
Combining Multi-Valued Logics in SAT-based ATPG for Path Delay Faults

Stephan Eggersglüß Görschwin Fey Rolf Drechsler
Institute of Computer Science, University of Bremen

28359 Bremen, Germany
{segg,fey,drechsle}@informatik.uni-bremen.de

Andreas Glowatz Friedrich Hapke Juergen Schloeffel
NXP Semiconductors Germany GmbH

21147 Hamburg, Germany
{andreas.glowatz,friedrich.hapke,juergen.schloeffel}@nxp.com

Abstract

Due to the rapidly growing speed and the decreasing size
of gates in modern chips, the probability of faults caused
by the production process grows. Already small variations
lead to functional failures. Therefore, dynamic fault mod-
els like the Path Delay Fault Model (PDFM) have become
more important in the last years. At the same time, classical
algorithms for test pattern generation reach their limits due
to the steadily increasing complexity of modern circuits.

In this work, a SAT-based approach to calculate robust
and non-robust test patterns for Path Delay Faults (PDF) is
presented. In contrast to previous approaches, the sequen-
tial behavior of a circuit is modeled adequately. Moreover,
tri-state elements and environment constraints that occur in
industrial practice can be handled. The encoding to apply
a Boolean SAT solver for this problem is motivated and ex-
plained in detail. Experimental results for large industrial
circuits show the efficiency of this approach.

1. Introduction

Because of the rapidly growing speed and the decreas-
ing size of gates in modern chips, strict constraints on the
physical realization are needed to guarantee a functionally
correct chip. Already very small variations in the manufac-
turing process, which violate the constraints, may cause a
functional fault. Such a fault may not influence the combi-
national function, but infringe the dynamic behavior of the
chip at speed, e.g. the propagation of signal values is de-
layed.

Such delay effects are tested by using dynamic fault
models on the gate level representation like the Path Delay
Fault Model (PDFM). The PDFM checks whether the accu-
mulation of delay along a structural path violates the timing

constraints. Testing all structural paths is generally desir-
able. But due to the very large number of possible paths in
a circuit, only a subset is considered in the practical appli-
cation. Usually, critical and long paths are chosen for test
pattern generation.

A test for a Path Delay Fault (PDF) propagates a transi-
tion along the path that is to be tested. Therefore, the dy-
namic behavior of the circuit during two time frames has
to be considered. Different faults may mask each other;
therefore the definition of robustness has been introduced
[12, 9, 3]. A robust test detects a PDF independently of
the presence or absence of other PDFs. In contrast, when
using a non-robust test a fault effect may be masked. In
our approach, we consider the definition of [3] that guaran-
tees robustness by forcing static, hazard-free values at side
inputs of a path. Robust tests are more desirable but also
more complex to generate.

Additionally, the number of gates in modern circuits
grows steadily. As a result, classical ATPG algorithms reach
their limit. Meanwhile solvers for the Boolean satisfiabil-
ity (SAT) problem have been significantly improved in the
last years. This is mainly due to the integration of powerful
techniques like dynamic learning, non-chronological back-
tracking and efficient search heuristics (see e.g. [10, 11, 4]).
Based on these engines, very powerful ATPG tools have
been developed that show the efficiency of SAT-based
ATPG for varying fault models (see e.g [14, 6]).

A first SAT-based approach for generating test patterns
for PDFs was presented in [2]. But the dynamic behavior
of a circuit during two time frames was not modeled ade-
quately. The application of enhanced SAT-based learning
techniques was studied in [8, 1]. But only path sensitiza-
tion was considered in [8], while the approach in [1] only
focused on the classification of non-robust untestable paths.

Robust as well as non-robust test generation was con-
sidered in [5]. In this approach, no structural analysis was
applied and therefore, the model was less compact. But – as



in all other previous approaches – only purely Boolean cir-
cuits were handled. Tri-state elements or restrictions from
the environment were not modeled.

In this work, we propose a SAT-based approach to com-
pute robust and non-robust test patterns for the PDFM. In
contrast to previous SAT approaches, the proposed tech-
nique models the sequential behavior and handles con-
straints that result from industrial applications. Moreover,
it can be applied to circuits with tri-state elements.

For this purpose, a number of multi-valued logics is de-
veloped. The logic that is applied to model a certain part
of a circuit depends on the values that are needed, e.g. a tri-
state element is modeled in a different logic than a Boolean
gate. This procedure ensures a small size of the Boolean
SAT instance. Experimental results on large industrial and
ISCAS circuits show the efficiency of the approach.

