
Robustness Check for Multiple Faults Using

Formal Techniques

Stefan Frehse, Görschwin Fey, André Sülflow, and Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{sfrehse,fey,suelflow,drechsle}@informatik.uni-bremen.de

Abstract. Feature sizes in VLSI circuits are steadily shrinking. This
results in increasing susceptibility to soft errors, e.g. due to environmen-
tal radiation. Precautions against soft errors can be taken on all design
stages, e.g. the architectural level, algorithmic level, or on the layout
level. Whether the final implementation contains flaws or really provides
robustness to soft errors remains to be checked.

Here, we propose an approach to formally verify the robustness of a
circuit with respect to multiple soft errors. We propose a fault model
that prunes the exponentially sized space of multiple soft errors and an
algorithm that automatically analyzes a given circuit.

1 Introduction

Moore’s law is still valid due to continuously shrinking the feature sizes in VLSI
circuits. The small feature size allows for low-power circuitry operating at high
frequencies and for assembling millions of components on a chip. On the other
hand less energy is required to drive smaller transistors. Consequently, the soft
error rate increases. In the future these issues have to be considered during chip
design [1].

Upsets or bit-flips caused by environmental radiation are one source of soft
errors. A Single Event Upset (SEU) causes a single bit-flip. Multiple SEUs dis-
tributed in time may accumulate in the state of the circuit or a single particle
with high energy may cause multiple soft errors in spatially close components
of the circuit. This is denoted as Multiple Event Upset (MEU) in the following.
The number of MEUs is exponential in the number of time frames considered
and the number of components of the considered circuit.

Numerous techniques at all design stages are available to catch soft errors
before they manifest in the output response or in the state of a circuit: error
correcting codes [2] have been proposed, redundancy in time [3] or space [4] is
applied, circuit structures are widened and thereby hardened during layout [5,6].
But when implementing these techniques in a design, bugs may be introduced.
Therefore, like the functionality, also the robustness of an implementation has
to be verified.

Simulation-based and emulation-based techniques [7, 8] to validate this kind
of robustness have been proposed. But even for small circuits these approaches
can only cover a small portion of the input space and state space even for single
errors. Considering MEUs further decreases the coverage achieved.

Formal approaches cover all input stimuli, any state of a design and any
fault. First approaches have been presented in [9–12]. The work in [10] requires
manual interaction. The techniques in [9, 10, 12] are restricted to single errors.
The approach in [12] provides a measure for robustness. Even if the formal
approach cannot finish, bounds on robustness are returned. Only the algorithm
presented in [11] covers MEUs, but does not propose any run time improvements
to handle the huge space of potential faults.

Here we propose an approach to formally verify robustness with respect to
MEUs. Modeling upsets is similar to [12] and the bounds on robustness are
extended to MEUs. The main contributions of our work are:

– A fault model for MEUs that prunes the search space,
– a measure for robustness with respect to MEUs,
– an algorithm to automatically verify robustness, and
– bounds on robustness while the algorithm proceeds.

Our algorithm runs fully automatically and can therefore be seamlessly inte-
grated into the design flow, serving as a push-button tool. Experiments on non-
robust benchmarks from the ITC’99 benchmark set and on derived robust cir-
cuits show the effectiveness of our technique.

The paper is structured as follows: Section 2 reviews preliminaries. The fault
model for MEUs is motivated and described in Section 3. Section 4 explains
the algorithm, the robustness measure and the bounds. Experimental results are
reported in Section 5. Finally, conclusions are stated in Section 6.

2 Preliminaries

2.1 Boolean Satisfiability – SAT

The Boolean Satisfiability (SAT) problem is a decision problem that asks whether
there exists a variable assignment of a Boolean formula f : B

n → B such that
the formula evaluates to one. If such an assignment exists the formula is called
satisfiable, otherwise unsatisfiable. The SAT problem is in the class of the NP-
complete problems, proved by Cook in 1971 [13]. Problem instances coming from
practical problems [14] can often be solved effectively by state-of-the-art SAT
solvers [15, 16]. The most common form of Boolean formulas for SAT solvers is
the Conjunctive Normal Form (CNF).

2.2 Sequential Circuit Model

We consider a synchronous sequential circuit C with Primary Inputs PI(C), Pri-

mary Outputs PO(C) and State elements S(C). The number of components of

C(1)

. . .

