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ABSTRACT
The problem of calculating accurate impact of crosstalk on a circuit
considering its inherent logic and timing properties is very com-
plex. Although it has been widely studied, it still lacks an effi-
cient solution. As a result, state–of–the–art crosstalk calculators
use simplistic and overly pessimistic models resulting in the over-
estimation of crosstalk effects. Such pessimism in crosstalk analy-
sis often leads to the triggering of false violations and consequently
an inefficient use of design resources.

The main contribution of this paper is a novel technique called
Timing Arc Based Logic Analysis (TABLA) that serves as an effi-
cient means to calculate realistic crosstalk bounds. TABLA uses
timing arcs as basic elements to perform an efficient temporal logic
analysis employing the min–max timing model using dedicated
solvers for logic and timing. Additionally, a procedure to gener-
ate powerful conflict clauses is proposed to improve the run time
of the overall analysis. The proposed technique has been tested in
an industrial environment on benchmark circuits as well as on an
industrial design, and results are provided.

Categories and Subject Descriptors
4.2 [CAD for Circuits, Devices and Interconnect]: Timing and
Behavioral Modeling—Timing analysis and methodologies

General Terms
Static timing analysis, crosstalk, false noise analysis, SAT

1. INTRODUCTION
With the shrinking design geometries and increasing clock fre-

quencies, the effects of crosstalk on delay and noise are increasing,
thus making the accuracy of crosstalk analysis ever more critical.
However, because of the complexity of the problem of considering
the inherent logic and timing properties of a circuit in estimating its
crosstalk, conventional crosstalk models often make a simplistic as-
sumption that all the potential aggressors of any given victim net or
path can simultaneously induce crosstalk. This unrealistic worst–
case crosstalk model leads to an overly conservative and pessimistic
estimation of the circuit crosstalk. The amount of overestimated
crosstalk (noise, delay or slew change) is called false noise.
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The source of overall pessimism in crosstalk analysis stems from
the independent accounting of each aggressor and victim net cou-
pling. Timing and logic correlations which can render certain switc-
hing scenarios impossible are often simply ignored. Industrial stre-
ngth crosstalk analysis tools try to avoid this for simple cases by
considering the simple logic correlations arising from inverter and
buffer cells, for instance in clock trees. Yet this is far from being
sufficient as is apparent from [1, 4, 10, 13, 11, 12]. What needs to
be done is to find the aggressor set that has a maximum crosstalk
impact on the victim consisting only of those aggressors that can
logically and temporally induce crosstalk simultaneously.

False noise not only distorts the crosstalk analysis of the affected
net, but also that of subsequent circuit elements. The impact of this
error propagation depends on the crosstalk effect considered. While
crosstalk noise (also termed functional noise [4]) can be attenuated
by subsequent cells, crosstalk delay never vanishes but sums up in
the overall path delay and slack [4]. False calculated slew change
due to crosstalk also distorts the analysis of subsequent cells in the
path and, finally, the timing check calculation.

The false noise problem has been widely studied. In [4, 10],
the problem is simplified by assuming a zero-delay circuit model.
The approach in [1] proposes to independently account for logical
and temporal false noise. Such a pure logic analysis under the zero
delay assumption or independent accounting of logic and timing
can be optimistic in the presence of glitches in the circuit. Hence,
these approaches are conservative only for domino circuits [5] or
specially designed glitch free circuits.

The work presented in [7] addresses the problem of estimating
real crosstalk by considering a given set of Logic Exclusivity (LE)
constraints using a gain based backtracking method. The effective-
ness and accuracy of this method in reducing false noise depend on
whether or not the set of LE constraints used cover the entire circuit
and the circuit delay model used. At the same time, the deduction
of all LE constraints for a given circuit is a complex problem by
itself depending on the circuit delay model used and is not dealt in
this paper.

