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Abstract 
 
This paper investigates fault effects and error 

propagation in a FlexRay-based network with hybrid 
topology that includes a bus subnetwork and a star 
subnetwork. The investigation is based on about 
43500 bit-flip fault injection inside different parts of 
the FlexRay communication controller. To do this, a 
FlexRay communication controller is modeled by 
Verilog HDL at the behavioral level. Then, this 
controller is exploited to setup a FlexRay-based 
network composed of eight nodes (four nodes in the 
bus subnetwork and four nodes in the star 
subnetwork). The faults are injected in a node of the 
bus subnetwork and a node of the star subnetwork of 
the hybrid network. Then, the faults resulting in the 
three kinds of errors, namely, content errors, syntax 
errors and boundary violation errors are 
characterized. The results of fault injection show that 
boundary violation errors and content errors are 
negligibly propagated to the star subnetwork. And 
syntax errors propagation is almost equal in the both 
bus and star subnetworks. Totally, the percentage of 
errors propagation in the bus subnetwork is more than 
the star subnetwork.   

 
1. Introduction 

 
Nowadays, Distributed embedded systems have 

significant position in modern industry because the 
distributed embedded control systems possess many 
advantages over traditional centralized ones, such as 
improved performance, optimized resource utilization, 
reduced cabling, enhanced modularity, and fault 
tolerance [1]. In a distributed system, each node 
consists of three parts [2]: 1) I/O part, 2) host part, 
and 3) communication controller. Among these three 
parts, the communication controller has a key role in 
the system operation. 

In general, communication activities can be 
triggered either dynamically, in response to an event 
(event-triggered), or statically, at predetermined 
moments in time (time-triggered). Examples of time-
triggered protocols are the SAFEbus [3], SPIDER [4], 
and Time-Triggered Protocol (TTP) [5]. The main 
drawback of the time-triggered protocols is their lack 
of flexibility [6]. Examples of event-triggered 
protocols are the Byteflight [7] introduced by BMW 
Company for automotive applications, CAN [8] and 
LonWorks [9]. The main drawback of the event-
triggered protocols is their lack of predictability. A 
large consortium of automotive manufacturers and 
suppliers has proposed a hybrid type of protocol, 
namely, the FlexRay communication protocol [10] . 
The FlexRay allows the sharing of the bus among 
event-triggered and time-triggered messages, thus 
offering the advantages of both protocols. It is reported 
that the FlexRay will very likely become the de-facto 
standard for in-vehicle communications [6] [11]. The 
FlexRay defines a communication cycle (bus cycle) as 
the combination of a time-triggered (or static) 
window, an event-triggered (or dynamic) window, a 
symbol window and a network idle time (NIT) 
window. The FlexRay network is very flexible with 
regard to topology and transmission support 
redundancy [11]. It can be configured as a bus, a star 
or hybrid combinations of bus and star topologies. 

The importance of safety in critical distributed 
applications signals to pay specific attention to the 
reliability of communication protocols. One way to 
assess the reliability of communication protocols is by 
fault injection. In [12], a simulation-based fault 
injection has been used for the assessment of message 
missings in the CAN network with bus topology. 
Effects of masquerade failures have been investigated 
using a simulation-based fault injection in the CAN 
network with bus topology [13]. Evaluation of TTP/C 
communication controller by heavy-ion fault injection 
(hardware-based fault injection) has been performed in 
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[14]. The purpose of the experiments in that paper was 
to validate the fail silence property of the TTP/C by 
injecting faults in a single node. The relationship 
between the number of nodes in a cluster and the 
slightly-off-specification (SOS) failures has been 
assessed using heavy-ion fault injection [15]. In [16], 
the TTP/C protocol with bus and star topologies has 
been investigated using SWIFI fault injection. Here, 
the effects of the SOS failures in the bus and star 
topologies with respect to the start of frame 
transmission have been studied. In [17] [18] [19], a 
generic tool was developed for monitoring and 
diagnosis of a FlexRay-based system as well as for a 
CAN-based system. This tool has been used by the 
FlexRay consortium to perform extended fault 
injection for evaluating of the FlexRay communication 
protocol. One important limitation of this tool is that 
faults cannot be injected inside different parts of the 
FlexRay protocol. 