C(k)

. . .

C(k + l)

a@t=1

b@t=1

a@t=k

c@t=k+l

b@t=k

Fig. 1. Multiple faults in a sequential circuit

the circuit C is denoted by |C|. Here, a component may be a gate, module or a
source level expression in a hardware description language.

A circuit can be converted in linear time and space into a CNF with respect
to the circuit size [17].

3 Fault Model

This section first discusses MEUs and our notion of robustness. Then the fault
model and further properties to prune the search space are introduced.

3.1 Multiple Event Upsets and Robustness

In the following our notion of MEUs is described. A single upset on the logical
level is modeled as proposed in [12] by non-deterministically changing the values
of an internal wire.

A MEU is composed of multiple SEUs. Relevant data to uniquely describe a
MEU is the following: at which components of the circuit the upsets occur and
at which point in time the value of a component is changed.

Example 1. For example some MEUs of a sequential circuit are shown in Fig-
ure 1: α1 = (a@t=1, a@t=k), α2 = (a@t=1, b@t=k), α3 = (b@t=1, a@t=k) and
α4 = (a@t=1, b@t=k, c@t=k+l).

Any algorithm that evaluates the robustness of a circuit with respect to
MEUs has to adequately model which components are affected at which point
in time. For complexity reasons we restrict the observation time to a window
of tmax time frames. This restriction is required for complexity reasons but is
also justified by practical assumptions. A MEU should be detected within a
short period of time signaled by a fault detection signal flt, cause Silent Data

Corruption (SDC) or disappear. In more detail there are three alternatives after
a MEU occurred in a circuit:

1. The effect propagates to the outputs within tmax time frames, causing incor-
rect output behavior. The circuit is non-robust with respect to this MEU.

2. The MEU may manifest in the state, is not detected, and remains hidden in
the system. The effect may be observable at the outputs at a later point in
time. The circuit is non-classified with respect to this MEU – which corre-
sponds to a SDC.

3. The effect disappears or is recognized by fault detection logic. The circuit is
robust with respect to this MEU.

In the following we consider a MEU as being non-robust, non-classified or robust,
respectively.

3.2 Fault Model

To simplify the representation our fault model abstracts from the points in time,
this is modeled by Abstracted MEUs (AMEUs). Moreover, we abstract from the
order of the single events composing a MEU by defining an equivalence relation
on AMEUs. Thus, multiple MEUs are mapped to a single AMEU.

Assume a MEU is found to be non-robust, computed by solving a SAT-
Problem. This MEU is mapped to an AMEU that is also determined non-robust.
Additionally, all equivalent AMEUs are also considered non-robust without fur-
ther search. By this, the set of non-robust MEUs is over-approximated. For
diagnosis and to improve the fault tolerance, the AMEU can be enriched with
time information to reconstruct the complete scenario for better understanding.

The abstraction by AMEUs prunes the search space that has to be explored
by the algorithm to prove robustness.

To model AMEUs, a single component g ∈ C has to be represented multiple
times to model multiple faults of a single component.

Given a circuit C and a component g ∈ C. To represent g multiple times in a
set, g is marked with a superscript k denoted by g(k). The set

MC(k) = {g(k)|g ∈ C}

marks all components of C with the superscript k.
In the following η ∈ N specifies the number of flipped bits caused by a MEU

or an AMEU, repsectively. The parameter η is called fault cardinality.

Definition 1. Let C be a circuit and η ∈ N the fault cardinality. The set

F
C

η =

η
⋃

i=1

{α|α ⊆

η
⋃

k=1

MC(k), |α| = i}

contains all possible AMEUs up to the fault cardinality η. The set is called

AMEU-set.

The cardinality of the AMEU-set is given by

|FC

η | =

η
∑

i=1

(

η · |C|

i

)

Instead of explicitly defining the mapping of MEUs to AMEUs we give some
examples in the following.

Example 2. The MEUs of Example 1 are mapped to AMEUs as shown in Table 1.

