
Targeting Leakage Constraints during ATPG∗

Görschwin Fey1,2 Satoshi Komatsu1 Yasuo Furukawa3 Masahiro Fujita1

fey@informatik.uni-bremen.de komatsu@vdec.u-tokyo.ac.jp yasuo.furukawa@jp.advantest.com fujita@ee.t.u-tokyo.ac.jp

1VLSI Design & Education Center 2Institute of Computer Science 3Advantest Corporation
University of Tokyo University of Bremen

Tokyo 113-0032, Japan 28359 Bremen, Germany Gunma 370-0718, Japan

Abstract

In previous technology generations IDDQ testing used to
be a powerful technique to detect physical faults that are not
covered by standard fault models or functional tests. Due to
shrinking feature sizes and consequently increasing leakage
currents IDDQ testing becomes difficult in the deep-sub-
micron area. One of the problems is the vector dependency
of leakage current. Even in good devices the leakage cur-
rent may vary significantly from one test vector to the next.

In this work we present an ATPG framework that allows
to generate test vectors within tight constraints on leakage
currents. The target range for the leakage current is au-
tomatically determined. Experiments on the ITC99 bench-
mark suite yield testsets that achieve 100% fault coverage
for the larger circuits, even when the range is narrowed
down to 50% of the standard deviation of random vectors.

1 Introduction

Measuring the steady state power supply current of a
circuit (IDDQ) is a testing technique that is orthogonal to
traditional techniques based on fault models or functional
tests. Therefore IDDQ testing was helpful in identifying
erroneous chips at low testing costs [12]. One of the advan-
tages is that the observation of faults does not depend on
voltage levels measured at primary outputs of a circuit. In-
stead the leakage current of the complete circuit drawn from
the energy supply is considered. As a result the observ-
ability increases drastically. Previous studies have shown
that IDDQ testing identifies a large range of failures some
of which are covered – and even more important – some
of which are not covered by standard fault models such as
stuck-at and path delay [10]. Even failures not detected by
functional tests can be identified using IDDQ testing [10].

Unfortunately, the leakage current is not constant but de-
pends on process variations and on the test vectors. Due to
process variations the leakage current of two chips may be
different even for the same test vector. Here, only statisti-
cal methods can be applied to seperate systematic fluctua-
tions due to the location on the wafer, random fluctuations,
and fault effects [13]. Models for test vector dependencies

∗This work is partially funded by the Advantest Corporation.

of leakage currents are known [1], but usually not applied
during IDDQ testing. Both types of variation increase with
shrinking feature sizes. Thus process variations or test vec-
tor dependencies may hide fault effects, making it harder to
differentiate good and bad devices.

Several methods for postprocessing measured leakage
data are available to remove variations. Current signatures
[7] are created by sorting the measured leakage currents by
increasing values. This sorting process reduces the differ-
ence in leakage currents from one point to the next. Thus,
a fault causes a jump in the signature which helps to iden-
tify unexpected behavior more easily. By this the differen-
tiation of good devices from bad devices improves. Other
techniques [14], e.g. delta IDDQ [17], have been proposed
as an improvement over current signatures. Here the dif-
ference of the IDDQ values for different chips or different
test vectors is used. However, all of these methods are ap-
plied after measuring IDDQ while the significant increase in
leakage currents strengthens the inlfuence of vector depen-
dencies. Thus, discontinuities occur even for good devices
after sorting.

Tools for Automatic Test Pattern Generation (ATPG)
have been proposed to generate test vectors for IDDQ test-
ing. These approaches mainly address issues of fault ex-
traction and fault modeling [9]. Once the faults are mod-
eled only constraints due to the logic function of the circuit
are considered during ATPG [9, 2, 8, 12]. As a result the
leakage current may vary significantly from one test vector
to the next due to the dependency of the leakage current on
the internal state of a circuit.

