
Modeling a Fully Scalable Reed-Solomon Encoder/Decoder over GF(pm) in
SystemC

André Sülflow Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

Email: {suelflow,drechsle}@informatik.uni-bremen.de

Abstract

In this paper we describe how to model arithmetic cir-
cuits over GF(pm) in SystemC. An extension of a GF(2m)
multiplier is presented to support GF(pm) arithmetic as
well.

A full integration in the simulation environment is dis-
cussed and the proposed solution can be fully synthesized
down to hardware. This finds application in e.g. crypto-
graphic systems.

As a case study a Reed-Solomon encoder/decoder system
was developed with full GF(pm) encoding/decoding capa-
bility. It is shown that the modeling of a HW/SW co-design
system in SystemC can improve the speed of simulation by
a factor of up to 17.

1. Introduction
From the beginning of the computer, error detection

and correction of transmitted data is an important factor
for the operativeness. In the 1960’s the Bose-Chaudhuri-
Hocquenghem (BCH) [2, 10] codes were developed for
mostly binary purposes. An extension to this is the non-
binary Reed-Solomon-Code (RS) subclass, which has the
advantage of transmitting symbols of multiple bit width and
the possibility of error detection and correction. The RS-
codes are widely used and have recently found application
in e.g. communication systems or for DVD players. Thus,
there is a need for developing efficient hardware simulation
tools for RS-codes.

RS-codes are based on Galois Fields (GF) [2, 10], also
known as Finite fields, typically over GF(2m). In this pa-
per the more general approach over GF(pm) is proposed.
The GF(pm) arithmetic is implemented in SystemC [14],
where we use the language to model hardware and software.
The SystemC feature of replacing hardware modules with its
software equivalents can help to find suitable bottlenecks in
the complete system and to improve the time needed for
simulation.

As a case study an implementation of a scalable RS en-
coder and RS decoder system that is suitable for HW/SW
co-design refinement steps is proposed. The granularity of
our design is near to Register-Transfer Level (RTL). This
generates extra overhead for the simulation kernel of Sys-
temC, but simplifies the synthesis step.

The paper is structured as follows: Section 2 starts with a
short description of the arithmetic in GF(pm) and provides
an overview of the encoding/decoding steps of RS-codes.

The modeling of our system follows in Section 3 with ad-
ditionally experimental evaluation in Section 4. Finally, the
results are summarized.

2. Preliminaries
2.1. Galois Fields

Galois Fields (GF) [10] are a mathematic construct with
a finite number of elements. The number of elements in
a field is given by a prime number p and contains the p
elements: 0,1, .., p− 1. Galois Fields built from a prime
number p are denoted as GF(p).

In GF(p) the following inverse element properties hold
[10]:

• Inverse element of addition: ∀a ∈ GF(p) : ∃a−1
add : a+

a−1
add = 0

• Inverse element of multiplication: ∀a ∈ GF(p),a 6= 0 :
∃a−1

mul : a ·a−1
mul = 1;a = 0 : a−1

mul = 0

And additionally the following basic operations hold
[10]:

• Addition: add(a,b) = (a+b) mod p

• Multiplication: mul(a,b) = (a ·b) mod p

• Subtraction: sub(a,b) = add(a,mul(b, p−1))

• Division: div(a,b) = mul(a,b−1
mul)

An extension of GF(p) is GF(pm) with m ∈N. GF(pm)
forms a polynomial of degree m− 1, with coefficients in
GF(p). E.g. 1x2 +1x+0 is an element of GF(23).

In GF(pm) a primitive irreducible polynomial F of de-
gree m is defined for operations to ensure the finiteness. Ir-
reducible means that the Greatest Common Divisor (GCD)
of F and all polynomials of GF(pm) is 1. Additionally
for each F there exists a generator element α that creates
the field by building the powers of α. The pm elements of
GF(pm) are 0,α0,α1, ..,αpm−2.