To capture the effect of glitches, an analysis of timing, logic and
their interdependence must be performed. Such an analysis is of-
ten called temporal logic analysis. The problem of temporal logic
analysis to verify the validity of a crosstalk scenario can be de-
scribed as a satisfiability problem. This problem is solved in [2, 11,
13] by converting it into a Boolean SAT instance, which leads to
a potential exponential blow-up of variables and clauses, and then
solving it using a state-of-the-art SAT solver, e.g. [3, 9]. These ap-
proaches often suffer from degraded performance due to the loss
of high level semantics of the underlying timing problem and large
SAT instances.

In this paper, we propose a novel technique called TABLA that
efficiently handles the temporal logic analysis problem by using
dedicated solvers for timing and logic, contrary to [13, 11]. To
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Figure 1: TABLA: top level flow chart

account for the interdependence of timing and logic, these solvers
are tightly coupled by the use of common variables and data struc-
tures, which is possible because of the suitability of timing arcs to
handle both logic and timing. As the higher level timing informa-
tion is handled without any transformation into Boolean logic, this
method maintains utmost accuracy without trading it off for run
time. Although TABLA is applied on the false noise problem here,
it is generic and can also be applied to other temporal logic analysis
problems like, for instance, false path analysis.

2. KEY IDEA
The major emphasis of this paper is on the fact that timing data

can be handled more efficiently by using a dedicated timing solver
rather than a logic solver working on the transformed problem.
Hence, TABLA uses two separate but coupled solvers for logic and
timing. We use MiniSat [3] as logic solver and our own timing
solver built based on the principles explained in this paper.

TABLA uses a less restrictive logic solver that assumes the un-
bounded delay model (all gates and interconnects can assume an
indefinite delay) [8] and a timing solver that assumes the min–max
delay model designed to verify the temporal validity of the solu-
tions provided by the logic solver. It performs a logic driven timing
analysis that verifies the underlying logic and timing constraints.
The logic solver acts as a master entity and proposes solutions that
are valid from the logical perspective to the timing solver. The
timing solver then checks if the logically valid solution is valid
also temporally. If so, the crosstalk configuration is considered as
valid. Otherwise, the timing solver indicates this to the logic solver,
which would then verify if another logically valid solution exists.
If so, it is handed over to the timing solver and the loop continues.
Otherwise, the configuration is considered invalid. Thus, TABLA
searches for all logically and temporally valid switching scenarios.

The higher level flow of TABLA is depicted in Figure 1. It
should be noted that TABLA verifies the validity of a single cross-
talk scenario. It is embedded in a branch and bound based opti-
mization algorithm to perform false noise analysis as described in
[4] and [10].

3. TIMING ARC BASED ENCODING
One of the fundamental differences between TABLA and other

approaches in [4, 10, 13, 11] is that TABLA exploits the logical
behavior of timing arcs of the cells of the circuit, whereas the others
deduce logic correlations among the nets of the circuit. A timing
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Figure 2: Timing arcs and side input conditions of a NAND
gate
arc is a pin-to-pin timing path through one gate. Each timing arc
has a start pin and an end pin. The start pin can be an input pin or
an inout pin, and the end pin can be an output pin or an inout pin.

The set of all timing arcs of any given cell is an exclusive list
of all possible paths through it. Depending on the complexity of
the gate, there can be timing arcs with similar transition scenarios,
but with different side input conditions. Consider the example of a
NAND gate, which has four timing arcs as depicted in Figure 2.

Each timing arc represents a possible transition scenario at an
input-output pin pair of its corresponding logic gate, and also the
logical conditions under which such a transition scenario can ac-
tually happen. Further, it also represents the possible latency of
the cell for this input-output transition scenario. This property of a
timing arc makes it suitable for a closer integration of the logic and
timing analysis of a circuit as explained in the following.

4. CIRCUIT TIMING GRAPH
A circuit timing graph is a directed acyclic graph with its ver-

tices representing the nodes of the circuit and edges representing
the timing arcs or nets connecting them. Its vertices and edges
are assigned properties of their respective circuit elements that are
required for TABLA. Using a graph structure to store the circuit in-
formation is helpful for the quick retrieval of data in a topological
order. The information held by the vertices and edges of the graph
and their classification into different types are described below.

