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Abstract
Constraint-based random simulation is state-of-the-art

in verification of multi-million gate industrial designs. This
method is based on stimulus generation by constraint solv-
ing. The resulting stimuli will particularly cover corner
case test scenarios which are usually hard to identify manu-
ally by the verification engineer. Consequently, constraint-
based random simulation will catch corner case bugs that
would remain undetected otherwise. Therefore, the quality
of design verification is increased significantly. However, in
the process of constraint specification for a specific test sce-
nario, the verification engineer is faced with the problem of
over-constraining, i.e. the overall constraint specified for a
test scenario has no solution. In this case the root cause of
the contradiction has to be identified and resolved. Given
the complexity of constraints used to describe test scenar-
ios, this can be a very time-consuming process.

In this paper we propose a fully automated contradic-
tion analysis method. Our method determines all “non rel-
evant” constraints and computes all reasons that lead to
the over-constraining. Thus, we pinpoint the verification
engineer to exactly the sets of constraints that have to be
considered to resolve the over-constraining. Experiments
have been conducted in a real-life SystemC-based verifi-
cation environment at AMD Dresden Design Center. They
demonstrate a significant reduction of the constraint con-
tradiction debug time.

1. Introduction
The continued advance of circuit fabrication technology

that persisted over the last 30 years now allows the integra-
tion of more than 1 billion transistors in System-on-Chip
(SoC) designs. The development of SoCs of such complex-
ity leads to enormous challenges in Computer-Aided De-
sign (CAD), especially in the area of design verification,
which needs to ensure the functional correctness of a de-
sign. Because the capacity of formal verification is limited,
simulation is still the most frequently used verification tech-
nique [22].

In directed simulation explicitly specified stimulus pat-
terns (e.g. written by verification engineers) are applied to
the design. Each of those patterns stimulates a very specific
design functionality (called a verification scenario) and the
response of the design is compared thereafter with the ex-
pected result. Due to project time constraints, it is inherent
for directed simulation that only a limited number of such
scenarios will be verified.

With random simulation these limitations are compen-
sated. Random stimuli are generated as inputs for the de-
sign. For example, to verify the communication over a bus,
random addresses, and random data are computed.
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A substantial time reduction for the creation of simula-
tion scenarios is achieved by constraint-based random sim-
ulation (see e.g. [2, 22]). Here, the stimuli are generated
directly from specified constraints by means of a constraint
solver, i.e. stimulus patterns are selected by the solver which
satisfy the constraints. The resulting stimuli will also cover
test scenarios for corner cases that may be difficult to gener-
ate manually. As a consequence, design bugs will be found
that might otherwise remain undetected, and the quality of
design verification increases substantially.

For constraint-based random simulation several ap-
proaches have been proposed (see e.g. [23, 4, 11, 21, 12]).
However, a major problem that arises when stimuli are spec-
ified in form of constraints is over-constraining, i.e. the con-
straint solver is not able to find a valid solution for the given
set of constraints. Whenever such a contradiction occurs in
a constraint-based random simulation run, this run has to
be terminated as no valid stimulus patterns can be applied.
Note that over-constraining may not necessarily happen at
the very beginning of the simulation run, as modern test-
bench languages such as SystemVerilog [9] allow the addi-
tion of constraints dynamically during simulation. In any
case of over-constraining the verification engineer has to
identify the root cause of the constraint contradiction. As
this is usually done manually by either code inspection or
trial-and-error debug, it is a tedious and time-consuming
process.

To the best of our knowledge in this work we pro-
pose the first non-trivial algorithm for contradiction anal-
ysis in constraint-based random simulation. In the area
of constraint satisfaction problems methods for diagnos-
ing over-constrained problems have been introduced (see
e.g. [1, 16]). These methods aim to find a solution for the
over-constrained problem by relaxing constraints according
to a given weight for each constraint. In the considered
problem no weights are available. Also, the approaches
do not determine all minimal reasons that cause the over-
all contradiction. In contrast, Yuan et al. proposed an ap-
proach to locate the source of a conflict using a kind of
exhaustive enumeration [22]. But since a very large run-
time of this method is supposed – neither an implemen-
tation nor experiments are provided – they recommend to
build an approximation. In the domain of Boolean Satis-
fiability (SAT) a somewhat similar problem can be found:
computing an unsat core of an unsatisfiable formula, i.e. to
identify an unsatisfiable sub-formula of the overall formula
[5, 24]. However, to obtain a minimal reason the much more
complex problem of a minimal unsat core has to be consid-
ered [15, 7, 14]. Furthermore, all minimal unsat cores are
required to determine all contradictions. In general this is
very time consuming (see e.g. [13]).