Therefore this work suggests to take leakage constraints
already during ATPG into account. This reduces the vec-
tor dependencies of IDDQ measurements. The above men-
tioned techniques [7, 17, 13] are orthogonal and can still
be applied. An ATPG framework to generate test vec-
tors within a predefined range of leakage currents is pre-
sented. This target range is determined by estimating a dis-
tribution of the leakage current with respect to test vectors
based on random simulation. Then the ATPG framework
is guaranteed to generate test vectors only within this target
range. The single pseudo stuck-at fault model is consid-
ered for combinational ATPG. Deterministic pattern gener-
ation, random pattern generation and fault simulation are
applied as in standard ATPG frameworks. Additionally, the
expected leakage current is calculated for each test vector

to guarantee that test vectors do not violate the leakage con-
straints. Experimental results show that the fault coverage
does not decrease for the larger ITC99 benchmark circuits
in a 90nm technology. At the same time discontinuities are
removed from the current signatures that become nearly lin-
ear with a small slope. Compared to ATPG without con-
straints the range of the leakage currents of test vectors
shrinks by up to 93 %. This supports discriminating good
and bad devices based on IDDQ measurement.

The paper is structured as follows: The model used for
leakage calculations and the automatic derivation of a target
range for leakage currents adjusted to the circuit under test
are introduced in Section 2. The ATPG framework and its
components are presented in Section 3. Section 4 provides
experimental results. Conclusions and future work are dis-
cussed in Section 5.

2 Leakage Constraints

In the following the leakage model used in this work is
introduced. Based on this model the automatic derivation of
the leakage constraints for ATPG is briefly discussed.

2.1 Leakage Model

The main component of the leakage current in a digital
circuit is given by the sum of the sub-threshold leakages
of the transistors [1]. Therefore, the leakage current of a
single gate g depends on the values assigned to the input
signals of the gate, i.e. the state of the gate. Given a library
of gates and process parameters, the leakage current lg of
a gate g is given by a mapping of the type tg of the gate
and the values xg

1, . . . x
g
n of the gate inputs of the gate to the

leakage current:

lg : {tg, xg
1, . . . , x

g
n} → v

Then, the leakage current LC for a given circuit C under
a certain assignment i1, . . . im to the primary inputs is the
sum of the leakage currents of all gates, where the state of a
gate depends on the assignment to the primary inputs:

LC =
∑
g∈C

lg(tg, x
g
1(i1, . . . im), . . . xg

n(i1, . . . im)

In the following only complete assignments to the primary
inputs are considered when estimating the leakage currents.
Therefore the leakage current of a gate does not have to be
described as a function of the primary inputs of the circuit.
Instead the input assignment is simulated, afterwards each
gate is in a defined state and the corresponding leakage val-
ues are added.

Integer arithmetic is applied during this process. Given a
gate library that specifies the leakage currents, the leakage
values for all gates are multiplied by the same factor; then
the values are rounded to the next integer value and divided
by their greatest common divisor. Moreover, our implemen-
tation uses an event based simulator to efficiently update the
leakage values for test vectors.

state AND OR
0 0 8pA 16pA
0 1 11pA 13pA
1 0 13pA 11pA
1 1 16pA 9pA

Real data is confidential; the table reflects
the ratios of a real library (180nm, 1.8V).

(a) Currents

i4

i1
i2
i3

o1

o2

(b) Circuit

Figure 1. Vector dependencies

Example 1 Figure 1(a) exemplary shows the leakage cur-
rents for 2-input AND and OR gates. The leakage current
depends on the state of the inputs. Now considering the cir-
cuit in Figure 1(b) yields a leakage current of 13+16+11 =
40 pA for the assignment {i1 = 0, i2 = 1, i3 = 1, i4 = 0}.
The assignment {i1 = 1, i2 = 0, i3 = 0, i4 = 1} causes a
leakage current of 11 + 8 + 13 = 32 pA.