Vertices
Each node of the circuit has two corresponding vertices in the cir-
cuit timing graph representing ‘rise’ and ‘fall’ transitions. These
vertices are attributed the information corresponding to them such
as the timing window, the maximum transition time and edge type.
The two vertices belonging to a node of the circuit are called its
paired vertices.

Based on their position in the graph, vertices are further classi-
fied into four types – input, net receiver, timing arc receiver and
virtual. The names of these types indicate the kind of nodes they
correspond to.

Edges
Edges of the circuit timing graph correspond to either a timing arc
or a net branch, which are the basic delay elements of a circuit.
Each timing arc of the circuit has a corresponding edge in the tim-
ing graph. Similarly, each net branch has two corresponding edges
connecting the ‘rise’ driver vertex to its ‘rise’ receiver vertex and
the ‘fall’ driver vertex to the ‘fall’ receiver vertex.

Edges of the circuit timing graph can be classified into three cat-
egories – timing arc, net branch and virtual. The names of these
types indicate the circuit elements they correspond to.

5. LOGIC SOLVER
The logic solver considers correlations among the timing arcs of

a circuit and proposes logically valid solutions to the timing solver
(described in Section 6) for the verification of their temporal valid-
ity. If a logically valid solution of the logic solver is found to be
temporally invalid, then a conflict clause is added to the instance
that blocks this solution and possibly other similar solutions.

It is not sufficient to consider only the correlations among timing
arcs to determine which static value a net can or must assume if



none of the timing arcs connected to it are active. These values are
required in the process of verification of the side-input conditions
that must be satisfied for a timing arc to be active. Hence, each
net is assigned a Boolean variable to store the static value on it.
Deduction of the related constraints is explained in Section 5.2.

In order to make sure that glitches of the circuit are considered
by TABLA, and that the underlying SAT instance is simple, the un-
bounded delay model is used by the logic solver. The unbounded
delay model assumes an indefinite delay on the cells and intercon-
nects of the circuit. As a result, the modeling of logic gets very
simple. On the other hand, because of the overly conservative as-
sumption of infinite timing windows, this model is less restrictive
with respect to false noise reduction, unless it is combined with a
method that considers more accurate timing windows, as done in
this work.

5.1 Variable assignment
The activity of each of the timing arcs of the circuit under con-

sideration is represented using a Boolean variable. An assignment
of logic 1 to a Boolean variable implies that its corresponding tim-
ing arc is active and similarly, an assignment of logic 0 implies that
the timing arc is not active.

In order to control the signal values on the input1 nodes and the
aggressors of a given crosstalk configuration, additional variables
are defined. Imaginary timing arcs are assumed at the inputs, and
the Boolean variables assigned to these timing arcs that control the
input switching values are called virtual timing arc variables. Sim-
ilarly, a Boolean variable per aggressor is assigned to control its
activity.

To store the static values on nets that have all the timing arcs
connected to them inactive, we define a Boolean variable for each
net of the circuit. The value on this variable is invalid if any of the
timing arcs connected to its corresponding net is active. The values
of these variables are forced by the side-input conditions of active
timing arcs and the circuit logic itself. This will make sure that two
timing arcs whose side-input conditions contradict each other are
not active at the same time.

The number of variables of the underlying SAT instance is in the
order of the sum of the number of timing arcs and the number of
nets of the circuit, and is hence very low compared to the number
of variables required in the circuit unrolling process as in the case
of [13].

5.2 Deduction of constraints
Constraints that verify the logical consistency of timing arcs are

deduced. We consider three kinds of constraints: timing arc con-
straints, logic constraints and side-input constraints. In what fol-
lows, the procedure to deduce these three types of constraints is
explained.