The paper is structured as follows. In the next section,
the PDFM and its formulation in SAT for Boolean circuits
are explained. In Section 3, the transformation for PDFs
for industrial circuits is shown. Moreover, the multi-valued
logic is presented. Section 4 provides experimental results.
Conclusions are drawn in Section 5.

2. Preliminaries

2.1. Path Delay Fault Model

The PDFM describes a distributed delay on a path from
a (pseudo) primary input to a (pseudo) primary output of a
circuit. Formally, a PDF is described by F = (P, T ), where
P = (g1, . . . , gn) is a path from an input g1 to an output
gn. The type of transition is given by T ∈ {R,F}, where
R denotes a rising transition and F a falling transition.

To detect a fault, two test vectors v1, v2 are needed to
propagate a transition along the path P during two consec-
utive time frames t1, t2. Note, that the transition must be
inverted after an inverting gate on the path. The initial vec-
tor v1 sets the initial value of the transitions in time frame
t1, whereas the final vector v2 causes the transition in t2
at operating speed. In case of a delay fault, the new value
cannot be observed at gn.

The quality of the tests can be classified by the definition
of robustness. A test is called robust iff it detects the fault
independently from other delay faults in the circuit. Non-
robust tests guarantee the detection of a fault, if there are
no other delay faults in the circuit. If there is neither a non-
robust nor a robust test, the PDF is untestable.

Robust and non-robust tests differ in the constraints on
the off-path inputs of the path as shown in Table 1. The val-
ues correspond to the 7-valued logic presented in [2]. The
second position in the value marks the signal’s value in the
final time frame, whereas the first position defines, whether
the signal is static (S) – that means hazard-free – during two
time frames or the signal value is unknown (X).

For example, S1 means, that there must be a static 1 on
the signal line and X1 means, that the value has to be 1 in

Table 1. Off-path input constraints
rising rob. falling rob. non-robust

AND/NAND X1 S1 X1
OR/NOR S0 X0 X0

Table 2. Encoding of L4B

L4B 0 01 10 1
x1 0 0 1 1
x2 0 1 0 1

the final time frame. Applying static values to the off-path
inputs avoids that other delay faults on the inputs of the gate
may have influence on the value of the output. Therefore, a
robust test is also a non-robust test but not vice versa.

This model does not always provide the exact value of
a signal line at t1. Therefore, in case of pseudo primary
outputs, the behavior of flip flops cannot be fully modeled.

2.2. SAT Formulation: Boolean Circuits

To apply a SAT solver to an ATPG problem, the prob-
lem must be transformed into Conjunctive Normal Form
(CNF). A CNF Φ on n binary variables is a conjunction of
m clauses. Each clause is a disjunction of literals. A literal
is a variable in its positive or negative form.

Each signal line x in a given circuit C is represented by a
Boolean variable x and each single gate g in C can be con-
verted into a CNF Φg by building the characteristic function
of g or truthtable of g, respectively. The CNF for C is there-
fore the conjunction of the constraints for each gate:

ΦC =
∏
g∈C

Φg

For the PDFM, two time frames must be considered. The
4-valued logic L4B = {0, 01, 10, 1} is used, which repre-
sents the value of a signal line x in both time frames. The
value 0 (1) describes the value 0 (1) on x in t1 and t2,
whereas 01 (10) represents the rising (falling) transition.

To apply a SAT solver, the multi-valued signal x must be
encoded by two Boolean variables x1, x2. A possible en-
coding for L4B is presented in Table 2. Therefore, the CNF
formula of each single gate g is created by duplicating the
clauses for one time frame using the respective variables.
The CNF of the circuit modeled in L4B is given by ΦC4B .

Additional constraints are added to guarantee the equiv-
alence of the value of a pseudo primary output in t1 and
the value of the corresponding pseudo primary input in t2.
These constraints are described by Φt.

Finally, given a fault F = (P, T ), a constraint ΦT forces
the transition according to T and a constraint ΦP sets the
off-path inputs to non-controlling values in t2. The con-
junction of all these constraints is the CNF formula ΦC4B

P :

ΦC4B
P = ΦC4B · Φt · ΦT · ΦP



Figure 1. Example circuit C with path P

Any satisfying assignment for ΦC4B
P determines the two

test patterns. If the formula is unsatisfiable, the PDF is not
testable.