The operations add, mul, sub, div and the inverse el-
ements of GF(p) are defined for GF(pm), too: Addi-
tion in GF(pm) is performed by splitting an element into
the m components followed by a component-wise addi-
tion in GF(p) [13, 12]. Multiplication of two elements
a,b ∈ GF(pm) is a multiplication of a and b modulo F :

(a · b) mod F . If a and b are given in the form a = αk and
b = αl multiplication is an addition of the powers followed
by a modulo operation: αk ·αl = α(k+l) mod (pm−1) [13, 12].

Example: Consider GF(23) and F = x3 + x1 +1
with generator element α = 2. By taking the suc-
cessive powers of α all elements, except the zero
element, of GF(23) can be created: 20 = 1,21 =
x,22 = x2, ...,26 = x2 +1.

Adding the elements a = x2 + x+1 and b = x re-
sults in a + b = (1 + 0)x2 +(1 + 1)x +(1 + 0) =
x2 +1.
Multiplication of a and b is computed as: (a ·
b) mod F = (x3 + x2 + x) mod (x3 + x + 1) =
x2−1 = x2 +1. Regarding the generator element
with a = α5 and b = α1, the operation is defined
as: α5 ·α1 = α5+1 = α6 = x2 +1.

2.2. Reed-Solomon-Codes
Reed-Solomon-Codes (RS-Codes) are a non-binary sub-

class of the Bose-Chadhuri-Hocquenghem (BCH) block
coding codes [2, 10]. BCH codes are multiple-error-
correcting codes and are widely used for data-transmission
control and repair. The RS code symbols are elements of
GF(pm) with p ≥ 2 and m ≥ 1. This makes them non-
binary. Typically codes over GF(2m) are used, but in the
following the discussion is not restricted to p = 2.

RS-Codes are specified by two parameters N and K
which determine the maximum number of correctable sym-
bol errors t = N−K

2 . N = pm − 1 is the total number of
symbols in a transmission block, where K = pm − 1− 2t
symbols are the information symbols to be transmitted and
the remaining N −K symbols are used for the parity. The
RS-Code is a maximum distance code with a minimum dis-
tance of dmin = N −K + 1. Thus, it is optimal for data-
transmission [2, 10].

2.2.1 Encoder

An encoder has to transmit a block of K symbols of GF(pm)
with error correction. This information block can be de-
scribed as an information polynomial i(x) with the K sym-
bols as coefficients [13, 12, 11]:

i(x) = iK−1xK−1 + iK−2xK−2 + ...+ i0 (1)

For encoding i(x) the equation

c(x) = i(x) · x2t − (i(x) · x2t) mod g(x) (2)

is used. The degree of c(x) (the codeword polynomial) is
N − 1; i(x) has degree K − 1 and g(x) (the generator poly-
nomial) has degree 2t.

The first part (i(x) · x2t) is a simple up-shift operation of
the information polynomial i(x). The second part ((i(x) ·
x2t) mod g(x)) describes the generation of the 2t = N −K
parity symbols and is the remainder of the operation. Thus,
by subtracting the remainder from i(x) · x2t the result c(x)
holds c(x) mod g(x) = 0.

The generator polynomial g(x) = gN−KxN−K + ...+g0 is
generated by the equation:

g(x) = (x−α
j0)(x−α

j0+1)...(x−α
j0+2t−1) (3)

For j0 any integer value with j0 ≥ 1 can be chosen [2, 12],
but typically j0 = 1 is used. In the following j0 = 1 is as-
sumed. One important property of Equation (3) for the de-
coding procedure is the evaluation to zero for x = α1, ...,α2t .
Thus, Equation (2) evaluates to zero for all x = α1, ...,α2t

with a mod 0 = a, too.

2.2.2 Decoder

Assume a transmitted polynomial:

r(x) = rN−1xN−1 + rN−2xN−2 + ...+ r0 (4)

The error between c(x) and r(x) can then be measured as:

e(x) = c(x)− r(x) (5)

If there are no errors, e(x) is zero and r(x) = c(x) holds.
Otherwise there is at least one data-transmission error
somewhere in r(x) [13, 12, 11].