2.2 Target Range

The objective of this work is to create test vectors within
a small range of leakage currents to minimize the variations
due to vector dependencies. This decrease improves the res-
olution of post processing the data using current signatures
[7] or delta IDDQ [17]. Of course, a suitable range de-
pends on the circuit under consideration. Figure 2 shows
histograms of leakage currents for the circuits b12 and b19
of the ITC99 benchmark suite. These results were obtained
from leakage calculations for 64000 random vectors using
a 90nm process library. Vectors with similar current val-
ues were grouped. The x-axis gives the leakage current,
while the y-axis shows the number of vectors in each group.
Circuit b12 exhibits a quite irregular behavior with a large
number of different leakage paths that are activated by dif-
ferent sets of test vectors. In contrast b19 shows a very
regular behavior – random simulation leads to a Gaussian
distribution of leakage values. Such a “good” behavior was
observed for most of the ITC99 benchmarks. In this case
most of the input vectors are contained in a small range de-
fined by the mean leakage value µ and the standard devia-
tion σ determined from the random vectors.

Therefore the interval [µ−ασ, µ + ασ] is used to define
the range targeted during test vector generation, where α
is a small user-defined value. Choosing α too large does
not restrict test pattern generation, the variation in leakage
current between test vectors is not reduced. Choosing α too
small restricts test pattern generation too much. As a result
the run time for test pattern generation increases, because
finding a vector within the specified range is hard. Also
the number of faults that do not have a test vector in the
specified range increases.

3 ATPG Framework

In the following the ATPG framework is described to
generate test vectors under leakage constraints. First, the
underlying fault model and an introductory example are
given, then the framework is described.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3

#
v
e

c
s

leakage (uA)

leakage distribution

(a) For b12

 0

 50

 100

 150

 200

 250

 300

 350

 400

 852 854 856 858 860 862 864

#
v
e

c
s

leakage (uA)

leakage distribution

(b) For b19

Figure 2. Leakage distributions (90nm)

3.1 Fault Model

One fault model typically considered to generate test
vectors for IDDQ testing is the single Pseudo Stuck-At Fault
(PSF) model [11, 12]. Similar to the well-known Stuck-at
Fault (SF) model a fault fixes a line to a constant value. The
fault is detected by an input assignment that forces the sig-
nal to the fault free value. In case of an SF the fault can only
be observed at primary outputs. In contrast, a PSF is ob-
served indirectly by measuring the leakage current. There-
fore propagation to primary outputs is not necessary. For
this reason test pattern generation for PSFs is computation-
ally less intensive than for SFs. Also any single test vector
already detects half of the PSFs in any circuit.

Besides the PSF model, bridging faults are often consid-
ered for IDDQ testing [11, 12]. The extension of the frame-
work proposed here to handle bridging faults is straight for-
ward and therefore not considered in more detail.

The survey in [8] provides an overview of additional
fault models and fault extraction techniques used in IDDQ
testing.

3.2 Introductory Example

The following example shows that leakage currents may
vary significantly within the potential test vectors even for
a single fault. This observation is the foundation for the
ATPG framework presented afterwards.

Example 2 Recall the circuit discussed in Example 1. As-
sume the PSF-0 is to be tested at output o1. A test vector
is a partial assignment to the inputs that sets o1 to 1, e.g.
t1 = {i1 = 0, i2 = 1, i3 = 1}. Setting i4 to 0 causes a
total leakage current of 40 pA, while setting i4 to 1 causes a
leakage current of 38 pA. An alternative test vector for the
same fault is t2 = {i1 = 1, i2 = 0, i3 = 0}. Under i4 = 1
this vector yields a leakage current of only 32pA.

3.3 Main Flow

The main flow for test pattern generation is shown in Fig-
ure 3. In step (A) the target range is determined. As de-
scribed in Section 2.2 random simulation is carried out for
a user defined number lR of vectors to estimate the values
µ and σ. The user defined parameter α fixes the target range
for the subsequent test pattern generation steps. These steps
consist of alternating random pattern generation and deter-
ministic pattern generation similar to standard ATPG flows.

Define Range

DPG

DPG Rev. Fsim

Rev. Fsim

A

E F

C D

G

B
RPG, no test vec.