Using this formulation, only non-robust tests can be gen-
erated, because forcing a signal to be static cannot be mod-
eled adequately. Modeling static signals is described in Sec-
tion 3.4. The following example demonstrates the proce-
dure.

Example 1 A non-robust test for the path P = (a, d, e, g)
with a falling edge, shown in Figure 1, should be calcu-
lated. For this reason, the circuit must be transformed into
the CNF ΦC4B which is derived from the conjunction of the
CNFs of all gates modeled with L4B .

ΦC4B = Φd
AND · Φe

NAND · Φf
NOT · Φg

OR

For modeling the fault, ΦT corresponds to the values on P
shown in Figure 1 and can directly be determined by apply-
ing the Boolean encoding.

According to Table 1, for a non-robust test, the off-path
inputs of P must be set to X1 or X0, respectively. For
example, the signal b has to adopt the value X1, i.e. the
value 01 or 1 of L4B which is encoded by:

b1b2 + b1b2 = b2

Subformula ΦP summarizes all constraints for off-path in-
puts:

ΦP = (b2) · (c2) · (f2)

A corresponding test is:

v1 = {a1 = 1, b1 = x, c1 = x}
v2 = {a2 = 0, b2 = 1, c2 = 1}

3. SAT Formulation: Industrial Circuits

For industrial applications, a number of additional re-
quirements has to be met to allow for robust and non-robust
PDF test generation. For this purpose, unknown signal val-
ues and the high impedance state must be modeled as well
as the exact behavior of a signal during two time frames.

This means a large overhead for a Boolean encoding of
the problem. In the proposed approach this is handled by

using a set of multi-valued logics that provide different sets
of values. A particular signal of the circuit is modeled by the
logic that provides only those values that may be adopted by
the signal. As a result, a compact CNF instance for robust
test pattern generation is created.

The multi-valued logics are further motivated and intro-
duced in Section 3.1. In Section 3.2, the application and
difficulties of multiple logics in one single circuit are de-
scribed and discussed. Section 3.3 deals with the Boolean
encoding of the problem. Fault modeling is explained in
Section 3.4.

3.1. Multi-Valued Logic

There are several requirements for a multi-valued logic
L so that it can be applied to the robust test generation for
industrial circuits.

• Representation of two time frames – For modeling se-
quential circuits, it must be possible to determine the
value of the signal line in each single time frame.

• Static signals – For the generation of robust tests, the
logic must be able to represent whether a signal is
static.

• Additional values – For handling tri-state elements and
restrictions, the logic must be able to represent the ad-
ditional values U and Z in each time frame.

• Compactness – Generally, the size of the CNF for each
element in L is much bigger, if there are more values
in the logic. Therefore, the logic should have as few
values as possible.

In [14], the 4-valued logic L4 = {0, 1, U, Z} is applied to
represent a single time frame for stuck-at test pattern gener-
ation. For two time frames, the Cartesian product of L4 is
needed to describe all possible assignments. This leads to
the 16-valued logic L16:

L16 = {0, 01, 10, 1, 0Z, 1Z,Z0, Z1,

0U, 1U,U0, U1, ZU, UZ, Z, U}

The name determines the signal’s behavior in both time
frames. The first position gives the value of the signal line
in the initial time frame, whereas the second position de-
scribes the value in the final time frame.

In case of having only one position, the signal is equal
in both time frames. Overlined values signify, that it is not
known, whether the signal is static or not.

Due to that, the logic L16 is only suitable for non-robust
test generation. For robust test generation, three additional
values 0, 1, Z must be included, which guarantee static sig-
nals. A static value for U is not needed. The following logic
L19s (s means static) contains these static values.

L19s = {0, 0, 01, 10, 1, 1, 0Z, 1Z,Z0, Z1,

0U, 1U,U0, U1, ZU, UZ, Z, Z, U}



Table 3. Number of Boolean variables
AND bus-driver

logic # Var # cls # lits # cls # lits
L19s 5 - - 321 1794
L11s 4 148 690 - -
L8s 3 38 152 - -
L6s 3 39 151 - -
L4 2 - - 12 35
L3 2 15 38 - -
L2 1 3 7 - -

In principle, L19s can be used to model the ATPG problem.
But in a circuit typically only a few signal lines can adopt
all values in L19s or L16, respectively. To create a compact
Boolean CNF, a certain signal is modeled by a logic that
only contains those values, which can be adopted. All lines
which cannot adopt the value Z can therefore be represented
by logic L11s:

L11s = {0, 0, 01, 10, 1, 1, 0U, 1U,U0, U1, U}

The 8-valued logic L8s can be applied, if the value U can
only be adopted in the final time frame.