To test r(x) for errors the so called 2t syndromes have to
be calculated:

Si = r(αi) ∀i = 1, ..,2t (6)

If all Si syndromes are zero, it can be assumed that r(x) has
no errors and the data-transmission was correct. This uses
the evaluation to zero property of Equation (2) described
above. The first K (N, ..,N −K) coefficients are then the
coefficients of the information polynomial i(x).

If there is at least one syndrome unequal to zero, then a
data-transmission error occurred. To restore c(x) from r(x)
the following steps have to be performed:

1. Find error-location(s)

2. Find error-magnitude for each error-location

3. Perform error-correction

Suppose there are v,1 ≤ v ≤ t errors in r(x). Then the error
polynomial e(x) can be written as

e(x) =
v

∑
l=1

e jl x
jl = e j1 x j1 + ...+ e jvx jv , (7)

where jl specifies the error-location searched and e jl is the
magnitude to be added to r jl to get c jl .

Find error-location(s):
To find the v error-location(s), the smallest length vector

Λ that satisfies

S j +
t

∑
k=1

S j−kΛk = 0 j = t +1, ...,2t (8)

has to be found [2].

The coefficients of the vector Λ are then used to form the
error-locator polynomial [2] with a maximum degree of t:

Λ(x) =
v

∏
l=1

(1− xα
jl) = 1+Λ1x1 + ...+Λvxv (9)

In the literature often the Berlekamp-Massey Algorithm
[2, 1] is used to find Λ(x), but the Extended Euclidean Algo-
rithm [2] can also be applied. The term 1−xα jl in Equation
(9) evaluates to zero for x = α jl−1, due to the inverse ele-
ment property of Galois Fields. The roots x of Λ(x) are then
the inverses of the error-locators a jl .

To find the v roots the Chien search algorithm [3] is
applied. This brute-force algorithm evaluates Λ(x) for all
x = 0, .., pm−1 and returns as the result the v roots which are
evaluating to zero.

Find error-magnitude for each error-location:
To find the error-magnitude e jl the Forney Algorithm [5]

is used. Therefore, the syndrome polynomial s(x) is formed
with the syndrome coefficients calculated above[12] :

s(x) = S2tx2t +S2t−1x2t−1 + ...+S1x+0 (10)

The error- magnitude polynomial Ω(x) is then defined as:

Ω(x) = (Λ(x) · (s(x)+1)) mod x2t+1 (11)

The error-magnitudes e jl are calculated by:

e jl =
−α jl ·Ω(α jl−1)

Λ′(α jl−1)
(12)

where α jl and α jl−1 are computed by the Chien search al-
gorithm. Λ′(x) is the derivative of Λ(x), computed by:

Λ
′(x) =

v

∑
j=1

(jΛ j)x j−1 (13)

Perform error-correction: After all the steps above,
there are:

1. v Λ(x)-roots: α j1−1
,α j2−1

, ..,α jv−1

2. and the error-magnitudes e j1 ,e j2 , ..,e jv

The inverse element of multiplication of the root α jl−1 is
than the searched error-locator α jl . The determination of
the error-location jl of α jl is known as discrete logarithm
problem. But because the number of elements in GF(pm)
is small, it is possible to create a logarithm lookup-table by
building the successive powers of α.

Now e(x) is computed by setting the error-magnitude e jl
for location x jl . The error correction can be applied by
adding e(x) to r(x) to get the original c(x).

c(x) = e(x)+ r(x) (14)

void compute ()
{

/ / (i o p a ∗ i o p b) % RADIX p
i n t r e s u l t = i o p a . r e a d () ∗ i o p b . r e a d () ;
f o r (i n t i = 0 ; i < (RADIX p − 2) ; i ++)
{

i f (r e s u l t >= RADIX p)
{

r e s u l t = r e s u l t − RADIX p ;
}

}
o r e s u l t . w r i t e (r e s u l t) ;

}

Figure 1. Multiplication in GF(p)

2.3. SystemC
SystemC is a freely available C++ class library [14]. This

includes the source-code, what makes it platform indepen-
dent. With a standard C++-compiler an executable is cre-
ated for efficient simulation run times.