Timing arc constraints involve timing arc variables and they
check the consistency of timing arcs. They can be further classi-
fied into two types: back-tracking constraints and single switching
constraints.
• Back-tracking constraints ensure that a timing arc is active

only if at least one of the timing arcs connected to its input
is active. This is achieved by making backward implications
from any timing arc to the corresponding timing arcs of the
immediately preceding instances of its fan-in cone. Consider
the example of timing arcs e and f of the circuit in Figure 3.
If timing arc e has to be active, then either timing arc b or
timing arc c should be active. Similarly, if timing arc f has
to be active, then either timing arc a or timing arc d should
be active. Hence, we capture the implications e⇒ b+ c and

1Throughout this paper, the term ‘input’ is used to refer to a pri-
mary input or a sequential cell output. As we consider combina-
tional logic clouds, sequential cell outputs also serve as inputs to
these clouds. The similar argument holds also for the term ‘out-
put’.
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Figure 3: Example – deduction of constraints for TABLA

f ⇒ a + d. They can be written in the form of constraints
(e+b+ c) and ( f +a+d).

• Single switching constraints ensure that the signals on pri-
mary inputs and sequential cell outputs switch only once. For
example, consider the inputs of the NOR gate in the circuit in
Figure 3 to be primary inputs. The number of transitions pos-
sible on the nodes of this gate can then be restricted to one
by adding the constraint clauses (a + b) and (c + d) to the
CNF. It should be noted that this constraint does not exclude
multiple input switching (MIS) within the circuit.

Logic constraints involve the net variables and they check the
logical consistency of the static values assigned to the nets of the
circuit. Logic constraints for all the gates of the circuit are deduced
in a similar way to [10].

Side-input constraints verify if the side-input conditions of the
corresponding timing arcs are satisfied. They involve both timing
arc and net variables. These constraints verify the logical consis-
tency of timing arcs when the side-inputs assume static values.

The constraint clauses for the entire circuit are deduced in a pre–
processing step and are stored in the database. This information is
then retrieved for the verification of individual crosstalk constella-
tions in the actual procedure.

6. TIMING SOLVER
The timing solver evaluates the logically valid solutions pro-

vided by the logic solver for their temporal validity. As these so-
lutions were proven to sensitize the crosstalk scenario under the
unbounded delay assumption, it is now required to verify whether
they hold also under the more realistic min–max delay assumption.

The timing solver uses the min–max delays of the timing arcs
and nets obtained from our propriatory Static Timing Analysis (STA)
tool. It performs an STA kind of propagation of timing windows
from inputs towards the outputs in a topological order [6]. How-
ever, it differs from STA in that it checks the logical and temporal
validity of timing arcs for their consideration in the calculation of
timing windows, making them more precise. These timing win-
dows are called ‘logical timing windows’ as they consider the in-
herent logic of the circuit and are conditional to an input switching
vector, which in turn is obtained from the logic solver. If the timing
windows of the victim and its aggressors overlap, then the config-
uration is considered as valid. Otherwise, the logic solver is asked
to propose a new solution.

In what follows, the step-by-step process of the temporal validity
check performed by the timing solver is explained.

6.1 Preprocessing steps
Identifying the fan-in cone: The coupled fan-in cone [13] of

the crosstalk cluster is identified to obtain the fan-in timing graph.
Ordering of the vertices of the timing graph: The vertices

of the fan-in timing graph are ordered topologically and then pro-
cessed in this order.

Identification of the input switching vector: The input switch-
ing vector specific to the solution provided by the logic solver can
be identified by checking the values on the Boolean variables cor-
responding to the timing arcs connected to the inputs of the fan-in
timing graph.



6.2 Coloring of vertices
TABLA uses a vertex coloring mechanism to avoid redundancies

in calculation of timing windows. A vertex can be either red or
green. A red vertex indicates that it is ready for processing, and
a green vertex indicates that the information on it is up-to-date.
Initially, all the vertices of the fan-in graph are colored red. An
exception to the coloring mechanism holds for the input vertices.
These vertices are always processed and are used to identify if the
subsequent vertices connected to them need to be processed. The
coloring process for each type of vertex is explained in 6.3.

6.3 Propagation of timing windows
Processing of a vertex involves the update of its attributes, i.e.,

the timing windows and edge literal information corresponding to
it. The processing of any vertex depends on its type. After any
vertex is processed it is colored green. The procedure to process
different kinds of vertices is explained below.