In this paper we propose a fully automatic technique for
analyzing contradictions in constraint-based random simu-
lation. The basic idea is as follows: The overall constraint
is reformulated such that (contradicting) constraints can be
disabled by introducing new free variables. Next, an ab-



s t r u c t c s t r : p u b l i c s c v c o n s t r a i n t b a s e {
s c v s m a r t p t r <s c u i n t <64> > a , b , add r ;
SCV CONSTRAINT CTOR( c s t r ) {

SCV CONSTRAINT( a ( ) > 100 ) ;
SCV CONSTRAINT( b ( ) == 0 ) ;
SCV CONSTRAINT( add r ( )>=0 && addr ( )<=0x400 ) ;
} } ;

Figure 1. Example constraint

straction is computed that forms the basis for the follow-
ing steps. First, the self-contradicting constraints are iden-
tified. Then, all “non relevant” constraints are determined.
Finally, for the remaining constraints – typically only a very
small set – a detailed analysis is performed. In total our ap-
proach identifies all reasons of the over-constraining, i.e. all
minimal constraint combinations that lead to a contradic-
tion of the overall constraint. As shown by experiments in
a verification environment of AMD Dresden Design Cen-
ter (DDC), the debugging time is reduced significantly. The
verification engineer completely understands what causes
the over-constraining and can resolve the contradictions in
one single step.

2. SystemC Verification Library
This section briefly reviews the SystemC Verification

(SCV) library that is used for constraint-based random sim-
ulation in this work. The SCV library was introduced in
2002 as an open source C++ class library [20, 17, 10] on
top of SystemC [19, 8]. In the following we focus only on
the basic features of the SCV library for constraint-based
random simulation.

Using the SCV library, constraints are modeled in terms
of C++ classes. That way constraints can be hierarchically
layered using C++ class inheritance. In detail a constraint is
derived from the scv constraint base class. The data
to be randomized is specified as scv smart ptr vari-
ables.

An example of an SCV constraint is shown in Figure 1.
The name of the constraint is cstr. Here, the three 64 bit un-
signed integer variables a, b, and addr are randomized. The
conditions on the variables a, b, and addr are defined by ex-
pressions in the respective SCV CONSTRAINT() macro.

Internally, a constraint in the SCV library is represented
by the corresponding characteristic function, i.e. the func-
tion is true for all solutions of the constraint. This charac-
teristic function of a constraint is represented as a Binary
Decision Diagram (BDD), a canonical and compact data
structure for Boolean functions [3]. For stimuli generation
a weighting algorithm is applied for the constraint BDD
to guarantee a uniform distribution of all constraint solu-
tions and hence maximizing the chance for entering unex-
plored regions of the design state space. As BDD package
CUDD [18] is used in the SCV library.

3. Contradiction Analysis
In this section first the considered problem, that is

the contradiction of constraints, is formalized. Then, we
present concepts for the contradiction analysis approach.

3.1. Problem Formulation
Before the problem is formulated we define the type of

constraints that are considered in this paper.

Definition 1. A constraint is a Boolean function over vari-
ables from the set of variables V . For the specification of
a constraint, the typical HDL operators such as e.g. logic
AND, logic OR, arithmetic operators, and relational opera-
tors can be used.

Usually a constraint consists of a conjunction of other
constraints. We formalize the resulting overall constraint in
the following definition.

Definition 2. An overall constraint is defined as

C =
n−1∧
i=0

Ci

where Ci are constraints according to Definition 1.

