times and the needed memory
for ATPG. In the first column the name of the circuit is pre-
sented. Here, the number within the name shows the num-
ber of gates the circuit contains, i.e. p565k means, that there
are more than half a million gates in the circuit. Hereafter,
further details of the circuit are given, e.g. column in gives
the number of inputs, column out the number of outputs,
la the number of latches and tri the number of tri-state ele-
ments.

The succeeding columns are divided into two parts. The
first part presents results of ATPG for the SAFM and the
second part shows results of ATPG for the GDFM. For
both fault models, the run time (column time) and the used
memory (column mem) are given. The run time for GDFs
is higher than the run time for SAFs by a factor of 2-13,

whereas the memory usage only increases approximately by
a factor of 1.5. Although considering a more complex fault
model, the run times and memory needs for the GDFM are
still comparable to the results for the SAFM.

The longer run times of ATPG for GDFs are caused by
several aspects. First, because of unrolling the circuit, the
depth of the circuit is larger than for SAFs. Therefore the
SAT instance contains usually more clauses and variables
as it is shown in Table 3. This table is again divided into
two parts. The left part lists the data for SAFs and the right
part shows the data for GDFs. The columns Max and Mean
give the largest and the average size, respectively, where the
columns (Cls) and (Vars) give the number of variables and
clauses, respectively.

As expected, – due to unrolling the circuit – the SAT in-
stances for GDFs are generally much bigger (approximately
by a factor of 2-7) than the SAT instances for SAFs. Only
for p77k and p565k the maximum size of the variables and
clauses is larger while testing SAFs. But the average size of
the instances shows, that the large numbers are exceptions.
This is explained by the use of a fault simulator, because
the set of SAFs, which are injected for modelling GDFs, is
different to the set of SAFs.

Table 4 shows the number of targets (column targets),
the number of redundant faults (column redundant) and the
number of aborted faults (20 sec per fault) (aborted) for
both fault models. The large difference of the run times
of p77k in both fault models can be explained by compar-



Table 4. Fault Coverage
Stuck-at Gate delay

circuit targets redundant aborted targets redundant aborted
p44k 64,105 2,418 0 109,806 39,169 0
p77k 163,310 9,181 0 282,728 199,008 0
p80k 197,834 124 0 311,426 14,289 62
p88k 147,742 2,756 0 156,744 22,699 0
p99k 162,019 2,141 0 273,376 28,015 2

p462k 673,949 132,112 10 1,135,408 485,848 37
p565k 1,026,851 26,917 0 1,525,586 88,536 0

ing the number of redundant faults for the SAFM and the
GDFM. While for the SAFM the fault coverage is about
94%, the fault coverage for the GDFM is about 30%.

Although the GDFM is a more powerful (dynamic) fault
model than the SAFM, the number of aborted GDFs re-
mains very small in comparison to the number of the targets
in the circuit. Almost all faults can be classified.

5 Conclusions

In this paper we presented a SAT-based approach to cal-
culate tests for the GDFM. We showed the modelling of
GDFs by injecting SAFs and studied the formulation for a
modern Boolean SAT solver in detail. Experimental results
for industrial circuits containing multi-valued logic were
provided, which show, that a SAT-based approach is well
suited for the GDFM as well.
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