Input vertices: An input vertex is processed irrespective of its
color. As a first step, the type of transition that the corresponding
input node assumes is obtained from the input switching vector.
Depending on the type of transition, the timing window and edge
literal information are updated. If the current values are different
from the previous ones, then the out-edges of this vertex are colored
red to indicate that they have to be updated.

Net receiver vertices: A net receiver vertex is processed only if
it is red colored. The timing window on this vertex is obtained by
delaying the timing window on its immediate predecessor by the
min–max delay possible on the edge connecting them. Let the tim-
ing window on the immediate predecessor be (tpremin , tpremax) and
the delay on the connecting edge be (dmin,dmax). Then, the timing
window on this vertex is calculated as:

(tmin, tmax) = (tpremin +dmin, tpremax +dmax) (1)
The edge literal of a net receiver vertex is set to the edge literal

value of its immediately preceding vertex. After this vertex is pro-
cessed, the vertices connected to its out-edges are colored red to
indicate that they have to be updated.

Timing arc receiver vertices: A timing arc receiver is processed
only if it is red colored. The timing arc attached to the timing arc
receiver vertex is checked if it can be active as explained in Section
6.4. If it can be active, then the timing window of this vertex is
also calculated using Equation (1). If the timing arc is temporally
inactive but logically valid as per the SAT model from the logic
solver, then a conflict clause is added to the SAT instance to block
this and other similar scenarios. A conflict clause is a clause added
to the logic solver to block a solution or a set of solutions of the
SAT instance. A conflict that invalidates a timing arc to propagate
timing windows is called a propagation conflict. The procedure to
deduce corresponding conflict clauses is explained in Section 6.6.1.

The edge literal value of a timing arc receiver vertex is deter-
mined by the timing arc output edge. After this vertex is processed,
the vertices connected to its out-edges are colored red to indicate
that they need to be updated.

6.4 Checking if a timing arc can be active
Before any timing window is propagated through a timing arc,

it is checked whether the timing arc can be active. This is done
by verifying if the timing window to be propagated has a non-zero
width and by checking the satisfiability of the side-input condition
of the timing arc with the accurate timing information available. A
timing arc is identified to be inactive if at least one of the following
conditions is met:

1. The timing window to be propagated through the timing arc
has zero-width, i.e., there is no event to be propagated.

2. The switching times of the side-inputs of the timing arc in-
put are such that the side-input condition of the timing arc
is violated. This can happen if a side-input can be proven to
assume a controlling value during the entire period in which
the timing arc input can switch.

Procedure 1 BACK_TRACK: Algorithm to back-track the fan-in
cone to find the reason for conflict
Input: The set of conflicting vertices, Vc;
Output: A SAT clause, C to identify the reason for the conflict
1: for each vertex v of Vc do
2: if vertex v is already processed then
3: continue
4: if vertex v is an input vertex then
5: Let etarc be the timing arc variable connected to v
6: if etarc is active then
7: Add literal etarc to C
8: else
9: Add literal etarc to C

10: else
11: for each in-edge e of vertex v do
12: if e is a net-branch edge then
13: Vertex set V = {v}
14: C = C ∪ BACK_TRACK(V )
15: else
16: if e is active then
17: C = C ∪ BACK_TRACK(V )
18: else
19: Add literal e to C
20: Mark vertex v as processed
21: return C

6.5 Checking the timing window overlap
After the propagation of the input switching vector towards the

victim and aggressor nets, it is verified if the logical timing win-
dows calculated overlap in such a way that the crosstalk scenario
under consideration is sensitized. If the configuration is invalid,
then a conflict clause is deduced as explained in Section 6.6. The
result and the conflict clause(s), if any, are given as feed-back to
the logic solver.

6.6 Deduction of conflict clauses
Deduction of efficient and small conflict clauses is the key to

improve the speed of the logic solver, and in our case, the speed of
the whole false noise analysis procedure itself. The easiest way to
include a conflict clause is to exclude the input combination of the
proposed solution. However, such a conflict clause is, in general,
too long and therefore not powerful. A powerful conflict clause
should exclude as many invalid switching scenarios as possible,
i.e., it should be as short as possible.