In practice, the conjunction is built by the explicit use of
several SCV CONSTRAINT() macros or by applying in-
heritance, i.e. parts of the constraints are defined in a base
class and inherited in the actual constraint. Note that this
is not specific to constraint-based random simulation using
the SCV library. In fact, the same principles are found, for
example, in the random constraints of SystemVerilog [9].

During the specification of complex non-trivial con-
straints, the problem of over-constraining arises:

Definition 3. An overall constraint C is over-constrained
or contradictory iff C is not satisfiable, i.e. C evaluates to 0
for all assignments to the constraint variables.

Typically, if C is over-constrained the verification en-
gineer has to manually identify the reason for the over-
constraining. This process can be very time-consuming be-
cause several cases are possible. For example, one of the
constraints Ci may have no solution. Another reason for
a contradiction may be that the conjunction of some of the
constraints Ci leads to 0. In the following the term reason
as used in the rest of this paper is defined.

Definition 4. A reason for a contradictory overall con-
straint C is the set R = {Ci1 , Ci2 , . . . , Cik

} ⊆
{C0, C1, . . . , Cn−1} with the two properties:

1. The constraints in R form a contradiction, i.e. the con-
junction Ci1 ∧ Ci2 ∧ . . . ∧ Cik

always evaluates to 0.
Therefore the overall constraint C is contradictory.

2. Removing an arbitrary constraint from R resolves the
contradiction, i.e. minimality of R is required.

Often the root of over-constraining results from more
than one contradiction, i.e. there is more than one reason.
If in this case only one reason is identified by the verifi-
cation engineer, the constraint solver has to solve the fixed
constraint again, but still there is no solution.

Based on these observations, the following problem is
considered in this paper:

How can we efficiently compute all minimal rea-
sons for an over-constraining and thereby sup-
port the verification engineer in constraint debug-
ging?

Analyzing the contradictions in the overall constraint C
and presenting all reasons is facilitated by our approach. In
particular excluding all constraints which are not part of a
contradiction reduces the debugging time significantly.

3.2. Concepts for Contradiction Analysis
The general idea of the contradiction analysis approach

is as follows: The overall constraint C is reformulated such
that the conflicting constraints can be disabled by the con-
straint solver and C becomes satisfiable. By analyzing the
logical dependencies of the disabled constraints, we can
identify all reasons for the over-constraining.



C0 ⇔ b()<3 && b()==7
C1 ⇔ a() + b() == c()
C2 ⇔ a() < 6
C3 ⇔ a() == 5
C4 ⇔ a() == 10
C5 ⇔ d() == 8
C6 ⇔ d() > 10

(a)

Note that all variables a(), b(), c(), d()
are positive integers.
s0 s1 s2 s3 s4 s5 s6

0 − 0 0 − 0 −
0 − 0 0 − 1 0
0 − 0 1 0 0 −
0 − 0 1 0 1 0
0 − 1 − 0 0 −
0 − 1 − 0 1 0

(b)
Figure 2. Contradictory constraint

Definition 5. Let C be over-constrained. Then the reformu-
lated constraint C ′ is built by introducing a new free vari-
able si for each constraint Ci and substituting each con-
straint Ci with an implication from si to Ci. That is,

C ′ =
n−1∧
i=0

(si → Ci).

For the reformulated constraint C ′ the following holds:
1. If si is set to 1, then the constraint Ci is enabled.

2. If si is set to 0, then the constraint Ci is disabled be-
cause Ci can evaluate to 0 or 1.

Note that the usage of an implication is crucial. If an equiv-
alence is used instead of an implication, si = 0 would imply
the negation of Ci.
Example 1. Figure 2(a) shows a constraint C which is
over-constrained. Reformulating C to C ′ avoids the over-
constraining because a constraint Ci may be disabled by
assigning si to 0. The table in Figure 2(b) gives all assign-
ments to si such that the reformulated overall constraint C ′

evaluates to 1.1 That is, the table shows which constraints
have to be disabled to get a valid solution. For example,
from the first row it can be seen that disabling C0, C2, C3,
and C5 avoids the contradiction.

Based on the reformulation the verification engineer is
able to avoid the over-constraining. But to understand what
causes the over-constraining, i.e. to identify the reason of
each contradiction, a more detailed analysis is required.
Here, two properties of the assignment table obtained from
the reformulated overall constraint can be exploited.