L8s = {0, 0, 01, 10, 1, 1, 0U, 1U}

If the value U can never be adopted, the line can be de-
scribed by L6s.

L6s = {0, 0, 01, 10, 1, 1}

For those signal lines which are only needed to calculate the
value of a pseudo primary input, i.e. that are only considered
in t1, the logics L4 = {0, 1, U, Z}, L3 = {0, 1, U} and the
Boolean logic L2 are used. The logics for non-robust tests
can be assembled by excluding the static values 0, 1, Z.

3.2. Combining Multi-Valued Logics

Logics with less values are generally more compact in
their CNF representation than logics with more values. This
can be seen in Table 3. The table shows the number of
clauses (# cls) and literals (# lits) for the CNF represen-
tation of an AND gate and of a bus-driver shown in column
AND and column bus-driver, respectively. Therefore, a cer-
tain signal should be modeled by a logic that only provides
those values that can be adopted by the signal.

For example, a busdriver can only be represented in L19s

and L4 to model the value Z correctly. An AND gate inter-
prets the value Z as unknown U . For this reason, an encod-
ing with L19s and L4 is not required.

To classify the signal lines according to the required
logic, a preprocessing step on the circuit is needed. This
step is executed only once for each circuit. The complexity
of this step is linear in the number of gates. Therefore, the

overhead is negligible. All signal lines, which can adopt the
value Z, are identified and classified to use L19s. All lines
of the fanout cone of each element using L19s are marked
to use L11s due to the interpretation of the value Z as U by
regular gates.

The fanout cone of each pseudo primary input, whose
associated pseudo primary output is marked as using L11s

is marked itself as using L8s, because the value U can be
propagated into the final time frame. All other lines are
using L6s, because they can only adopt the Boolean values
including the static ones.

Moreover, those elements which are only used for com-
puting the value of a pseudo primary input during the first
time frame but are irrelevant in the second time frame, can
be modeled with L4, L3 or the Boolean logic L2.

As a result, multiple logics are applied to model a single
circuit. When changing from one logic to some other logic
a logic transition occurs. To guarantee consistent signals on
the logic transitions, additional constraints are added to the
CNF.

A logic transition occurs, when the signal lines of a gate
g use different logics. Then, the lines with the lower-valued
logic must be converted to the higher-valued logic of g by
adding additional clauses and variables that exclude illegal
values.

In the following, these constraints are described by Φlt.
For example, the Boolean input value on the data input of a
busdriver would be described in L2, because it cannot adopt
the values U and Z, whereas the busdriver is modeled in L4.
Therefore, the lower-valued logic L2 on the data input is
converted to the higher-valued logic L4. To guarentee con-
sistent signals, the values U and Z which are not contained
in L2 must be excluded on the data input.

The corresponding constraints are applied at the Boolean
level and depend on the Boolean encoding for the multi-
valued logics which is presented in the next section.

3.3. Boolean Encoding

To apply a Boolean SAT solver, the values must be en-
coded by Boolean variables. This encoding should allow
a compact representation of logic transitions as explained
above. The chosen encoding for L19s is presented in Ta-
ble 4. Five Boolean variables x1, ..., x5 are needed to rep-
resent the 19 values.

All lower-valued logics that model static values are de-
rived from L19s. The encoding of a logic that has x values
is determined by the first n = dlog2 xe Boolean variables
of L19s. The exact number of needed Boolean variables is
given in in Column #Var in Table 3. As a result, the encod-
ings are compatible to each other, i.e. the logic transition
can be realized compactly. This is demonstrated by the fol-
lowing example.

Example 2 The value 1 in L19s is encoded by :

{x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 0}



Table 4. Boolean Encoding of L19s

L19s 0 0 01 10 1 1 0Z 1Z Z0 Z1 0U 1U U0 U1 ZU UZ Z Z U
x1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 1
x2 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 1
x3 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0 1
x4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1
x5 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0

Figure 2. Static value propagation – AND gate

For L11s, only four variables are needed to encode a value.
Therefore, x5 is omitted and the value 1 is encoded by:

{x1 = 1, x2 = 1, x3 = 0, x4 = 0}

Using L8s and L6s, the value is encoded by using the first
three variables of the above encoding:

{x1 = 1, x2 = 1, x3 = 0}

In case of a logic transition from e.g. L11s to L19s, it
is sufficient to assign the value 0 to x5, because all values
which are contained in L19s but not in L11s are the only one
that are encoded with the value 1 at x5 (cf. Table 4).