RPG

Figure 3. Overall ATPG flow

First Random Pattern Generation (RPG) (B) is carried
out to remove faults that can easily be detected by random
vectors. During this step no test vectors are collected. Fault
simulation is only done for vectors within the predefined
leakage range. Detected faults are not considered in the fol-
lowing Deterministic Pattern Generation (DPG) step (C).
The next section explains this step in detail. During the
DPG step test vectors within the leakage range are collected
in the testset. Also faults untestable due to logic constraints
– not due to leakage constraints – are classified in this step.
Then, all except untestable faults are considered for reverse
fault simulation of the test vectors collected so far (step
(D)): Fault simulation for all test vectors collected so far is
done in reverse order; vectors that do not detect additional
faults are discarded. Moreover, typically some faults are
not detected by these test vectors, therefore a second RPG
is done in step (E). This time valid test vectors that detect
at least one additional fault are collected. Remaining faults
are considered in the final DPG step (F). Then reverse fault
simulation is applied to the testset again (step G) to reduce
the size.

Alternatively, even more elaborate configurations of
RPG, DPG and fault simulation are possible. Here, we
use this simple environment, to evaluate efficiency and fault
coverage that can be achieved by the proposed method.

3.4 Deterministic Pattern Generation

Figure 4 describes the two DPG steps within the main
flow in more detail. This procedure is applied to each fault
that is passed to the DPG step. First an engine for deter-
ministic test pattern generation is called (step (1)) to decide
whether the fault is untestable (step (2)). In this case the
next fault is considered.

Alternatively, the DPG engine generates a test vector.
The test vector is typically only a partial assignment to the
primary inputs. To accurately determine the leakage, the
test vector is randomly extended to a full assignment (step
(3)). Next, the leakage current is determine for this test vec-
tor (step (4)). If the leakage current is within the target
range, the (fully assigned) test vector is stored (step (5)),
fault simulation (step (6)) is done to classify other faults
detected by the same test vector and the fault is marked
testable (step (7)).

If the first random extension of the test vector did not
yield an input vector within the specified leakage range, ran-
dom extension (step (3)) and leakage estimation (step (4))
are repeated until either a valid test vector has been found
or a given limit lR is reached.

If the limit lR is reached without finding a valid test
vector, the DPG engine is called again (step (8)) to retrieve

Random Ext.

Leakage Calc.

DPG Engine

R

reached
limit l not

Fault Sim.

Store Testvec.5

6

limit l
reached

R

DPG Engine
8

next
testvec.

UNTESTABLE OUT OF RNG TESTABLE

no other test vec.
Dor limit l reached

2 79

3

4

1

untest.

testable

within range

out of range

Figure 4. DPG step with leakage constraints

a new test vector. If a new test vector exists, the random
extension process is repeated. Otherwise, if no other test
vector exists or a second predefined limit lD for the num-
ber of test vectors is reached, the process terminates. The
current fault is classified as being “out of range” (step (9)).

As a DPG engine any algorithm is suitable that allows to
explore all test vectors for a given fault. Here, a DPG engine
based on Boolean Satisfiability (SAT) similar to [16, 4] is
used. The Minisat solver [5] is the underlying reasoning
engine. In this case “blocking clauses” are inserted into the
search problem to find new test vectors. A blocking clause
can be derived directly from a test vector.

Using random extension to decide whether there exists a
test vector for a given fault is a heuristic procedure. Find-
ing better heuristics for this step is future work. Due to
the heuristic procedure faults may be classified as being out
of range, even if a test vector exists. But as an advantage
the problem size that has to be handled by the DPG engine
is restricted to the fanin cone of the fault site. Moreover,
the leakage model only has to be handled outside the DPG
engine and no tight integration is necessary. This leads to
a “lazy approach”, i.e. the decision whether a test vector is
valid is only done after evaluating the functional constraints.