Note that for simplicity we always refer to the assign-
ment table in the presentation. As shown later in the imple-
mentation the assignment table needs not to be build explic-
itly.
Property 1. The value of variable si is 0 for all solutions
(i.e. in each row of the table) iff the respective constraint Ci
is self-contradictory (that is Ci has no solution).
Proof. ⇒: We show this by contraposition: If Ci has
at least one solution, then there is a row where si
is 1. Obviously this solution (row) can be constructed
by assigning 1 to si and 0 to sj for j 6= i, because
(si → Ci) = si ∨ Ci = 0 ∨ Ci = Ci = 1 and
(sj → Cj) = sj ∨ Cj = 1 ∨ Cj = 1 for j 6= i.
⇐: To satisfy C ′ each element of the conjunction must
evaluate to 1, so (si → Ci) = si ∨ Ci. Since Ci has no
solution (Ci is always 0) si must be 0. �

Thus, each constraint Ci whose si variable is always as-
signed to 0, is a reason for the contradictory overall con-
straint C.

1Here ‘−’ denotes a don’t care, i.e. the value of si can be either 0 or 1.
The table is derived from a symbolic BDD representation of all solutions
for the si variables after abstraction of all other variables.

Property 2. The value of variable si is don’t care for all
solutions (i.e. for all rows of the table) iff the constraint Ci
is never part of a contradiction of C.

Proof. ⇒: This property is shown by contradiction. As-
sume that si is don’t care for all solutions and Ci is part of a
contradiction. Then, without loss of generality there has to
be another satisfiable constraint Cj such that Ci ∧Cj = 0.2
If sj is set to 1 and all other constraints Ck with k 6= j are
disabled by sk = 0, then C ′ is 1. However, switching si to
1 is not possible due to the conflict of Ci and Cj . But this
contradicts the assumption that the value of si is don’t care
for all solutions.
⇐: Because the constraint Ci is never part of a contra-
diction, Ci can be enabled or can be disabled. In other
words, si can be set to 0 and also to 1 for each solution
of the overall constraint, which is equivalent to si is don’t
care. �

Thus, each constraint Ci whose si variable is always
don’t care, is not part of a reason for the contradictory over-
all constraint. Therefore these constraints are not presented
to the verification engineer and can be left out in the next
steps.

Example 2. Consider again Example 1. Because the value
of s0 is 0 for all solutions, C0 is self-contradictory. Thus,
R0 = {C0} is a reason for C. Since the value of s1 is al-
ways don’t care, C1 is never part of a contradiction. As a
result the first two constraints can be ignored in the further
analysis.

Note that the overall constraint of the example in Fig-
ure 2(a) has been specified to demonstrate the two proper-
ties. In practice, the number of constraints that are never
part of a contradiction is considerably larger. Thus, apply-
ing Property 2 reduces the debugging effort significantly be-
cause each “non relevant” constraint does not have to con-
sidered anymore by the verification engineer.

In fact, all remaining constraints (if there are any) are
part of at least one contradiction. Furthermore, since self-
contradictory constraints have been filtered out by Prop-
erty 1 only a conjunction of two or more constraints causes a
contradiction. Now the question is, how can we identify the
minimal contradicting conjunctions of the remaining con-
straints, i.e. the reasons?

Example 3. Again Example 1 is considered. The con-
straints C0 and C1 have been handled already according to
Property 1 and Property 2. Now, the conjunction of two or
more of the remaining constraints, C2, C3, C4, C5, and C6,
causes a contradiction. Only identifying the product of all
these constraints certainly does not help to resolve the con-
flict easily. In contrast, the over-constraining can only be
fixed if the different contradictions are understood. But this
requires the computation of all minimal reasons according
to Definition 4. In the example, three reasons can be found
in total: R1 = {C2, C4} and R2 = {C3, C4} which over-
lap as well as R3 = {C5, C6} which is independent of the
two before.