The encoding for a non-robust test can be created in a simi-
lar way using L16. Once the encoding is determined, a CNF
can be created for each gate type by building a truthtable of
the function of the gate. Similarly, the constraints to model
flip flops are included in the CNF. As introduced in Sec-
tion 2, this is described by the constraint Φt. To minimize
the CNF, ESPRESSO [13] was used.

3.4. Fault Modeling

Up to now, the modeling of the circuit during two con-
secutive time frames was presented. This section deals with
the fault modeling in CNF especially with respect to guar-
enteeing static signals.

The CNF ΦC19s models a circuit during two consecutive
time frames, where logic(g) determines the logic used for a
gate g as described in Section 3.1:

ΦC19s = (
∏
g∈C

Φlogic(g)) · Φlt · Φt

Then, the CNF for the PDF test is described by the follow-
ing equation:

ΦC19s
P = ΦC19s · ΦT · ΦP

The constraint ΦT is derived in a similar way as described
in Section 2.2; according to the logic used and the encoding
constraints are added that force the rising (falling) transi-
tion.

Using L19s, it is possible to generate robust tests. Ac-
cording to Table 1, the static values S0 and S1 must be
forced at the off-path inputs of path P . These values cor-
respond to the values 0 and 1 in L19s and are contained in
ΦP .

Static values at the off-path inputs of P originate from
static values on one or more of the inputs of the cir-
cuit. Therefore, a static value must be traced towards the
(pseudo) primary inputs. This is guaranteed by the func-
tional description of each gate and therefore inherently in-
cluded in ΦC19s.

In case of a static controlling value at the output of a
gate g, it is sufficient to force one input of g to the static
controlling value of g. In contrast, if a static non-controlling
value is set to the output of g, all inputs must be forced to the
static non-controlling value of g. This is shown in Figure 2
for an AND gate. If ΦC19s

P is satisfiable, the test pattern is
given by the assignment of the variables which encode the
values of the (pseudo) primary inputs.

Example 3 Given the circuit C shown in Figure 1 and the
falling path P = (a, d, e, g). In contrast to the presented
off-path constraints for non-robust test generation, the off-
path inputs must be forced to static 1 at the inputs of the
AND/NAND gates and to static 0 at the input of the OR
gate.

Assuming that all values use L6s, i.e. all signal lines can
only adopt Boolean values, the constraints ΦT and ΦP are
given by the following equations:

ΦT = (a1) · (a2) · (a3) · (d1) · (d2) · (d3)
·(e1) · (e2) · (e3) · (g1) · (g2) · (g3)

ΦP = (b1) · (b2) · (b3) · (c1) · (c2) · (c3)

·(f1) · (f2) · (f3)

A corresponding robust test is:

v1 = {a1 = 1, b1 = 1, c1 = 1}
v2 = {a2 = 0, b2 = 1, c2 = 1}



Table 5. General circuit information
circuit #ff #paths non-rob rob
p393 20 2492 1156 1108
p57k 2291 2290 717 636

p292k 10101 360 243 17 + x
p823k 31745 108 108 x
s344 15 710 259 253
s444 21 1070 166 148
s526 21 820 147 141
s641 19 3444 1100 1007
s713 19 43624 1097 831
s838 32 2018 656 656

s838.1 32 3428 756 756
s953 29 2312 961 954

s1196 18 6196 3406 3229
s1238 18 7118 3365 3233
s1423 74 89452 8057 5853

Table 6. MV-logic statistics
#elems classification t

circuit L19s L11s L8s L6s with without
p393 0 0 0 393 2.94 21.82
p57k 13 8363 22613 22209 1136.94 >20000

p823k 167 733 10297 825028 10770.97 >40000

4. Experimental Results

In this section, experimental results for industrial circuits
and for ISCAS benchmarks are presented and discussed.
The industrial circuits were provided by NXP Semiconduc-
tors Germany GmbH, Hamburg, Germany. The methods
presented in this paper are implemented in C++ and ex-
ecuted on a Pentium 4 system (GNU/Linux, x86_64, 3.6
GHz) with 4 GByte RAM.