Alternatively, an “eager approach” can be used. In this
case the leakage model is tightly integrated with the formal
procedure for test pattern generation. Similar procedures
integrating Boolean reasoning and leakage estimation have
been proposed to find input vectors with minimal leakage
current [3, 6, 15]. These procedures are based on frame-
works to solve satisfiability of pseudo Boolean constraints
or 0-1 integer linear programs. But handling the leakage
model within the formal reasoning engine is quite resource
intensive – even deriving a single vector with minimal leak-
age takes a long run time and may not even be possible for
all circuits. In the ATPG framework considered here a large
number of faults is considered and therefore a larger num-
ber of test vectors may have to be generated. Thus using an
“eager approach” is not feasible in this context. Nonethe-

less, using a fully deterministic procedure in the rare case
where the heuristic approach fails to generate a test vector
for a particular fault, is an interesting future extension to the
framework presented here.

4 Experimental Results

In this section the framework is evaluated using bench-
mark circuits. First, the dependence between run time, fault
coverage and size of the testset on the leakage constraints is
studied. Then, the practical benefit for IDDQ testing is as-
sessed by considering the leakage signatures of the testsets
for different α.

Circuits of the ITC99 benchmark suite are used to eval-
uate the proposed framework. A library for a 90nm fea-
ture size that consists of 2-input gates has been used. Gates
with more inputs were decomposed into 2-input gates for
the experiments. The PSF model is considered for test pat-
tern generation. All experiments were carried out on an In-
tel Core Duo 2 (4MB Cache, 4 GB RAM, 3 GHz, Linux).
The parameter lR determines the number of random vec-
tors used to estimate µ and σ and the number of random
extension to a deterministic test vector (see Section 3.3 and
Section 3.4). This parameter was manually adjusted to the
size of the circuit and ranges from 40 (for the small circuits
b01, b02, b03, and b06) to 20,000 (for the large circuits b18
and b19)1. The parameter lD limits the number of (typi-
cally partial) deterministic test vectors that are considered
for random extensions (see Section 3.4) and was set to 100
for all circuits. Prior to test pattern generation fault collaps-
ing was applied to reduce the number of target faults.

Table 1 shows results for different values of the param-
eter α for some ITC99 benchmarks; the case α = ∞ de-
scribes standard ATPG. The same framework was used for
standard ATPG, but the leakage estimation was deactivated.
The run times required for the different tasks are shown in
column time. The total time tot includes that for DPG, RPG
and reverse fault simulation (rev). During DPG, RPG, to
define the targeted leakage range and to sort the test vectors
the leakage current was calculated. The cumulative time is
given in column leak. The number of test vectors in the
testset is given in column #tv. Column #oor (out of range)
gives the number of faults that are testable without leakage
constraints, but have no test vector in the generated testset.
This is also reflected by the fault efficiency in column %fe,
i.e. the percentage of testable faults detected by the testset.

The smaller the value of α the tighter is the target range
for leakage currents and the harder is test pattern generation.
Thus, run times increase when the range narrows. The dom-
inating factor is the time needed for leakage calculations
during random as well as deterministic test pattern genera-
tion. In particular, when no test patterns are found for many
faults, the run time increases significantly (e.g. b15 1). For
other circuits the increase in run time is not too large. All
ITC99 circuits were completely handled by the framework.

The testset should be as small as possible since the size is
proportional to the time needed to test a circuit. Using leak-

1Fault simulation for a large number of random vectors was done.
Then, lR was choosen where the number of newly detected faults using ad-
ditional vectors became small. Automating this step remains future work.

age constraints, the testset only increases marginally and
may even be smaller in some cases, e.g. consider b15 or b19
for alpha = 0.5. Moreover, the number of faults that could
not be classified within tight ranges for the leakage estima-
tion is small. For the very small circuit b06, the number
of faults that remain undetected by vectors within the target
range is large compared to the total number of faults. Test-
ing a fault in a small circuit typically forces values on most
of the primary inputs, therefore “adjusting” the leakage cur-
rent by extending the test vector is difficult. In contrast, for
the larger circuits, typically all faults were classified even
for the smallest values of α. A fault efficiency of 100% is
achieved for the benchmark circuits b18 through b22.