In SystemC the system can be modeled at different lev-
els of abstraction - from transaction, down to RTL. Thus, a
step-by-step refinement from software to hardware is pos-
sible. SystemC defines a set of classes for implementing
modules and their interconnections. Hence, it is possible
to use and compare different implementations of the same
module. A first step to model multi-value circuits in Sys-
temC has been proposed in [6].

3. Hardware Modeling
In the following a description of the modeling of

GF(pm) and a Reed-Solomon encoder/decoder in SystemC
is given.

A “pure” hardware and a software system are devel-
oped, so that parts of both systems are fully replaceable in
SystemC. The hardware structure is scalable over GF(pm).
This also holds for the Reed-Solomon encoder/decoder
hardware.
3.1. Galois Fields

In software addition and multiplication in Galois Fields
can be implemented by using the C++ standard operators
+, ·,% for the int basic type or to use addition and mul-
tiplication tables. But especially the last approach is often
not sufficient for scalable hardware simulations. In the lit-
erature different implementations for adders and multiplier
over GF(2m) have been proposed e.g. [2, 10, 4, 7]. In
the following an extension of the one in [7] is presented for
modeling a GF(pm) multiplier.

3.1.1 GF(p)

The result of addition in GF(p) ((a+b) mod p) is a simple
integer addition plus an optional required modulo operation.
The modulo operation is required, if the result exceeds p−
1. This is done by subtracting p from the result. The basic
type int is used for implementing the behavior.

Multiplication in GF(p) ((a ·b) mod p) is similar to ad-
dition. Because a and b have a max value of p−1, the mul-
tiplication result has a maximum of (p−1)2. Thus, p has to
be subtracted from the result as long as the result is larger

M
u
l

M
u
l

b

yo

d

c

hb f a

dlast

yi

Ctrl

Ctrl

Ctrl

0

p!1

0

0

A
d
d

Switch

A
d
d

M
u
l

S
w
it
ch

Switch

Figure 2. Multiplier cell for GF(pm)

than p−1. This needs a maximum of p−2 subtractions and
is shown in Figure 1.

Note, for GF(2) addition is a simple XOR-operation,
while multiplication is an AND-operation. For p > 2 an im-
plementation that uses multiple bit-encoding for the same
element of GF(p) can be used. For example in GF(3) [9]
uses a two-bit representation for each element (0=00,01;
1=10; 2=11). For this, a multiplication in GF(3) is a simple
AND-operation of the first bit in combination with an XOR-
operation of the second bit.

3.1.2 GF(pm)

Each element of GF(pm) is a vector of m elements of
GF(p). These are the coefficients of polynomials. There-
fore, addition of two elements is a component wise addition
in GF(p) and involves m additions over GF(p) in parallel.

For multiplication the GF(2m) multiplier proposed in [7]
as an extension of [4] is used. This array-type multiplier is
used e.g. for Digital Signal Processing (DSP) and takes one
clock-cycle for the multiplication. It is build of (m + 1) ·m
multiplier cells. Each of these cells performs one calcula-
tion step in parallel. The structure of the original multi-
plier cell was changed by adding two multipliers and one
extra input and replacing some GF(2m) specific gates by its
GF(pm) counterpart. The modified structure for GF(pm)
is shown in Figure 2. The adders and multipliers in the
cell perform computation over GF(p). The additional input
dlast is connected with the input d of the left most cell
in the current row. This satisfies the modulo F operation, if
required.

For the Forney Algorithm [5] and the error-correction
step an inverter- and a log-module in GF(pm) are needed.
Both of them are implemented as software in our system.
So this software version simulates the behavior of a static
lookup-table in hardware and has a response time of one
clock-cycle. An alternative implementation in hardware for
the inverter-module could be a one multiplier implementa-
tion and the use of brute-force to get the inverse element.
But it takes in worst case pm clock-cycles (pm−1 for brute-
force plus 1 for the result). Computing in parallel for all pm

elements takes pm multipliers. Because of the high cost of

+

*

*

+

out

...