As SAT solver, MiniSat v1.14 [4] was used. All time
data is given in CPU seconds. For each path a time limit
of 30 seconds is given. Only while classifying p823k the
limit was increased to 250 seconds due to the circuit’s larger
depth.

General information about the circuits is given in Ta-
ble 5. This table is divided into two parts. Details about
industrial circuits are given in the upper part, whereas de-
tails about ISCAS benchmarks can be found in the lower
part. Column circuit gives the circuit’s name. The name of a
circuit roughly denotes the number of gates contained in the
circuit, e.g. p823k has about 823 thousand gates. In column
#ff the number of flip flops within the circuit is provided.
The number of tested paths is given in column #paths. For
ISCAS benchmarks, all structural paths were considered,
whereas for industrial circuits only critical and long paths
were set to be tested.

The number of non-robustly testable paths can be found
in column non-rob and the number of robustly testable paths
in column rob. The variable x is used when the exact num-

ber is unknown because of aborted paths.
The influence of using multiple logics versus using only

the highest-valued logic was studied in a first experiment.
Table 6 summarizes the results for some industrial circuits.
In column #elem, the number of elements modeled by each
logic are given. Most gates of the circuits are modeled with
a lower-valued logic.

The total run times for non-robust test generation are pre-
sented in column classification t. Column with describes the
optimized flow combining multi-valued logics while col-
umn without presents the flow without classification. Only
the highest-valued logic is used in the latter case. Clearly,
the optimized flow combining multiple logics is mandatory
to handle large industrial circuits.

The influence of several configurations to calculate ro-
bust and non-robust tests is considered in the next series of
experiments. Every benchmark was executed with four dif-
ferent configurations:

1. Only generating non-robust test patterns (using L16

and derivatives).

2. Only generating robust test patterns (using L19s and
derivatives).

3. Firstly, a non-robust test is generated. In case of suc-
cess, a robust test pattern is generated.

4. Firstly, a robust test will be generated. In case of fail-
ure, a non-robust test pattern is generated.

The results of each configuration are presented in Ta-
ble 7. For each configuration, the total run time (column t),
the run time which is needed for creating the CNF (column
CNF) and the memory needs (column mem in MByte) are
provided.

As expected, due to the higher complexity of robust test
generation (configuration 2), the run times for the genera-
tion of non-robust tests (configuration 1) are lower than the
run times of robust test generation for all benchmarks. Con-
cerning the ISCAS benchmarks, the difference in the mem-
ory needs is negligible. But for industrial circuits, the mem-
ory needs to generate robust tests are significantly larger
than for non-robust test generation. This is due to the larger
number of clauses and literals when higher-valued logics
are needed (cf. Table 3).

Using configuration 3 and configuration 4, the test pat-
terns with the highest quality are generated for each path.
Considering the ISCAS benchmarks, configuration 3 is
faster than configuration 4. But for the more important case
of industrial circuits, the opposite can be observed. The to-
tal run times of configuration 3 are – in spite of shorter run
times in CNF generation – higher than the run times of con-
figuration 4. An analysis of the run times for single paths
shows, that they are higher for satisfiable instances than for
unsatisfiable instances. Due to more calls, which lead to
satisfiable instances in configuration 4, the total run times
are shorter.



Table 7. Experimental results for the different configurations
configuration 1 configuration 2 configuration 3 configuration 4

circuit t CNF mem t CNF mem t CNF mem t CNF mem
p393 2.94 1.74 3.85 6.27 4.33 4.33 6.00 3.64 4.34 7.51 5.18 4.54
p57k 1136.04 341.26 133.56 2291.76 440.73 348.07 3033.08 463.77 329.14 2746.19 701.47 384.77

p292k 2517.34 198.87 328.61 4804.11 228.60 1005.19 7256.78 398.81 1069.48 7219.28 440.31 1108.67
p823k 10770.97 310.95 1053.47 >40000 - - >40000 - - >40000 - -
s344 0.45 0.31 2.03 1.00 0.70 2.98 0.50 0.32 3.09 1.01 0.68 3.11
s444 0.52 0.43 2.29 0.80 0.58 3.37 1.02 0.79 3.48 1.85 1.41 3.52
s526 0.57 0.38 2.36 0.73 0.56 3.52 0.90 0.62 3.67 1.36 1.06 3.68
s641 2.88 2.00 3.76 7.08 5.31 5.02 5.17 3.73 5.32 7.72 5.93 5.38
s713 29.73 24.31 29.59 91.55 78.25 31.42 35.09 29.24 31.76 131.48 110.76 35.86
s838 2.86 2.01 3.29 8.16 4.94 5.07 7.89 4.57 5.32 9.49 5.85 5.25