In practice a post processing step after measuring leak-
age currents is applied to reduce the influence of process
variations that may cause an offset and to reduce the ex-
pected variations due to vector dependencies. One tech-
nique is to sort the test vectors by their leakage current prior
to deciding whether the leakage measurement unveils an
unexpected behavior of some device [7]. Therefore such
a sorting process is applied here and the resulting leakage
signatures are compared to standard ATPG. The plots in
Figure 5 show the results. Again, different values for α
are considered, α = ∞ denotes the results obtained without
restrictions on leakage currents.

Without any restrictions the leakage current from one
vector to the next is quite unstable even after sorting. The
signature typically shows a large slope and also significant
fluctuations may occur from one test vector to the next.

For b12 the curve remains unstable for α ≥ 2. When
tightening the interval by reducing α, large jumps are not
contained in the signature any more. The signature con-
verges to linear with a small slope. For the circuits b14 to
b22 the range of expected currents was reduced to 19% or
less for α = .5 compared to α = ∞. In case of b17 1 a
reduction to 9% was achieved.

Expecting such a continuous signature for good devices
helps in practice. Erroneous devices that deviate from this
behavior are identified much easier compared to a discon-
tinuous signature with a large slope.

5 Conclusions

This paper proposed a framework for leakage aware
ATPG. Using test vectors generated by this framework im-
plies a high practical benefit during IDDQ testing. The
ITC99 benchmark suite was used to evaluate the frame-
work. As the most important result quite continuous leak-
age signatures with a small slope were retrieved for the
generated testset. This “pre-measurement” approach can
directly be combined with post-processing techniques like
e.g. [7, 17, 13].

Using the framework comes at a penalty in run time for
generating test vectors. Therefore improving the estimation
of leakage current is a major goal for future work. Including
a deterministic reasoning engine that considers the leakage
model to further increase the fault coverage and including
the bridging fault model are other topics for future work.
For technologies below 90nm leakage currents tend to in-
crease due to decreasing feature size. Thus, an even more
beneficial impact is expected.

Table 1. Results for different values of α
circ α time #tv #oor %fe

tot DPG RPG rev leak
b06 0.5 <0.0 <0.0 <0.0 <0.0 <0.0 5 10 92.1

2 <0.0 <0.0 <0.0 <0.0 <0.0 7 0 100.0
8 <0.0 <0.0 <0.0 <0.0 <0.0 8 0 100.0
∞ 0.0 <0.0 <0.0 0.0 0 7 0 100.0

b12 0.5 0.6 0.1 0.3 0.0 0.5 110 0 100.0
2 0.5 0.0 0.3 <0.0 0.4 89 0 100.0
8 0.3 <0.0 0.2 0.0 0.3 76 0 100.0
∞ 0.0 0.0 0.0 <0.0 0 85 0 100.0

b13 0.5 0.1 0.0 0.0 <0.0 0.1 23 0 100.0
2 0.1 <0.0 0.1 <0.0 0.1 21 0 100.0
8 0.1 <0.0 0.1 <0.0 0.1 20 0 100.0
∞ 0.0 <0.0 0.0 <0.0 0 21 0 100.0

b15 0.5 1431.6 1392.8 25.4 0.9 1428.7 285 1 100.0
2 43.9 7.4 24.0 0.7 42.4 276 0 100.0
8 31.6 0.4 20.5 0.6 30.6 294 0 100.0
∞ 3.0 1.0 1.0 0.9 0 288 0 100.0

b15 1 0.5 29036.1 28977.4 38.4 2.0 29025.8 363 800 96.8
2 16026.7 15971 36.8 1.6 16018.8 390 556 97.8
8 50.0 0.5 32.7 1.3 47.4 375 0 100.0
∞ 5.8 1.4 2.4 1.9 0 363 0 100.0

b17 0.5 7886.0 7654.8 148.0 9.9 7872.0 735 36 99.9
2 245.6 23.9 143.3 8.4 232.4 734 0 100.0
8 215.3 3.5 137.2 7.9 202.5 749 0 100.0
∞ 36.8 7.3 18.4 10.7 0 730 0 100.0