...

g1g0

Ctrl

Ctrl

g(2t−1)

k message symbols
p−1

0

+

**

Figure 3. LFSR Reed-Solomon Encoder for
GF(pm)

C
 O

 N
 T

 R
 O

 L

Berlekamp Massey

Syndrom−Calculator

Omega Calculator

Chien Search

Error−Correction

Failure
Control
Data

...

Syndrom−Polynom[2t+1]

r(x) [N]

Forney Algorithm

Omega[t]

Lambda[t]

ro
ot

 t

ro
ot

 1

ro
ot

 0

Error−Polynom e(x) [N]

decoded r(x)[N]

number of zero syndroms

decoded r(x)[N]

Figure 4. A Reed-Solomon Decoder over GF(pm)

a multiplier the scaling is very expensive.
3.2. Reed-Solomon Encoder

Encoding an information polynomial i(x) is described in
Equation (2) and can be efficiently implemented with a Lin-
ear Feedback Shift Register (LFSR). An LFSR implementa-
tion is shown in Figure 3. The p−1 multiplier is an exten-
sion for GF(pm) encoding and is not necessary for GF(2m)
symbols. The g0, ..,g(2t − 1) inputs are the coefficients of
the generator polynomial.

During the first K clock-cycles the K message symbols
of i(x), starting at the highest degree, are shifted into the
encoder and can be read at the out-port. After K clock
cycles the registers contain the remainder polynomial and
have to be shifted out of them. For this, the two switches are
changed from true to false and the remainder is sent clock-
wise to the out-port. Altogether, N symbols are sent to the
out-port and form the codeword polynomial c(x) with high-
est degree N − 1 first: i(x) (K symbols) and the remainder
(N−K symbols).
3.3. Reed-Solomon Decoder

Our decoder consists of six submodules which are con-
nected as shown in Figure 4. Each of these modules is

*

+

a^i

r(x) Si

Figure 5. Calculates Si by evaluating r(x) with αi

implemented as a state-machine, but all arithmetics over
GF(pm) are computed by internally connected modules like
adders, multipliers and inverters.

There are three different types of connection-signals:

1. Data [z]: z coefficients of type GF(pm), equiv-
alent to a polynomial of degree z − 1. Note: In a
complete hardware environment this class is used for
data-transmission over SystemC-signals only. And in a
mixed hardware/software environment it is possible to
make a C++-method call.

2. Control: Two Boolean signals. One for starting a
module and the other for sending/receiving a compu-
tation finished.

3. Failure: Boolean failure signal, true if a failure oc-
curred

Table 1. Used number of arithmetic modules over
GF(pm)

Module Mul Add Reg Inv Log
Syndrom Calculator. 2 1 1 0 0
Berlekamp-Massey 3t+2 2t 2t 1 0
Omega Calculator. 1 1 1 0 0

Chien Search 1 1 1 0 0
Forney 4 2 2 2 1

Error-Correction 0 N 0 0 0

In Table 1 the type and the corresponding number of
gates used for the submodules of the decoder are shown.
Only the modules Berlekamp-Massey and Error-Correction
are dependent on the choice of the parameters t or N. All
the other modules have a constant numbers of gates. This is
an important factor for the scalability.

In the following the most important modeling parts of
the decoder module are briefly described.

The syndrome calculator uses the hardware of Figure 5
to calculate Si = r(αi). This implementation takes N clock-
cycles for evaluation and follows the Horner equation [8]:

r(x) = (((rN−1x)+ rN−2)x+ ...)+ r0 (15)

Altogether it takes 2t ·N clock-cycles for calculating the
2t syndromes. This form of polynomial evaluation is also
used in the Forney Algorithm module, where polynomials
of degree t are evaluated.

The Figures 6 and 7 show the modeling of the discrep-
ancy calculator and the temporary needed polynomial T (x)
calculation as part of the Berlekamp-Massey module. It uses
a state-machine for the computation as described in [2].