The first step in deducing a conflict clause is to identify the loca-
tion of the conflict, i.e., to find the set of conflicting vertices. This
is followed by the process to identify the reason for the conflict
by back-tracking from the conflicting vertices to the input vertices.
This procedure is explained step-by-step in the pseudocode listed
in Procedure 1.

The aim of Procedure 1 is to deduce a conflict clause with as few
literals as possible. Lines 16 to 19 of the procedure are of particular
significance here as they add the literal of an inactive timing arc to
the conflict clause without further back-tracking, which excludes
possibly a large number of input literals from the conflict clause.

There are two types of conflicts: propagation and top-level con-
flicts.

6.6.1 Propagation conflicts
A propagation conflict occurs if a timing window cannot be prop-

agated through a timing arc that is active according to the logically
valid SAT model being verified. There are two types of propagation
conflicts: side-input conflicts and zero-width conflicts.
• A side-input conflict occurs if any timing arc of the circuit

that is active as per the logically valid solution cannot ac-
tually be active because one of its side-inputs does not sat-
isfy the side-input condition after the consideration of timing



windows. Deduction of a side-input conflict clause involves
identification of the conflicting vertices and then using the
back-tracking algorithm listed in Procedure 1.

• A zero-width conflict should ensure that at least one of the
immediately preceding timing arcs has to be active, so that
the calculated timing window has a non-zero width. How-
ever, this is already covered by the timing arc constraints (see
Section 5.2), and hence no action is required.

6.6.2 Top level conflicts
A top level conflict occurs when the timing windows of the in-

puts corresponding to the input switching vector, when propagated
forward towards the crosstalk cluster (the victim and its aggressor
nodes), do not overlap in such a way that the crosstalk scenario
under test is sensitized. There can be several top-level conflicts
for each temporally invalid configuration depending on the number
of aggressor/victim pairs whose switching windows do not over-
lap. A top level conflict on an aggressor-victim pair indicates to
the logic solver that the aggressor cannot induce crosstalk on the
victim for the crosstalk type under consideration. Similarly, a top
level conflict on an aggressor-aggressor pair blocks them from si-
multaneously inducing crosstalk on the victim.

7. IMPLEMENTATION AND RESULTS
TABLA has been implemented in C++ in a false noise analy-

sis framework within our STA reference tool as a prototype and
tested in an industrial environment. It is designed in such a way
that all the nets of a given circuit that have cross–coupling are pro-
cessed for false noise to filter their unrealistic aggressors. Although
it is a common practice to perform false noise analysis as a post-
processing step to reduce the number of violations reported by STA
[4, 5, 13, 11], we target to perform this during STA to make timing
analysis more realistic, accurate and reliable.

We have tested the proposed approach on several ISCAS89 bench-
marks and on an industrial design, both implemented in a 90nm
technology. The experiments were conducted single-threaded on a
Sun Sparc Solaris 10 workstation with 64GB RAM, 16 CPUs of
1.84GHz each and a CPU factor of 84. All the nets that see cross–
coupling with other nets are considered. No aggressors are filtered
based on coupling capacitance ratios or absolute values as is often
done by commercial STA tools. Such simplifications are possible
and would have a positive impact on speed and solvability of the
approach. As we did not use any approximate heuristics that trade–
off accuracy and speed, as proposed in [4], a further improvement
in speed can be achieved with their application.

The analysis is done for the crosstalk fall delay scenario, where
the victim is assumed to make a falling transition while the aggres-
sors are rising. Similar results can be produced for other crosstalk
scenarios. The circuits were tested using a coupling capacitance
based weight factor similar to [10] to estimate the impact of an
aggressor on its victim. The validity of using a linear model for
estimating crosstalk is justified experimentally in [4].