b17 1 0.5 65151 64886.6 167.9 14.3 65127.4 909 378 99.5
2 324.7 69.4 163.5 12.8 304.6 910 0 100.0
8 251.9 5.3 158.7 11.7 233.0 929 0 100.0
∞ 48.7 9.8 21.7 16.6 0 903 0 100.0

b18 0.5 1764.4 147.7 1036.9 67.5 1681.1 1614 0 100.0
2 1623.6 31.3 1028.7 61.3 1535.2 1596 0 100.0
8 1594.1 26.4 1014.7 58.0 1509.6 1587 0 100.0
∞ 262.6 47 134.5 79.5 0 1594 0 100.0

b18 1 0.5 1652.9 152.7 961.1 64.9 1572.5 1640 0 100.0
2 1507.5 30.2 954.9 57.4 1423.7 1604 0 100.0
8 1483.7 25.9 943.7 56.0 1399.8 1608 0 100.0
∞ 246.9 43.7 126.6 75.2 0 1589 0 100.0

b19 0.5 3835.6 425.6 2112.4 251.8 3549.2 2950 0 100.0
2 3495.9 125.1 2114.2 223.7 3212.5 2828 0 100.0
8 3464.6 119.6 2099.5 220.7 3183.9 2823 0 100.0
∞ 732.0 169.4 265.6 293.5 0 2982 0 100.0

b19 1 0.5 3574.5 395.7 1964.5 242.7 3296.6 2966 0 100.0
2 3262.0 120.2 1967.5 213.8 2990.6 2841 0 100.0
8 3239.6 113.9 1959.7 212.5 2966.3 2834 0 100.0
∞ 691.6 159.2 256.3 272.8 0 2874 0 100.0

b20 0.5 76.8 19.6 37.2 1.2 75.1 144 0 100.0
2 54.5 0.4 35.2 1.0 53.1 155 0 100.0
8 51.3 0.4 33.3 0.9 49.9 156 0 100.0
∞ 5.1 0.8 2.9 1.2 0 124 0 100.0

b20 1 0.5 41.4 1.3 26.0 0.8 40.3 142 0 100.0
2 37.9 0.2 24.5 0.7 36.9 136 0 100.0
8 35.6 0.2 23.0 0.6 34.6 135 0 100.0
∞ 3.2 0.6 1.6 0.8 0 112 0 100.0

b21 0.5 145.4 68.5 50.1 1.3 143.5 169 0 100.0
2 73.6 0.6 47.7 1.2 71.9 174 0 100.0
8 68.9 0.4 44.9 1.0 67.3 167 0 100.0
∞ 6.4 0.9 4.0 1.3 0 141 0 100.0

b21 1 0.5 53.9 1.3 34.4 0.8 52.8 147 0 100.0
2 49.8 0.4 32.4 0.7 48.7 154 0 100.0
8 46.5 0.3 30.4 0.6 45.6 143 0 100.0
∞ 3.8 0.7 2.1 0.9 0 133 0 100.0

b22 0.5 118.5 4.5 74.2 2.1 115.7 191 0 100.0
2 109.6 1.0 70.9 2.0 106.7 205 0 100.0
8 104.0 0.7 67.5 1.8 101.4 203 0 100.0
∞ 11.1 1.7 6.5 2.5 0 176 0 100.0

b22 1 0.5 87.3 3.4 54.6 1.6 85.2 192 0 100.0
2 79.9 0.7 51.7 1.4 77.9 189 0 100.0
8 75.4 0.5 48.9 1.2 73.6 181 0 100.0
∞ 7.6 1.1 4.6 1.7 0 157 0 100.0

 3.8

 3.85

 3.9

 3.95

 4

 4.05

 4.1

 4.15

 4.2

 4.25

 0 20 40 60 80 100

le
a

k
a

g
e

 (
u

A
)

no.