To find the minimal reason for each contradiction, all
constraint combinations are tested for a contradiction start-
ing with the smallest conjunction. For each tested com-
bination the respective si variables are set to 1. Thus, if
the conjunction Ci1 ∧ . . . ∧ Cik

leads to a contradiction

2According to Property 1 both constraints Ci and Cj have at least one
solution.



(1) ContradictionAnalysis(BDD C ′, set V )
(2) // abstraction
(3) C ′′ = ∃v1, . . . ,∃v|V | C ′

(4) // initialization
(5) R = ∅; // reasons of contradictions
(6) S = ∅; // si variables for detailed anaysis
(7) // test properties
(8) for (i = 0; i < n; i++)
(9) if ((C ′′ ∧ si = 1) ≡ 0)

(10) // Ci is self-contradictory
(11) R = R∪ {{si}};
(12) else if ((C ′′ ∧ si = 0) ≡ (C ′′ ∧ si = 1))
(13) // Ci is not responsible for over-constr.
(14) else
(15) // Ci is selected for detailed analysis
(16) S = S ∪ {si};
(17) // detailed analysis
(18) for each (X ∈ P(S))
(19) // from the smallest to the largest
(20) if (∃X ′ ∈ R : X ′ ⊂ X)
(21) // ensure minimality
(22) continue;
(23) if ((C ′′ ∧

∧
si∈X

si = 1) ≡ 0))

(24) // subset over-constrains C
(25) R = R∪ {X};
(26) return R;

Figure 3. Overall algorithm

((si1 = 1) ∧ . . . ∧ (sik
= 1) ∧ C ′ ≡ 0 ), then this combina-

tion is a reason for C. The minimality is ensured by build-
ing the constraint combinations in ascending order with re-
spect to their size and skipping each superset of a previ-
ously found reason. Since the overall problem has already
been simplified by exploiting Property 1 and Property 2, the
combination based procedure has to be applied only for a
small set of constraints, i.e. the remaining ones. This is the
key to the efficiency of the overall contradiction analysis
procedure.

The next section presents the details on the implementa-
tion of the overall contradiction analysis approach.

4. Implementation
As already mentioned earlier, the SCV library uses

BDDs for the representation of constraints. More precisely
the characteristic function of the overall constraint is rep-
resented as a BDD. This characteristic function is true for
all solutions of the constraint, false otherwise. We imple-
mented the contradiction analysis approach using the SCV
library. Therefore our implementation is “BDD driven”.

The pseudo-code of the contradiction analysis approach
is shown in Figure 3. As input the approach starts with the
BDD representation of the reformulated constraint C ′ and
the set of all constraint variables V . At first, all constraint
variables are existentially quantified from the reformulated
constraint (line 3). Thus, the resulting function C ′′ only
depends on the si variables. In other words, this function
is the symbolic representation of the assignment table de-
scribed in the previous section. In general the quantified
BDD is much more compact than the BDD for the reformu-
lated constraint. Thus, the following BDD operations can
be executed very fast.

After quantification the two sets R and S are initialized
to the empty set. R stores all reasons that are found. Note
that for simplicity R contains the sets of the corresponding

si variables of a reason, not the constraints itself. The set S
is used to save all si variables that are passed to the detailed
analysis later. So this set corresponds to the remaining con-
straints. Then, for each constraint Ci it is checked if Ci is
either self-contradictory (line 9) or never part of a contra-
diction (line 12) according to Property 1 and Property 2. In
the former case the respective si variable is added to the set
of reasons R (line 11). Both checks are conducted on the
quantified representation C ′′ of the reformulated constraint,
that is:
• To check if si is 0 for all solutions (see Property 1)

the conjunction C ′′ ∧ si = 1 is carried out. If the
result is the constant zero-function, si is never 1 in any
solution, i.e. si is always zero. Thus, Ci becomes a
reason.

• The check if si is don’t care in all solutions (see Prop-
erty 2) is carried out by (C ′′∧si = 0) ≡ (C ′′∧si = 1).
If the respective BDDs are equal, it has been shown
that si is don’t care, since regardless of the value of
si the solutions are identical. Therefore, the constraint
Ci is not relevant for a contradiction and thus neither
added to the set R nor to the set S.