Table 1 shows the results of TABLA on several ISCAS89 bench-
marks. Column 2 gives maximum and average number of aggres-
sors, Columns 3 and 4 give the average pessimism reduction in
terms of the number of aggressors considering standard STA win-
dow overlap (SWO) and TABLA, respectively. For SWO based
filtering, all aggressors with their switching windows (arrival time
windows expanded on either sides by 50% of the transition time)
not overlapping with the switching window of the victim are con-
sidered invalid.

Column 5 of Table 1 shows the improvement in aggressor count
reduction achieved by TABLA with respect to SWO. Columns 6–8
give the number of nets processed versus those unsolved when a
cut–off limit of 10 seconds per net was used. Finally, Columns 9–
11 give the total CPU time to process all nets with the use of large
conflict clauses vs. powerful conflict clauses (see Section 6.6), and
the run time improvement achieved by using powerful conflict de-

duction mechanism. The CPU times shown are rounded of to two
decimal places, while the exact values are used to calculate the im-
provements shown in Column 11.

The use of powerful conflict clauses, in general, provides im-
provement also in terms of solvability and pessimism reduction be-
cause of the cut–off time. This is a direct consequence of the fact
that TABLA can solve more nets and reduce more pessimism in
the given time, with the use of powerful conflict clauses. Because
of space constraints, these results are not provided. The solvability
and pessimism reduction values provided in Table 1 correspond to
TABLA using the powerful conflict clause generation mechanism.

To demonstrate the benefit of TABLA in terms of crosstalk de-
lay, we have also run it on the 15 most critical nets of an industrial
design with about 65K standard cells. We used an L–BFGS–B[14]
based optimization tool to accurately align the aggressors and cal-
culate the crosstalk delay on these nets without any false noise fil-
tering, with aggressor filtering based on SWO and with TABLA.
For these experiments unbounded optimization was used, i.e., ag-
gressor alignment was not restricted by timing windows. Our op-
timization tool employs analogue simulation to compute crosstalk
delay values and derivatives w.r.t. aggressor shifts as inputs for the
L–BFGS–B routine. This leads to highly accurate results at the cost
of extreme run times. Thus, the number of nets to be compared was
limited by our optimization tool and not by TABLA.

Table 2 shows the results of TABLA on 15 nets of the indus-
trial design that gain a maximum benefit from false noise reduc-
tion. It highlights the significance of false noise analysis in re-
duction of crosstalk pessimism for nets that are worst affected by
crosstalk. Columns 2–4 give the number of aggressors considered
by the different approaches, Columns 5–7 show the correspond-
ing crosstalk delays and Columns 8 and 9 the improvement that
TABLA achieved over SWO in picoseconds and percentage, re-
spectively. A significant additional amount of crosstalk is filtered
by TABLA as compared to SWO.

The improvement of TABLA in reduction of crosstalk pessimism
achieved over SWO shown in Column 5 of Table 1 gives the aver-
age improvements of each circuit. It can be understood from Col-
umn 9 of Table 2 that the actual improvement for certain nets can
be as large as 100%. Such an improvement plays a crucial role in
fixing violations on critical paths.

These results clearly indicate the significant benefit in terms of
timing slack to be gained by the reduction of false noise. Many
state-of-the-art temporal logic analysis methods [13, 11] resort to
simplifications such as coarse time slices, interval merging or ag-
gressor lumping to achieve solvability whereas TABLA solves most
of the nets with a 10s cut–off limit without such simplifications in-
dicating its efficiency.

8. CONCLUSIONS
In this paper, we propose a novel technique called TABLA to per-

form temporal logic analysis of a circuit to reduce false noise. The
technique uses the accurate min–max timing model and handles
glitches implicitly due to its timing arc based approach. Because
of its conflict driven approach as well as the tight coupling of two
domain specific solvers, the false noise problem is handled very
efficiently. The method is integrated into the false noise analysis
framework of our STA tool and tested on several ISCAS89 bench-
marks as well as on an industrial design. The proposed technique
is demonstrated to achieve great benefit in terms of reduction of
crosstalk pessimism. The generation of better conflict clauses and
the use of circuit information in the SAT solver are future research
topics expected to yield further significant speed improvements.
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