α= 0.5
α= 2
α= 8
α= ∞

(a) For b12

 423

 424

 425

 426

 427

 428

 429

 430

 431

 0 200 400 600 800 1000 1200 1400 1600

le
a

k
a

g
e

 (
u

A
)

no.

α= 0.5
α= 2
α= 8
α= ∞

(b) For b18

 852

 854

 856

 858

 860

 862

 864

 0 500 1000 1500 2000 2500 3000

le
a

k
a

g
e

 (
u

A
)

no.

α= 0.5
α= 2
α= 8
α= ∞

(c) For b19

 70

 70.5

 71

 71.5

 72

 72.5

 0 20 40 60 80 100 120 140 160

le
a

k
a

g
e

 (
u

A
)

no.

α= 0.5
α= 2
α= 8
α= ∞

(d) For b20

Figure 5. Signatures of testsets

References

[1] S. Bobba and I. Hajj. Maximum leakage power estimation
for cmos circuits. In IEEE Alessandro Volta Memorial Work-
shop on Low-Power Design, pages 116–124, 1999.

[2] S. Chakravarty and P. J. Thadikaran. Simulation and gen-
eration of IDDQ tests for bridging faults in combinational
circuits. IEEE Trans. on Comp., 45(10):1131–1140, 1996.

[3] K. Chopra and S. B. K. Vrudhula. Implicit pseudo boolean
enumeration algorithms for input vector control. In Design
Automation Conf., pages 767–772, 2004.

[4] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke,
J. Schlöffel, and D. Tille. On acceleration of SAT-
based ATPG for industrial designs. IEEE Trans. on CAD,
27(7):1329–1333, 2008.

[5] N. Eén and N. Sörensson. An extensible SAT solver. In SAT
2003, volume 2919 of LNCS, pages 502–518, 2004.

[6] F. Gao and J. Hayes. Exact and heuristic approaches to input
vector control for leakage power reduction. IEEE Trans. on
CAD, 25(11):2564–2571, 2006.

[7] A. E. Gattiker and W. Maly. Current signatures: Applica-
tion. In Int’l Test Conf., pages 156–165, 1997.

[8] Y. Higami, Y. Takamatsu, K. K. Saluja, and K. Kinoshita.
Fault models and test generation for IDDQ testing: Embed-
ded tutorial. In ASP Design Automation Conf., pages 509–
514, 2000.

[9] U. Mahlstedt, J. Alt, and M. Heinitz. Current: A test gen-
eration system for IDDQ testing. In VLSI Test Symp., pages
317–323, 1995.

[10] P. C. Maxwell, R. C. Aitken, K. R. Kollitz, and A. C. Brown.
IDDQ and AC scan: The war against unmodelled defects.
itc, pages 250–258, 1996.

[11] P. Nigh, D. Forlenza, and F. Motika. Application and anal-
ysis of IDDQ diagnostic software. In Int’l Test Conf., pages
319–327, 1997.

[12] R. R. Rajsuman. IDDQ testing for CMOS VLSI. Proceed-
ings of the IEEE, 88(4):544–568, 2000.

[13] S. Sabade and D. Walker. Estimation of fault-free leakage
current using wafer-level spatial information. IEEE Trans.
on VLSI Systems, 14(1):91–94, 2006.

[14] S. S. Sabade and D. M. Walker. IDDX-based test methods:
A survey. ACM Trans. on Design Automation of Electronic
Systems (TODAES), 9(2):159–198, 2004.

[15] A. Sagahyroon and F. A. Aloul. Using SAT-based tech-
niques in power estimation. Microelectronics Journal, 38(6-
7):706–715, 2007.

[16] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and
J. Schlöffel. PASSAT: Effcient SAT-based test pattern gen-
eration for industrial circuits. In IEEE Annual Symposium
on VLSI, pages 212–217, 2005.

[17] C. Thibeault. Replacing IDDQ testing: With variance reduc-
tion. Jour. of Electronic Testing: Theory and Applications,
19(3):325–340, 2003.