If both properties cannot be applied (line 14), then the re-
spective constraint Ci is part of a contradiction caused by
the conjunction of Ci with one or more other constraints.
Thus, Ci is passed to the detailed analysis by inserting the
respective si into S (line 16).

Finally, the detailed analysis for all elements in S – the
remaining constraints – is performed (line 18 to 25). First,
the power set P(S) of S is created resulting in all subsets
(i.e. combinations) of constraints considered for detailed
analysis. Note that we exclude the empty set as well as all
sets which only contain one element (this is already covered
by Property 1) from the power set. Furthermore, during the
construction the elements of the power set are ordered ac-
cording to their cardinality. Then, for each subset X (i.e. for
each combination) the conjunction of the respective con-
straints is tested for a contradiction. Therefore, the conjunc-
tion of the current combination X – represented as a cube of
all variables si ∈ X – and C ′′ is created, i.e. all respective
constraints Ci are enabled (line 23). If the conjunction leads
to a contradiction, then X is a reason and thus, X is added
to R (line 25). To ensure minimality each contradiction test
of a subset X is only carried out if no reason X ′ ∈ R exists
such that X ′ ⊂ X (line 20-22), i.e. no subset of X has al-
ready been identified as reason for a contradiction (see also
Definition 4).

In summary, the presented contradiction analysis proce-
dure computes all minimal reasons R of a contradictory
overall constraint C. First, the proposed reformulation of
the overall constraint allows a representation where all con-
tradictory constraints can be disabled. From this represen-
tation a much more compact one is computed by quantifi-
cation. All following operations have to be carried out on
this representation only. Then, the two properties are ap-
plied which significantly reduces the problem size since
only 2n−|Z|−|DC| instead of all 2n subsets have to be con-
sidered in the detailed analysis (Z denotes the set of self-
contradictory constraints, and DC denotes the set of con-
straints, which are not part of a contradiction). In practice,
especially the number of “non relevant” constraints that be-
long to the set DC is very large, so the input for the detailed
analysis shrinks considerably.

5. Experimental Evaluation
This section provides experimental results for the contra-

diction analysis. We show the efficiency of our approach by



several testcases. Finally, the application of our approach in
an industrial setting is presented.

In all examples the partitioning of the constraints is
given according to the specification in the constraint classes,
i.e. each Ci in the following corresponds to a separate
SCV CONSTRAINT() macro (see also Section 3.1). The
contradiction analysis is started by an additional command-
line switch and runs fully automatic in the SCV library en-
vironment.

5.1. Effect of Property 1 and Property 2
Applying the two properties introduced in Section 3.2

significantly reduces the complexity of the contradiction
analysis since each matched constraint can be excluded
from further considerations. To show the increasing ef-
ficiency we tested our approach for several examples
which contain some typical overconstraining errors (e.g. ty-
pos, contradicting implications, hierarchical contradictions,
etc.).

For the considered constraints we give some statistics in
Table 1. In the first column a number to identify the test-
case is given. Then, in the next columns information on the
constraint variables and their respective sizes are provided.
Finally, the total number of constraints is given. The results
after application of our contradiction analysis are shown in
Table 2. The first four columns give some information about
the testcase, i.e. the number of constraints in total (n), the
number of contradictions/reasons (|R|), and the runtime in
CPU seconds needed to construct the BDD in the SCV li-
brary (BDD TIME). The next columns provide the results
for the trivial analysis approach without (W/O PROPERTIES)
and with the application of the properties (WITH PROPER-
TIES), respectively. Here the number of checks in the worst
case (2n or 2n′

, respectively), the number of checks actually
executed by the approach (#

√
), and the runtime for the de-

tailed analysis (TIME) are given. Additionally the number
of “non relevant” constraints (|DC|) and self-contradictory
constraints (|Z|) obtained by the two properties are pro-
vided.

The results clearly show, that identifying all reasons
without applying the properties leads to a large number of
checks in the worst case (e.g. 253 ≥ 9.0 · 1015 in exam-
ple #5). In contrast, when the properties are applied most
of the constraints can be excluded for the analysis since they
are “non relevant”. This significantly reduces the number of
checks to be performed at detailed analysis. Instead of all
2n only 2n−|Z|−|DC| checks are needed in the worst case
(only 64 in example #5). As a result the runtime of the de-
tailed analysis is magnitudes faster when the properties are
applied. Moreover, for the last three testcases the reasons
can be determined within the timeout of 7200 CPU seconds
only when the properties are applied.