This paper evaluates the fault effects in the 
FlexRay-based networks by injecting about 43500 bit-
flip faults inside different parts of this protocol. To do 
this, a FlexRay communication controller is modeled 
by Verilog HDL at the behavioral level. This HDL 
model of the controller is exploited to setup the 
FlexRay-based network with hybrid topology. This 
network consists of two subnetworks: a bus 
subnetwork composed of four nodes and a star 
subnetwork composed of four nodes. To evaluate the 
faults effects in this network and vulnerability of these 
two subnetworks to the faults injection, the faults are 
injected into two separated nodes: one node in the bus 
subnetwork and another node in the star subnetwork. 
Then, the faults effects resulting in the three kinds of 
errors, namely, content errors, syntax errors and 
boundary violation errors are observed in each 
subnetwork. The dependencies of fault locations to 
these three kinds of errors are assessed in two 
mentioned subnetworks. Here, the sensitivity of each 
subnetwork to fault injections is evaluated. Also, the 
error propagation results in these two subnetworks are 
compared after fault injections. 

This paper is organized in six sections. Section 2, 
introduces the FlexRay protocol, and section 3 
presents error models found in this protocol. The 
experimental organization is given in section 4, and 
the results are presented in section 5. The last section 
concludes the work. 

 
2. FlexRay protocol 

 

A consortium of major automotive companies 
which includes BMW, Bosch, DaimlerChrysler, 
General Motors, Motorola, Philips, and Volkswagen, 
is currently developing the FlexRay protocol. The 
FlexRay network is very flexible with regard to 
topology and transmission support redundancy. It can 
be configured as a bus, a star or a multistar. It is not 
mandatory that each station possess neither replicated 
channels nor a bus guardian, even though this should 
be the case for critical functions such as steer-by-wire.  

At the MAC level, FlexRay defines a 
communication cycle as the concatenation of a time-
triggered (or static) window, an event triggered (or 
dynamic) window, a symbol window and a network 
idle time (NIT) window. The communication cycles 
are executed periodically. The time-triggered window 
uses a TDMA MAC mechanism; a station in FlexRay 
might possess several slots in the time-triggered 
window, but the size of all the slots is identical (Figure 
1). In the event-triggered part of the communication 
cycle, the mechanism is Flexible TDMA (FTDMA): 
the time is divided into so-called minislots, each 
station possesses a given number of minislots (not 
necessarily consecutive), and it can start the 
transmission of a frame inside each of its own 
minislots. A minislot remains idle, if the station has 
nothing to transmit which actually induces a loss of 
bandwidth. The symbol window is a communication 
period in which a symbol can be transmitted on the 
network. The NIT window is a communication-free 
period that concludes each communication cycle. 

The FlexRay frame consists of three parts: the 
header segment, the payload segment and trailer 
segment. The FlexRay header segment consists of 5 
bytes. These bytes contain a reserved bit, payload 
preamble indicator, null frame indicator, sync frame 
indicator, startup frame indicator, frame ID, payload 
length, header CRC and cycle count.  

The payload segment contains 0 to 254 bytes (0 to 
127 two-byte words) of data. Because the payload 
length contains the number of two-byte words, the 
payload segment contains an even number of bytes. 
The FlexRay trailer segment contains a single field, a 
24-bit CRC for the frame. The Frame CRC field 
contains a cyclic redundancy check code (CRC) 
computed over the header segment and the payload 

 
Figure 1. Communication cycle in FlexRay protocol 
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segment of the frame. The computation includes all 
fields in these segments. 

 
3. Error models related to FlexRay 

 
The FlexRay protocol has different mechanisms for 

detecting errors in the controller. At the end of each 
time slot, the FSP mechanism checks the presence of 
any error in that slot and informs the host about it. 
This protocol defines 3 main errors that can occur in 
each slot: syntax error, content error and boundary 
violation errors. The syntax error denotes the presence 
of a syntactic error in a time slot, the content error 
denotes the presence of an error in content of a 
received frame and boundary violation error denotes 
whether a boundary violation occurred at boundary of 
the corresponding slot. 

 
4. Experimental Organization 

 
This section discusses the basic characteristics of 

the experiment. 
 