Table 1. Mapping MEUs to AMEUs

MEU AMEU

(a@t=1, a@t=k) {a(1), a(2)}

(a@t=1, b@t=k) {a(1), b(1)}

(b@t=1, a@t=k) {a(1), b(1)}

(a@t=1, b@t=k, c@t=k+l) {a(1), b(1), c(1)}

Example 3. Let Cex = {a, b, c} be a circuit with three components and η =
2 faults are considered. The sets MCex(1) = {a(1), b(1), c(1)} and MCex(2) =
{a(2), b(2), c(2)} mark the components to get a representation of a single compo-
nent for multiple time frames. The set of all faults is given by:

F
Cex

2 = {{a(1)}, {b(1)}, {c(1)}, {a(2)}, {b(2)}, {c(2)}}

∪ {{c(1), b(2)}, {a(1), c(2)}, {a(1), b(1)}, {c(1), a(2)}}

∪ {{c(1), c(2)}, {a(2), b(2)}, {a(1), c(1)}, {b(1), c(1)}}

∪ {{b(1), a(2)}, {b(2), c(2)}, {a(1), b(2)}, {b(1), c(2)}}

∪ {{a(2), c(2)}, {a(1), a(2)}, {b(1), b(2)}}

The superscript should only reflect the number of times a certain component
was involved in a MEU. An AMEU {a(1), a(2)} is of interest, because component
a has been hit two times by a MEU. But no MEU is mapped to the AMEU
{a(1), a(3)} or to {a(2), b(3)}. Instead {a(1), a(2)} and {a(1), b(1)} will be used,
respectively. Here we define an equivalence relation to reduce the number of
AMEUs to be considered. Distinct but equivalent AMEUs do not necessarily
cause the same errors. The designer still knows the components that are non-
robust.

Two AMEUs β and β̃ are considered equivalent, iff the number of occurrences
of each component in β and β̃ is equal. This can formally be defined as an
equivalence relation ∼. Let

β ∼ β̃ = {(β, β̃) ∈ F
C

η × F
C

η | ∀g ∈ C : cnt(β, g) = cnt(β̃, g)}

be the relation on two equivalent AMEUs, whereas β is an AMEU and g is a
component of a circuit. The function cnt counts the occurrences of a component
in an AMEU:

cnt({a(i)} ∪ β, g) = cnt(β, g) +

{

1 if g = a

0 otherwise

cnt(∅, g) = 0

The relation ∼ is reflexive, symmetric and transitive. The equivalence class [β]∼
of an AMEU β contains all equivalent AMEUs with respect to ∼. All AMEUs in

at
g

gt g̃t

gt...

Fig. 2. Fault injection

an equivalence class are considered non-robust, if one member is non-robust. This
is valid in terms of our conservative approach. If one member is non-robust, then
all the other members are also potentially vulnerable for non-robustness. This
equivalence relation speeds up the classification and AMEUs can be classified
non-robust without finding a corresponding non-robust MEU.

An additional property of AMEUs further speeds up the classification of non-
robust and non-classified AMEUs. Adding another single fault to a non-robust
MEU causes faulty behavior, independent of the value of the fault injection. This
is extended to AMEUs. If an AMEU β is non-robust, then all AMEUs which
include β are also non-robust:

∀γ ∈ F
C

η : β ⊂ γ ⇒ γ is non-robust

In general, the implication-set contains all AMEUs which result from one AMEU.

Definition 2. Given a circuit C, the fault cardinality η and a subset M ⊆ F
C
η .

Furthermore let β ∈ F
C
η be an AMEU, then the set

I
impl(M,β) = {γ|γ ∈ M,β ⊆ γ}

represents all AMEUs which include β. The set is called implication-set.

Example 4. Consider Example 3 and let β = {a(1)} be a non-robust AMEU.
The implication-set for β results in:

I
impl(FC

η , β) = {{a(1)}, {a(1), c(2)}, {a(1), b(1)}}

∪ {{a(1), c(1)}, {a(1), b(2)}, {a(1), a(2)}}

Here, five AMEUs are classified as non-robust additionally, since β is non-robust.
Moreover, fault equivalence is exploited. If β = {a(1)} is non-robust then γ =
{a(2)} is also non-robust. Consequently, the implication-set of γ results in five
additional classifications. In total during the classification of β ten additional
classifications are computed. These implications reduce the complexity and save
run time during the classification.