The modules Omega Calculator, Chien Search, Forney
Algorithm and Error Correction are straight-forward imple-
mented (see Section (2.2.2)). The details are left out due to
page limitation.

Discrepancy

*

*

*

+ + +

... S1S2t S2t−1 S2

L0

Lt

L1

... ...

Figure 6. Discrepancy calculator

Discrepancy
...

B1 B0

T0

L0

Tt T1T2

Lt

Lt−1

L1 +

+

+

* * *
*

p−1

...

Bt−1

Figure 7. Hardware for computing T (x) = Λ(x)−
discrepancy ·X ·B(x)

4. Experimental Evaluation
All techniques described above have been implemented

in C++/SystemC. The experiments have been carried out on
a AMD Athlon 64 3700+ (2.2 GHz) with 1 GByte running
Linux. The focus is on the following criteria:

1. Simulation run time

2. Scalability of the design

3. HW/SW co-designs of the Reed-Solomon En-
coder/Decoder

The results of regarding these criteria can e.g. be used for
refinement and optimization steps. Especially the run time
can show limits for the size or granularity of the SystemC
design.

The first section focuses on the performance of GF(pm)
arithmetic in hardware in comparison to a software model in
SystemC. Then the evaluation of these modules as part of the
Reed-Solomon encoder/decoder architecture is described.
4.1. Galois Fields

In this section the focus is on the influence of the chosen
values of p and m on the run time. For the experiments
the adder and multiplier implementations over GF(pm) in
hardware and software are used, respectively. Each of the
four hardware- and software-modules is tested for 1 million
clock-cycles with random values for the two operators and
the run time is measured in CPU seconds.

The results in Table 2 show for the adders in hardware
differences with a maximum of two seconds in comparison
to the software implementation. The choice of p shows no
significant influence on the run time. Thus, the only impor-
tant factor for scalability is the choice of m.

The run time of multiplication in hardware over GF(2m)
grows non-linear, while in software a linear growth was

Table 2. Simulation time in GF(pm)
Hardware Software

GF(pm) Add Mul Add Mul
23 3.58 12.16 3.30 5.03
24 4.12 24.59 3.76 6.82
25 4.81 47.75 4.28 8.66
26 5.23 73.37 4.68 10.10
27 5.81 119.62 5.01 11.74
28 6.31 226.29 4.49 13.88
36 5.51 125.67 3.75 12.46
54 4.32 47.94 3.06 8.24
73 3.83 24.82 2.72 5.78

172 3.08 9.23 2.23 4.20

measured. Multiplication in GF(pm) for p > 2 needs a sim-
ilar run time as for GF(2m+1).
4.2. Reed-Solomon Codes

For the Reed-Solomon encoder/decoder the simulation
times of a HW/SW co-design in comparison to a “pure”
hardware implementation are studied. The later one is de-
noted as HW in the following. Here, especially the arith-
metic over GF(pm) with 2t adders and 2t +1 multipliers for
the encoder and 5+N +2t adders and 10+2t multipliers for
the decoder (see Table 1) is very complex. In the HW/SW
co-design setting the modules for GF(pm) arithmetic were
replaced with a software solution. The hardware specific
parts of the SystemC modules were substituted by a software
method call, where the underlying addition and multiplica-
tion algorithm is equivalent. From the run time (t) and the
number of encoded messages (n), the time (tm) for encod-
ing one message is computed with the equation: tm = t/n.
Considering an evaluation in GF(pm), then N = pm−1 and
K = N − 2 · t are chosen. t = 2 and a clock-cycle rate of
100000 was chose for all settings.