4.1. Experimental setup 
 
For performing experiments, a FlexRay 

communication controller has been modeled by 
Verilog HDL at the behavioral level according to the 
FlexRay protocol specification [10] . This FlexRay 
controller has been tested according to the FlexRay 
protocol conformance test specification [20]. This 
HDL model of the controller has been exploited to 
setup a FlexRay-based network composed of eight 
nodes. The implemented controller has usual 
capabilities of the FlexRay protocol such as sending 
and receiving the static and dynamic frames and 
symbols. This controller according to the FlexRay 
protocol specification has six parts to perform its 
functions: controller host interface (CHI), protocol 
operation control (POC), clock synchronization 
process (CSP), frame and symbol process (FSP), 
media access control (MAC), coding and decoding 
(CODEC). In addition, instead of a real application, a 
data generator has been implemented to generate static 
frames with fixed length and dynamic frames with 
variable length at the start of the communication 
cycles. 

The network topology in this experiment is a 
hybrid combination of bus and star topologies (hybrid 
topology). This topology with eight nodes is shown in 
figure 2. As depicted in this figure, this network 
includes two subnetworks: bus subnetwork and star 

subnetwork. In order to set up a network with hybrid 
topology, a model of central bus guardian (CBG) has 
been implemented at the behavioral level according to 
the FlexRay central bus guardian specification [21]. 
This CBG contains five branches that four nodes 
(nodes S1, S2, S3, and S4) are connected using point-
to-point connections to four branches of the CBG. The 
fifth branch is connected to a bus topology that 
contains four nodes (nodes B1, B2, B3, and B4).  

In this experiment, fault injection is done in two 
phases: 1) fault injection in one node of bus 
subnetwork (node B2), 2) fault injection in one node 
of star subnetwork (node S2). After each fault 
injection, error propagation observation is performed 
in both bus and star subnetworks (respectively in 
nodes B4 and S4). The faults are injected in five parts 
of the FlexRay communication controller, including 
CHI, POC, CSP, MAC and CODEC. As said in 
section 2.2, FSP part checks the correct timing and 
semantic correctness of received frames, and it applies 
further syntactical tests to received frames [10] . Thus, 
for the reason that the FSP part doesn’t have any role 
in transmitting frames and error propagation to other 
nodes, there is no fault injection in the FSP part. The 
effects of fault injection are observed in FSP part of 
the FlexRay communication controller.  

Central bus guardian (CBG). The CBG is an 
optional device that can be added to a channel of a 
FlexRay system in order to increase fault tolerance. 
The CBG guarantees that certain errors on one branch 
will not propagate to other branches by filtering 
functions. Examples of such filtering functions are: 
semantic filtering, content filtering (cycle count, and 
frame id filtering), Byzantine (SOS) filtering. 

During normal operation the CBG enforces certain 
temporal aspects of the communication schedule. It 
does this via the use of several sub-states, each of 
which enforces different characteristics of the 
communication. During the static window the CBG 
operates in the strict sub-state. The CBG enforces a 
strict schedule within the static window by allowing 
only one slot/branch combination to send a frame. All 
other branches are blocked for transmission. The CBG 
disables transmission, if a frame is sent outside its 
timeslot. In the dynamic window the CBG operates in 
the dynamic sub-state (race arbitration). The first 
node/branch beginning to send in this segment is 
allowed to transmit. The protection always ends at the 
end of the frame. A node sending too long will be cut 
off when exceeding the maximum allowed frame 
length or the end of the dynamic window. During 
other portions of the cycle it operates in the idle sub-
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state. In this sub-state the CBG disables all 
communication – no data is forwarded [21]. 
 
4.2. Fault injection tool 

 
The SINJECT fault injection tool [22] is used for 

injecting fault at the behavioral level in nodes, 
collecting the results, and analyzing them. A fault 
injection process usually consists of three steps:  

1- When the given workload is applied, the 
behavior of a fault-free network is                           
computed and stored. 

2- During the second step, to consider faults effects, 
the given workload are applied again to the 
network, the fault is injected, and the behavior of 
the network is observed. 

3- During the third step of the fault injection 
process, the faulty network behavior is compared 
with the behavior of the fault-free network, 
which is gathered at first step, and therefore the 
fault effects are specified and saved.  