X(0)

S(0)

=

Y(0)

Y′(0)

S(1)

S′(1)

C(′0)

C(0)

X(1)

=

Y(1)

Y′(1)

S(2)

S′(2)

C′(1)

C(1)

g̃1

X(td)

6=

Y(td)

Y′(td)
C′(td)

C(td)

. . .

g̃td
g̃0

P

g∈C

td
P

i=0

ai
g ≤ η ∧

P

g∈C

a0
g = 1

Fig. 3. Sequential Model

4 Algorithm

This section introduces the algorithm to evaluate the robustness of a circuit.
The algorithm uses a SAT engine to determine all non-robust MEUs and non-
classified MEUs. These are mapped to AMEUs to keep track of the search space
already explored. Essentially, a Sequential Equivalence Check (SEC) of the orig-
inal circuit compared to the circuit after injecting a MEU is performed.

4.1 Overview

Injection of an upset at a single component is shown in Figure 2. The output
signal of a component g ∈ C is associated to variable gt at time frame t. For a
component gt at time frame t fault injection logic is inserted. A fault predicate

at
g and a new variable g̃t are introduced. The output gt is replaced by at

g ⇒

(g̃t = gt). If the fault predicate is off, i.e. at
g = 0, then the component behaves

normally. Otherwise if the fault predicate is activated, i.e. at
g = 1, any value can

be injected in the circuit.
To determine non-robust MEUs, a SAT instance is created as shown in Fig-

ure 3. Similar to bounded model checking the circuit C(t) and C′(t) are unrolled
for td time frames. For every unrolled time frame the PIs of both circuits are
connected. The initial state S(0) of both circuits is constrained as equal. By
allowing any reachable state for S(0) the algorithm remains complete. The POs
at time frame td are forced to be different. Finally, a cardinality constraint as
shown in Figure 3 is added to the SAT instance to constrain that less than η +1
components are modified and at least one single fault occurs in the first time
frame. The injection of at least one fault in the first time step, further shrinks

the search space. The algorithm remains complete, because any reachable state
is considered at S(0). The reachable states can be computed by e.g. reachability
analysis based on BDDs [18].

The SAT instance is satisfied iff a set of fault predicates P = {ak1

g , ak2

h , . . . , akl

j }
with |P | ≤ η are activated and the injected values lead to a difference at the
primary outputs. The MEU (g@t=k1 , h@t=k2 , . . . , j@t=kl) represented by fault
predicates is classified as non-robust and the corresponding AMEU is added to
the set of non-robust AMEUs. The fault predicates of α are blocked in the SAT
instance to get all non-robust AMEUs by computing all satisfying solutions. If
no more MEUs can be classified non-robust within the time bound td, td is incre-
mented until tmax is reached. The circuit C(t) and the copy C′(t) are appended
to the existing model. The computation of the non-robust MEUs is repeated.

After reaching tmax, non-classified AMEUs are determined analogously. Here,
differing states and flt = 0 from time frame 0 to time frame tmax are con-
strained.

4.2 Pseudo Code

The pseudo code is shown in Algorithm 1. Parameters are the circuit C, the
fault cardinality η and the bound tmax for the maximum number of time frames
considered.

The circuit C and a copy C′ are unrolled for t ∈ [0, . . . , tmax] time steps
(line 4). At least one fault predicate is activated in the first time step (line 7).
The initial states of C and C′ are constrained to be equal (line 8). For each
component the fault injection logic, described above is inserted (line 10–12). To
reduce the number of blocking clauses when searching for all satisfying solutions,
an extended fault injection logic is used. A fault predicate is extended by two
new variables, wt

g and wg. The first variable is created for each time frame and
the second for all time frames. The fault predicate at

g is the conjunction of wt
g

and wg. By this, a component can be blocked for all time frames, by blocking
the variable wg to evaluate to true. Due to this construction only one blocking
clause is required for all permutations of a set of components.

The miter circuit for SEC is created (line 13). Now the algorithm determines
the non-robust MEUs. The constraint NR is created to determine all MEUs
which cause a difference at the POs, while the fault signal flt does not detect a
fault. The solutions are extracted by the method extractAllSolutions and
afterwards the constraint NR is removed. The extracted non-robust AMEUs are
added to the set S (line 18). Then, the comparison logic of the miter circuit is
removed and a new iteration with an incremented time frame is started.

After unrolling the circuit tmax times the non-classified MEUs are determined
analogously to the non-robust MEUs (line 22–26). Finally, the robust fault can-
didates can be computed as shown in line 27. The sets of robust, non-robust and
non-classified AMEUs are returned.