5.2. Real-life Example
The constraint contradiction analysis algorithm has been

evaluated using a real-life design example.
The Design Under Verification (DUV) is a PCIe root

complex design with an AMD-proprietary host bus inter-
face which is employed in a SoC recently developed by
AMD. The root complex supports a number of PCIe links.
The verification tasks are to show (1) that transactions are
routed correctly from the host bus to one of the PCIe links
and vice versa, (2) that the PCIe protocol is not violated
and (3) that no deadlocks occur when multiple PCIe links
communicate to the host bus at the same time.

Host bus and PCIe links are driven by Bus Functional
Models (BFMs) which convert abstract bus transactions into

Table 1. Constraint characteristics
# BOOL INT LONG BITS CONSTR. (n)
1 10 8 - 328 15
2 3 3 6 483 16
3 10 10 - 330 26
4 8 40 - 1,288 50
5 5 30 15 1,925 53

Table 2. Effect of using properties
BDD W/O PROPERTIES WITH PROPERTIES

# n |R| TIME 2n #
√

TIME |Z| |DC| 2n′
#
√

TIME
1 15 1 5.48 32,768 24,577 4.12 0 13 4 4 0.06
2 16 3 14.90 65,536 26,883 11.25 1 8 128 107 0.04
3 26 1 22.30 67,108,864 – TO 0 21 32 32 0.30
4 50 3 35.96 > 1.1 · 1015 – TO 0 42 256 190 2.10
5 53 2 238.07 > 9.0 · 1015 – TO 0 47 64 55 9.77

the detailed signal wigglings on those buses. The abstract
bus transactions are generated by means of random genera-
tors which are in turn controlled by constraints. Bus mon-
itors observe the transactions sent into or from either inter-
face and send them to checkers which perform the end-to-
end transaction checking of the DUV. The verification envi-
ronment is implemented in SystemC 2.1, the SCV library,
and SystemVerilog, with a special co-simulation interface
synchronizing the SystemVerilog and SystemC simulation
kernels. The constraint-random verification methodology
was chosen in order to both reduce effort in stimulus pattern
development and to get high coverage of stimulation corner
cases. The PCIe and host bus protocol rules were captured
in SCV constraint descriptions and are used to generate the
contents of the abstract bus transactions driving the BFMs.

The PCIe constraint used to control stimulus genera-
tion within the PCIe transaction generator is a layered con-
straint. The lower level layer describes generic PCIe pro-
tocol rules and is comprised of a number of 16 constraint
terms. They are shown in Figure 4(a) (denoted from C0 to
C15)3. The meaning of the constraint variables is given in
the table (Figure 4(b)). The upper level layer imposes user-
specific constraints on the generic PCIe constraints (de-
noted by CUi) in order to generate specific stimulus scenar-
ios. Generic PCIe constraints and user-defined constraints
are usually developed by different verification engineers;
the former by the designer of the test environment and the
latter by the engineer who implements and runs the tests.

The engineer writing the tests and hence the user-specific
constraints which are layered on top of the generic PCIe
constraints is faced with the problem to resolve contradic-
tions which are generated by imposing the user-defined con-
straints on the PCIe generic constraints. Given the com-
plexity of the constraints, this is usually a non-trivial task.
Two real-life examples of contradictions that are not easy
to resolve by manual constraint inspection are depicted in
Figure 4(c).