 
5. Experimental Results  

 
In this experiment for investigating the error 

propagations in a FlexRay-based network with hybrid 
topology, faults are injected in two separate nodes in 
this network: the node B2 in the bus subnetwork and 
the node S2 in the star subnetwork. In each of these 
two nodes about 21786 bit-flip faults are injected into 
five different parts of their communication controller. 
These five parts include: CHI, CSP, MAC, POC, and 
CODEC. Each experiment lasts for three 
communication cycles, in cycle 1 the faults are 
injected and the effects of them are observed in cycle 
1 through 3. The error propagation observation is 
done in two different nodes: the node B4 in the bus 
subnetwork and the node S4 in the star subnetwork. In 
each communication cycle, 12 slot IDs in static 
window and 12 slot IDs in dynamic window are 

allocated to different nodes. 
The experimental results are investigated in 3 

parts. In the first part the error propagation results are 
investigated as the result of fault injection in bus 
subnetwork. In the second part, the error propagation 
results are investigated as the result of fault injection 
in star subnetwork. Finally, in the third part, a 
comparison of error propagation results of previous 
parts is declared. 

 
5.1. Error propagation after fault injection in 
bus subnetwork  

 
In this part the faults are injected in different parts 

of a node in the bus subnetwork. After the fault 
injection in this node, the error propagation results are 
observed in another node in the bus subnetwork and a 
node in the star subnetwork. The errors are divided 
into three main classes. These three classes include 
syntax error, content error and boundary violation 
error. 

Table 1 shows the errors that are observed in bus 
subnetwork. The CSP part is the most vulnerable to 
fault injection and the fault injections in this part lead 
to the most content errors, syntax errors and boundary 
violation errors. Also, in table 2 which shows the 
errors that are observed in star subnetwork, the CSP 
part is the most vulnerable part to fault injection. Fault 
injection in the POC part causes the least error 
propagation in the network. 

No
de

S2
No
de S3

 
Figure 2. Experimental setup 

Table 1. Error propagation in bus subnetwork 
 (after fault injection in bus subnetwork)  

FlexRay 
Parts 

No. of 
Faults 

Syntax Errors Content Errors Boundary 
Violation Errors 

# % # % # % 
CODEC 5070 225 4.43 9 0.17 97 1.91 
MAC 2196 174 7.92 119 5.41 104 4.73 
CSP 8640 3059 35.4 1452 16.8 2658 30.76 
POC 1680 2 0.11 0 0 0 0 
CHI 4200 1304 31.04 485 11.54 400 9.52 
All Parts 21786 4764 21.86 2065 9.47 3259 14.95 
 

Table 2. Error propagation in star subnetwork 
 (after fault injection in bus subnetwork)  

FlexRay 
Parts 

No. of 
Faults 

Syntax Errors Content Errors Boundary 
Violation Errors 

# % # % # % 
CODEC 5070 225 4.43 0 0 0 0 
MAC 2196 195 8.87 0 0 0 0 
CSP 8640 2955 34.2 59 0.68 35 0.4 
POC 1680 2 0.11 0 0 0 0 
CHI 4200 1391 33.11 19 0.45 2 0.04 
All Parts 21786 4768 21.88 78 0.35 37 0.16 
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By comparing the results of table 1 and 2, it can be 
seen that the error propagation is reduced in the star 
subnetwork significantly. Most of the content and 
boundary violation errors occurring in the bus 
subnetwork are eliminated in the CBG. This is 
because of the fact that the CBG performs boundary 
protection and content filtering. This device 
disconnects the transmitter node/branch when it 
observes slot boundary termination or content error. 
Thus, the CBG prevent the propagation of the content 
and boundary errors from the bus subnetwork to the 
star subnetwork. The syntax errors propagation is 
almost equal in the both bus and star subnetworks. 
Totally, if a node becomes faulty in the bus 
subnetwork, error propagation in the bus subnetwork 
is more than the star subnetwork. 

 
5.2. Error propagation after fault injection in 
star subnetwork 

 
 In this part the faults are injected in different parts 

of a node in the star subnetwork. Like the last part, the 
error propagation results are observed in another node 
in the bus subnetwork and a node in the star 
subnetwork. 