The extraction of non-robust and non-classified AMEUs is done by the method
extractAllSolutions in Algorithm 2. This ethod receives the fault car-
dinality (η), the set of non-classified AMEUs (U) and returns the extracted

Algorithm 1: computeRobustness

Input: C the circuit, η number of faults, tmax max time to unroll
Output: (T, S, U) set of the robust, non-robust and non-classified AMEUs
begin1

T = S = ∅;2

for t = 0 to tmax do3

create copies of C(t) and C′(t) of C;4

constraint PI(C(t)) ⇔ PI(C′(t));5

if t = 0 then6

add constraint
P

g∈C
a0

g ≥ 1;7

add constraint S(C(t)) ⇔ S(C′(t));8

end9

foreach gt ∈ C′(t) do10

replace gt by g′t[gt, at
g] and at

g ⇔ wt
g ∧ wg;11

end12

cmppo = create miter of all PO(C(t), C′(t));13

// compute non-robust AMEUs;14

add constraint NR = cmppo ∧ flt = 1;15

S
′ = extractAllSolutions(η, FC

η));16

remove constraint NR;17

S = S ∪ S
′;18

remove cmppo;19

end20

// compute non-classified AMEUs;21

cmps = create miter of all S(C(tmax), C
′(tmax));22

cmppo = create miter of all PO(C(tmax), C
′(tmax));23

add constraint NC = flt ∧ cmppo ∧ cmps = 1;24

U = extractAllSolutions(η, FC
η \ S);25

remove constraint NC;26

T = F
C
η \ U \ S;27

return (T, S, U);28

end29

AMEUs (M). Each iteration increments the number of the injected faults (line 3).
The number of injected aults is limited by a cardinality constraint in line 4. The
while-loop (line 5) extracts all solutions. If a solution exists, the MEU α is ex-
tracted. The corresponding AMEU is extracted and all equivalent AMEUs are
added to the set of solutions. The AMEUs are now classified and have to be
removed from the set U

′ (line 13). Afterwards, a blocking clause is inserted to
the SAT instance.

In our implementation the algorithm stores the sets of AMEUs by using
Binary Decision Diagrams [18] to have a compact set representation and to
efficiently manipulate sets.

Algorithm 2: extractAllSolutions

Input: η – fault-card., U
′ – set of non-classified fault candidates

Output: M – set of all solutions
begin1

M = ∅;2

for k = 1 to η do3

constraint limit:
P

g∈C

Ptd

i=0 ai
g = k;4

while Solver.solve() do5

α = {g@t=i
ij

| al
g = 1} = {g@t=1

i1
, . . . , g

@t=tk
ik

};6

β = AMEU(α);7

A = ∅;8

foreach β̃ ∈ [β]∼ do9

A = A ∪ I
impl(U′, β̃);10

end11

M = M ∪ A;12

U
′ = U

′ \ A;13

insert blocking clause for all [β]∼ by blocking wg14

end15

remove constraint limit;16

end17

return M ;18

end19

4.3 Robustness Measure

After determining the set of non-robust AMEUs S, the set of non-classified
AMEUs U and the set of robust AMEUs T with respect to a time bound td,
a lower bound and an upper bound on the robustness of the circuit can be given
by extending the bounds of [12] from SEUs to AMEUs. Robustness is considered
as the ratio of the number of robust AMEUs to the total number of AMEUs:

Rlb =
|T|

|FC
η |

= 1 −
|S| + |U|

|FC
η |

Rub =
|U| + |T|

|FC
η |

= 1 −
|S|

|FC
η ||

These bounds can also be determined when the algorithm does not progress to
time frame tmax within the allowed computational resources. Instead, interme-
diate results can be returned.

The bounds roughly indicate whether the fault detection and correction logic
of a circuit works properly or the circuit is susceptible to faults. For improving the
implementation, the designer can additional consider the components involved
in non-robust or non-classified AMEUs.

5 Experimental results

In this section the experimental results are presented. The algorithms were im-
plemented in C++. All experiments were carried out on an Intel Core2 Duo
(2.0GHz, 4GB RAM, Linux). The SAT solver Zchaff [16] is used with incre-
mental extension. The time out is set to 2·1500s, the first 1500s are given to
the classification of the non-robust AMEUs and the second time out limits the
classification of the non-classified AMEUs. Up to 10 time frames are considered.