s838.1 4.47 3.81 4.77 11.98 7.64 5.70 10.24 6.51 5.98 16.66 10.98 5.79
s953 3.08 2.12 3.56 6.06 4.30 5.06 6.47 4.13 5.39 8.15 5.75 5.24

s1196 8.44 5.07 4.83 29.71 18.58 7.41 28.11 16.04 7.93 36.13 23.59 7.63
s1238 9.54 6.24 4.89 38.25 25.27 7.82 32.15 18.81 8.46 44.66 30.61 8.63
s1423 195.23 155.72 47.98 425.01 344.83 50.99 282.87 221.93 50.96 629.09 500.34 58.36

It can be concluded, that non-robusts tests can be gen-
erated efficently using configuration 1, whereas the more
desirable robust tests can be generated with only small over-
head with configuration 2. To obtain tests of highest possi-
ble quality, configuration 4 is preferable to configuration 3
due to lower run times.

In summary, the proposed approach is very efficient for
generating both non-robust and robust test patterns. Due to
combining multiple logics, the approach is feasible even for
the classification of PDFs in large industrial circuits.

5. Conclusions and Future Works

In this paper, a SAT-based approach for generating non-
robust and robust test patterns for the PDFM in indus-
trial circuits containing tri-state elements was presented. A
multi-valued logic and the transformation to Boolean SAT
was described. Furthermore, a significant reduction of the
complexity of the SAT instance by applying a structural
analysis is applied. Experimental results show the effi-
ciency even on large industrial circuits.

The integration of more powerful learning techniques
into this approach as proposed in [8, 1, 7] is focus of fu-
ture work.

6. Acknowledgement

This research work was supported in part by the German
Federal Ministry of Education and Research (BMBF) in the
Project MAYA under the contract number 01M3172B.

References

[1] K. Chandrasekar and M. S. Hsiao. Integration of learning
techniques into incremental satisfiability for efficient path-
delay fault test generation. In Design, Automation and Test
in Europe, pages 1002–1007, 2005.

[2] C. Chen and S. K. Gupta. A satisfiability-based test genera-
tor for path delay faults in combinational circuits. In Design
Automation Conf., pages 209–214, 1996.

[3] K. Cheng and H. Chen. Classification and identification of
nonrobust untestable path delay faults. IEEE Trans. on CAD,
15(8):845–853, 1996.

[4] N. Eén and N. Sörensson. An extensible SAT solver. In SAT
2003, volume 2919 of LNCS, pages 502–518, 2004.

[5] S. Eggersglüß, G. Fey, and R. Drechsler. SAT-based ATPG
for path delay faults in sequential circuits. In IEEE Interna-
tional Symposium on Circuits and Systems, 2007.

[6] S. Eggersglüß, D. Tille, G. Fey, R. Drechsler, A. Glowatz,
F. Hapke, and J. Schloeffel. Experimental studies on SAT-
based ATPG for gate delay faults. In Proc. of the 37th Int’l
Symp. on Multiple-Valued Logic (ISMVL’07), 2007.

[7] G. Fey, T. Warode, and R. Drechsler. Reusing learned infor-
mation in SAT-based ATPG. In VLSI Design, pages 69–76,
2007.

[8] J. Kim, J. Whittemore, K. Sakallah, and J. Marques Silva.
On applying incremental satisfiability to delay fault testing.
In Design, Automation and Test in Europe, pages 380–384,
2000.

[9] C.-J. Lin and S. Reddy. On delay fault testing in logic cir-
cuits. IEEE Trans. on CAD, 6(5):694–703, 1987.

[10] J. Marques-Silva and K. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Trans. on Comp.,
48(5):506–521, 1999.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conf., pages 530–535, 2001.

[12] A. Pramanick and S. Reddy. On the design of path delay
fault testable combinational circuits. In Int’l Symp. on Fault-
Tolerant Comp., pages 374–381, 1990.

[13] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential
circuit synthesis. Technical report, University of Berkeley,
1992.

[14] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and
J. Schlöffel. PASSAT: Effcient SAT-based test pattern gen-
eration for industrial circuits. In IEEE Annual Symposium
on VLSI, pages 212–217, 2005.