Tables 3 and 4, respectively, show the error 
propagation in the bus subnetwork and the star 
subnetwork after fault injection in a node of the star 
subnetwork. In both of them, the CSP is the most 
vulnerable part to the fault injection among the 
different parts of the communication controller. The 
fault injections in this part lead to the most content 
errors, syntax errors and boundary violation errors. 
The POC is the least sensitive part to the fault 
injection and causes the least error propagation in the 
network. As these two tables show, like the last part, 
the error propagation in the star subnetwork is less 
than the error propagation in the bus subnetwork. It 
means, in spite of the faults are injected in the star 
subnetwork but the error propagation in the bus 
subnetwork is more than the star subnetwork. This is 
because of the fact that the faulty node can affect 
operation of other nodes in dynamic window while the 
CBG operates in the race-arbitration sub-state in this 
window. Thus in the bus subnetwork that the nodes 
are not controlled, the operation of faulty node can 
cause more errors in the bus subnetwork than star 
subnetwork in dynamic window. Totally, the results 
show that if a faulty node exists in the star subnetwork 
with hybrid topology, the error propagation in the bus 
subnetwork is more than the star subnetwork.  

 

5.3. Comparison of error propagation in bus 
and star subnetworks 

 
In the two past parts, the results of fault injections 

in bus and star subnetworks were investigated. 
According to these results, the CBG has an effective 
role in error propagation prevention between bus and 
star subnetworks. This device protects the star 
subnetwork nodes against the some errors 
propagation. As discussed in section 5.2, the star 
subnetwork is more fault-tolerant even against those 
faults that are injected in it. As in the bus subnetwork 
the bus is used as a common media by the nodes and 
transmissions are not controlled, the probability of 
error occurrence is higher than the star subnetwork. 
Thus, the bus subnetwork is more vulnerable against 
the fault injections. Totally, if a node becomes faulty 
in the hybrid topology (whether in the star subnetwork 
or in the bus subnetwork), the error propagation in 
nodes of the bus subnetwork is more than the star 
subnetwork. Also, the results show that entirely the 
CSP part of the FlexRay controller is the most 
vulnerable part and fault injection in this part causes 
the most error propagation in the network. The POC 
part is the least sensitive part to the fault injection.  

 

Table 3. Error propagation in bus subnetwork 
 (after fault injection in star subnetwork) 

FlexRay 
Parts 

No. of 
Faults 

Syntax Errors Content Errors Boundary 
Violation Errors 

# % # % # % 
CODEC 5070 210 4.14 3 0.06 0 0.00 
MAC 2196 193 8.79 11 0.50 5 0.23 
CSP 8640 2766 32.01 407 4.71 86 1.00 
POC 1680 4 0.24 0 0.00 0 0.00 
CHI 4200 1391 33.12 68 1.62 21 0.50 
All Parts 21786 4564 20.95 489 2.24 112 0.51 
 

Table 4. Error propagation in star subnetwork 
 (after fault injection in star subnetwork) 

FlexRay 
Parts 

No. of 
Faults 

Syntax Errors Content Errors Boundary 
Violation Errors 

# % # % # % 
CODEC 5070 211 4.16 0 0.00 0 0.00 
MAC 2196 200 9.11 0 0.00 0 0.00 
CSP 8640 2766 32.01 84 0.97 24 0.28 
POC 1680 4 0.24 0 0.00 0 0.00 
CHI 4200 1403 33.40 13 0.31 0 0.00 
All Parts 21786 4584 21.04 97 0.45 24 0.11 
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6. Conclusions 
 
This paper investigated the error effects and error 

propagation in a FlexRay-based network with hybrid 
topology that includes a bus subnetwork and a star 
subnetwork. The investigation was based on about 
43500 bit-flip fault injections inside five parts of the 
FlexRay protocol. To do this, a FlexRay 
communication controller was modeled by Verilog 
HDL at the behavioral level. A FlexRay-based network 
with hybrid topology composed of eight nodes was 
established using this controller. The results of fault 
injection showed that boundary violation errors and 
content errors are negligibly propagated to the star 
subnetwork. And syntax errors propagation is almost 
equal in the both bus and star subnetworks. Totally, 
the percentage of errors propagation in the bus 
subnetwork is more than the star subnetwork. Also the 
dependencies of fault locations to these three kinds of 
errors were assessed in two mentioned subnetworks. 
Here, the sensitivity of each subnetwork to fault 
injections was evaluated.  
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