If the classification of the non-classified faults exceeds the time out, the set
of all non-classified AMEUs is incomplete. In this case only an upper limit on
the lower bound can be given, i.e. there may be more non-classified AMEUs and
the lower bound may decrease further. This is denoted by a for aborted.

Circuits without fault tolerance mechanism were taken from the ITC’99
benchmark suite. We modified the circuits and applied Triple Modular Redun-

dancy (TMR) as fault tolerance mechanism. We denote TMR circuits with the
suffix -tmr. Some circuits are equipped with fault detection logic and a fault sig-
nal (denoted by flt). We also created 5 and 9 modular redundant circuits named
b02-5mr and b01-9mr, respectively. The initial states S(0) are constrained to
reachable states, determined by a BDD-based reachability analysis.

In Table 2 the results of the experiments are shown. The column Circuit

gives the name of the circuits. Columns |C|, |S| and η give the number of com-
ponents, of state elements and the considered fault cardinality, respectively. The
time frame reached within the given time out is shown in column td. If the time
out is reached or the circuit is unrolled for 10 time frames, a number of non-
classified AMEUs remains that is shown in column |U|. The cardinality of the
AMEU-set for every circuit and the fault cardinality are given in column |FC

η |.
The number of non-classified AMEUs and the size of the AMEU-set are rounded.
The resulting lower (Rlb) and upper (Rub) bound of the robustness are shown
in the last two columns.

The standard benchmark circuits b01, b02, b03 and b06 can be fully classified
by the presented approach. The robustness of these circuits is very low when
double faults are considered.

The TMR-circuits with a fault signal are classified almost completely. The
resulting robustness is consistent with the expectation.

For the standard TMR-circuits the robustness is getting lower with increas-
ing fault cardinality. For double faults the maximal number of considered time
frames was reached for b01-tmr and b02-tmr. With an increasing number of
components and state elements (e.g. b06-tmr), the number of time frames reached
becomes smaller and the gap of the resulting bounds is larger. For b02-tmr the
determination of the non-classified AMEUs exceeds the time out. Still an upper

limit on the lower bound can be given. A large gap between upper and lower
bound indicates that often fault effects do not propagate to the outputs but
cause SDC.

Furthermore, for the TMR circuits equipped with a fault signal a high ro-
bustness is computed for double faults. The fault detection logic detects and

Table 2. Bounds of the robustness for multiple faults

Circuit |C| |S| η td |U| |FC
η | Rlb% Rub%

Circuits without fault tolerance mechanism

b01 64 5 2 10 - 8.26 × 1003 0.77 0.77

b02 32 4 2 10 - 2.35 × 1003 1.43 1.43

b03 199 30 2 10 - 7.94 × 1004 0.25 0.25

b06 73 9 2 10 - 1.07 × 1004 0.68 0.68

TMR-Circuits

b01-tmr 212 15
2 10 3.31 × 1003 9.01 × 1004 1.64 38.42
3 3 1.38 × 1007 4.28 × 1007 0.33 32.46
4 3 3.62 × 1009 2.15 × 1010 0.03 16.87

b02-tmr 112 12
2 10 8.62 × 1003 2.52 × 1004 1.37 35.59
3 4 8.29 × 1005 6.33 × 1006 3.58a 13.40
4 4 6.69 × 1007 1.67 × 1009 1.74a 5.13

b06-tmr 275 27
2 5 7.15 × 1004 1.52 × 1005 8.87 56.06
3 3 3.04 × 1007 9.35 × 1007 2.52 34.97
4 3 3.21 × 1010 6.09 × 1010 7.02 60.10

TMR-circuits with a fault signal

b01-tmrflt 215 15 2 6 2.68 × 1002 9.27 × 1004 81.26 81.55

b02-tmrflt 123 12 2 10 1.01 × 1003 3.04 × 1004 84.67 87.99

b06-tmrflt 286 27 2 4 1.22 × 1003 1.64 × 1005 72.50 73.24

Multiple redundancy circuits

b02-5mr 188 20
2 10 6.22 × 1004 7.09 × 1004 2.04 89.81
3 3 2.51 × 1007 2.99 × 1007 0.30 84.30
4 3 9.86 × 1009 1.32 × 1010 0.00 74.30

b01-9mr 656 45 2 3 7.98 × 1005 8.61 × 1005 5.98a 98.73
a aborted during the classification of non-classified AMEUs.

signals faults within one time frame. This also holds for faults manipulating the
state of the circuit causing SDC.