In the first example the user sets the maximum transac-
tion length to a value greater than 128 bytes (CU1), thereby
causing a contradiction to constraint C13, which states that
the total transaction length must not exceed 128 bytes. In
the second example, the user independently constrains the
transaction address to byte address 4000 (CU2) and the
transaction length to 100 bytes (CU3). While both values,
viewed independently, are each perfectly legal (the address
should be in 32 bit range and the transaction length is less
than 128), an over-constraining occurs. The reason identi-
fied by our approach is R1 = {C12, CU2 , CU3}. By manual
constraint inspection it is not immediately obvious that a
PCIe protocol rule is violated when combining constraints
CU2 and CU3 . However, reason R1 found for the contra-

3Bit operators are used as introduced in [6].



addr transaction address (64 bits)
addr space transaction address space

(memory,io,config)
tkind transaction kind (request,response)
cmd transaction command (read,write)
msr transaction is targeted at MSR space
posted transaction is posted (yes/no)
length transaction size in dwords
be[] array of byte enables

(one per each dword data)
data[] array of dword (32 bit) data
be[].len length of byte enable array
data[].len length of data array
[io|mem|cfg] io, memory and config space
addr base0,1 window base addresses

[io|mem|cfg] size0,1 io, memory and config
space window sizes

Example 1: CU1 ⇔ length > 128 Example 2: CU2 ⇔ addr == 4000 ∧ CU3 ⇔ length == 100

(a) (b)

(c)

C0 ⇔ (addr space != memory || ((mem addr base0 <= addr) && ((addr+length) <= mem addr base0 + mem size0)))
|| ((mem addr base1 <= addr) &&((addr+length) <= mem addr base1 + mem size1))) // address boundaries for memory

C1 ⇔ (addr space != io || ((io addr base <= addr)&&((addr + length)<= io addr base + io size))) // address boundaries for io
C2 ⇔ (addr space != config || ((cfg base addr <= addr)&&((addr+length) <= config base addr + config size))) // address boundaries for config
C3 ⇔ be[] <= 0xf // valid byte enables are in 0x0..0xf
C4 ⇔ be[].len == length // generate as many byte enables as we have dword data
C5 ⇔ data[].len == length // set data length
C6 ⇔ cmd != read || posted == false // read transactions are always non−posted
C7 ⇔ gen host trans.addr space == memory || (addr&3)+length <= 4

// transactions to IO/config space are 1 dword (4bytes) only
C8 ⇔ addr <= 0xFFFFFFFF // addresses are in 32 bit range
C9 ⇔ addr space==memory || addr space==config || addr space==io

// only generate transactions in memory/IO/config space
C10 ⇔ length > 0 // requests must have length > 0
C11 ⇔ addr space == sr::mem || addr <= 0xFFFFFFFF

// IO and config space are restricted to 32 bits
C12 ⇔ (addr&4095) + length <= 4096 // transactions must not cross 4k page boundary
C13 ⇔ (addr&3) + length <= 128 // keep transaction length to max. 128 bytes
C14 ⇔ tkind == request // generate requests only (not responses)
C15 ⇔ msr == false // do not generate MSR accesses

Figure 4. PCIe transaction generator constraint with examples

diction by our algorithm shows that when combining con-
straints CU2 and CU3 , then PCIe protocol rule C12 is vi-
olated: “A transaction must not cross a 4k page bound-
ary”. Our user constraints of transaction start address set
to 4000 and transaction length of 100 bytes would result
in addresses that cross a 4k page and therefore violate this
constraint.

The algorithm described in this paper is able to identify
exactly the violating constraint expressions for both exam-
ples in about 30 seconds. The PCIe constraint to be ana-
lyzed contained a total of 21 random variables to be solved
which are constrained by 17 and 18 constraint expressions
for the respective examples. The total bit count for the ran-
dom variables amounted to 781 bits. Without such an anal-
ysis capability, we would have had to spend several hours
on manual constraint inspection in order to identify the root
cause for the constraint contradiction. Thus, a significant
speed up of the contradiction debug cycle was achieved.

6. Conclusions
In this paper we have presented a fully automatic ap-

proach to analyze contradictory constraints that occur in
constraint-based random simulation. After reformulating
the overall constraint and building an abstraction, the self-
contradictory constraints and all “non relevant” constraints
are determined in an initial step. Then for the small set of re-
maining constraints, all minimal reasons for a contradiction
are computed efficiently and presented to the verification
engineer. The minimality and completeness of the reasons
allows to fully understand the over-constraining. Thus, the
verification engineer is able to resolve the conflict in one
single step. In total, as shown by industrial experiments,
the debugging time is reduced significantly.
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