Table 3. Time for encoding/decoding in GF(pm)

Encoder Decoder
GF(pm) n tm tm n tm tm

HW HW/SW HW HW/SW
23 10000 < 0.01 < 0.01 746 0.03 0.01
24 5555 < 0.01 < 0.01 450 0.14 0.02
25 2941 0.01 < 0.01 251 0.65 0.08
26 1515 0.04 < 0.01 133 3.14 0.27
27 769 0.17 < 0.01 68 15.07 1.35
28 387 0.74 0.25 34 106.65 6.56
36 136 0.72 0.07 12 426.00 43.83
54 159 0.28 0.04 14 129.57 20.07
73 289 0.08 0.01 26 15.15 4.69
172 344 0.02 < 0.01 31 4.29 1.90

Table 3 shows the results for HW vs. a co-design model-
ing. By increasing m and constant p the number of encod-
ed/decoded messages per 100000 clock-cycles decreases.
This is the same for an increasing of parameter p with con-
stant m. This gap is a result of the different choices for
N and K and the resultant extra overhead necessary for
e.g. Chien-Search algorithm. The use of a HW-SW model
results in speed-ups ranging from 4 to 17.

The experiments were carried out for different values
for N and K. Since it is possible to build shortened Reed-
Solomon encoder/decoder [2, 10], the values given are up-
per bounds on the run time. Thus, the decoding of the same
number of symbols in GF(28) = GF(256) is more than
25 times slower than in GF(172) = GF(289). Of course
a higher bit width for data-transmission is needed, but for
e.g. mobile systems this could bring significant speed-up.

5. Conclusions and Future Work
In this paper we presented an approach to model arith-

metic circuits over GF(pm) in SystemC. As a case study,
a Reed-Solomon encoder/decoder system has been investi-
gated. Alternative implementations have been discussed re-
sulting in significant speed-ups in simulation time, if adders
and multipliers are modeled in software.

The usage of GF(172) multiplication arithmetic instead
of GF(28) can increase the run time of Reed-Solomon en-
coding and decoding by a factor of 25. Of course, this needs
a higher bit width for data-transmission, but e.g. for mobile
systems that would bring a significantly improvements.

For future work the successfully used multiple bit-
encoding idea in GF(3m) [9] could be investigated for p >
3. But therefore efficient implementations for multiplica-
tion and addition are needed.

References

[1] E. Berlekamp. Algebraic Coding Theory. McGraw-Hill,
1968.

[2] R. Blahut. Theory and Practice of Error Control Codes.
Addision-Wesley, 1984.

[3] R. Chien. Cyclic decoding procedure for the Bose-Chaudhuri-
Hocquenghem codes. IEEE Transactions on information the-
ory, 10:357–363, 1964.

[4] W. Drescher and G. Fettweis. VLSI architectures for multipli-
cation in GF(2m) for application tailored signal processors. In
Workshop on VLSI Signal Processing IX, pages 55–64, 1996.

[5] G. Forney. On decoding BCH codes. IEEE Transactions on
information theory, 11:549–557, 1965.

[6] D. Große, G. Fey, and R. Drechsler. Modeling multi-valued
circuits in SystemC. In Int’l Symp. on Multi-Valued Logic.

[7] D. Hoffmann and T. Kropf. Verification of a GF(2m)
multiplier-circuit for digital signal processing. Technical Re-
port 22, University of Karlsruhe, 1998.

[8] W. Horner. A new method for solving equations of all borders,
by continuous approximation. Philosophical Transactions of
the Royal Society of London, pages 308–335, 1816.

[9] T. Kerins, E. Popovici, and W. Marnane. Fully paramateris-
able galois field arithmetic processor over GF(3m) suitable for
elliptic curve cryptography. In 24th International Conference
on Microelectronics, volume 2, pages 739–742, 2004.

[10] S. Lin and D. Costello. Error Control Coding: Fundamen-
tals and Applications. Prentice-Hall, 1983.

[11] A. Matache. Encoding/decoding reed solomon codes.
http://www.ee.ucla.edu/˜matache/rsc /slide.html, 1996.

[12] S. S. Shah, S. Yaqub, and F. Suleman. Self-correctin codes
conquer noise part2: Reed-solomon codecs. EDN, March 15,
2001.

[13] B. Sklar. Digital Communications: Fundamentals and Ap-
plications. Prentice-Hall, 2001.

[14] Synopsys Inc., CoWare Inc., and Frontier Design Inc.,
http://www.systemc.org. Functional Specification for Sys-
temC 2.1.