Consequently, the bounds are very close despite the small unrolling depth,
i.e. a precise result about the robustness of the circuits is determined.

For multiple redundancy circuits without a fault signal, the gap of the bounds
is relatively large, because of the small reached unroll time frame within the
given computational resources. An upper limit on the lower bound for b01-9mr
is determined.

In summary, despite the exponentially sized set of MEUs and the compu-
tational complexity of the sequential equivalence check, the exact robustness
computation is done for all small circuits. Even for larger circuits bounds on the
robustness are determined by the algorithm.

6 Conclusion

In this paper we proposed a fully automatic approach to determine the robust-
ness of a sequential circuit for MEUs. The introduced fault model prunes the

search space. To determine non-robust components a SEC is performed. The pre-
sented approach fully classifies the small ITC’99 circuits and provides bounds on
robustness, when a full classification cannot be achieved within given resource
limits.

For future work, we want to consider layout information to further prune
the search space. A decision heuristic for SAT solvers adapted for the robust-
ness check promises better run times. Furthermore other fault mechanisms for
benchmarks will be considered.

References

1. Borkar, S.: Designing reliable systems from unreliable components: The challenges
of transistor variability and degradation. IEEE Micro 25(6) (2005) 10–16

2. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical
Jour. 9 (April 1950) 147–160

3. Austin, T., Bertacco, V.: Deployment of better than worst-case design: Solutions
and needs. In: Int’l Conf. on Comp. Design. (2005) 550–558

4. Seshia, S.A., Li, W., Mitra, S.: Verification-guided soft error resilience. In: Design,
Automation and Test in Europe. (2007) 1442–1447

5. Zhao, C., Dey, S.: Improving transient error tolerance of digital VLSI circuits using
RObustness COmpiler (ROCO). In: Int’l Symp. on Quality Electronic Design.
(2006) 133–140

6. Zhou, Q., Mohanram, K.: Gate sizing to radiation harden combinational logic.
IEEE Trans. on CAD 25(1) (2006) 155–166

7. Civera, P., Macchiarulo, L., Rebaudengo, M., Reorda, M.S., Violante, M.: An
FPGA-based approach for speeding-up fault injection campaigns on safety-critical
circuits. Jour. of Electronic Testing: Theory and Applications 18(3) (2002) 261–271

8. Pellegrini, A., Constantinides, K., Zhang, D., Sudhakar, S., Bertacco, V., Austin,
T.: CrashTest: A fast high-fidelity FPGA-based resiliency analysis framework. In:
Int’l Conf. on Comp. Design. (2008) 363–370

9. Leveugle, R.: A new approach for early dependability evaluation based on for-
mal property checking and controlled mutations. In: IEEE International On-Line
Testing Symposium. (2005) 260–265

10. Krautz, U., Pflanz, M., Jacobi, C., Tast, H.W., Weber, K., Vierhaus, H.T.: Eval-
uating coverage of error detection logic for soft errors using formal methods. In:
Design, Automation and Test in Europe. (2006) 176–181

11. Fey, G., Drechsler, R.: A basis for formal robustness checking. In: Int’l Symp. on
Quality Electronic Design. (2008) 784–789

12. Fey, G., Sülflow, A., Drechsler, R.: Computing Bounds for Fault Tolerance using
Formal Techniques. In: Design Automation Conf. (2009)

13. Cook, S.: The complexity of theorem proving procedures. In: 3. ACM Symposium
on Theory of Computing. (1971) 151–158

14. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems.
Volume 1579 of LNCS., Springer Verlag (1999) 193–207

15. Eén, N., Sörensson, N.: An extensible SAT solver. In: SAT 2003. Volume 2919 of
LNCS. (2004) 502–518

16. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Design Automation Conf. (2001) 530–535

17. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logic, Part 2. (1968) 115–125
(Reprinted in: J. Siekmann, G. Wrightson (Ed.), Automation of Reasoning, Vol.
2, Springer, Berlin, 1983, pp. 466-483.).

18. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp. 35(8) (1986) 677–691

