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Abstract—SAT-based ATPG turned out to be a robust alter-
native to classical structural ATPG algorithms such as FAN.
The number of unclassified faults can be significantly reduced
using a SAT-based ATPG approach. In contrast to structural
ATPG, SAT solvers work on a Boolean formula in Conjunctive
Normal Form (CNF). This results in some disadvantages for
SAT solvers when applied to ATPG, e.g. CNF transformation
time and loss of structural knowledge. As a result, SAT-based
ATPG algorithms are very robust for hard-to-test faults, but
suffer from the overhead for easy-to-test faults.

We propose the SAT technique Dynamic Clause Activation
(DCA) in order to reduce the run time gap between structural
and SAT-based ATPG algorithms and, at the same time, retain
the high level of robustness. Using DCA, the SAT solver works
on a partial formula of a logic circuit which is dynamically
extended during the search process using structural knowledge.
Furthermore, efficient dynamic learning techniques can be
easily integrated within the proposed technique. The approach
is evaluated on large industrial circuits.
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I. INTRODUCTION

The post-production test is an important task in the design
flow and ensures that no erroneous chip is delivered to
customers. The test set is generated by dedicated Automatic
Test Pattern Generation (ATPG) algorithms such as FAN
[1]. Classical ATPG algorithms are very fast and can classify
many faults in only short time. However, due to the grown
complexity of today’s circuits, the number of faults which
cannot be classified increases and the high fault coverage
demands of the industry is compromised.

In contrast to classical structural ATPG algorithms, ATPG
algorithms based on Boolean Satisfiability (SAT) do not
work on a circuit structure, but on a Boolean formula
in Conjunctive Normal Form (CNF). Therefore, the ATPG
problem has to be transformed into CNF and a SAT solver,
e.g. [2]–[4], is applied to solve the formula. SAT-based
ATPG [5]–[8] turned out to be an efficient complement to
existing classical ATPG algorithms classifying many faults
for which structural algorithms find no solution in reasonable
time. Recently, it was shown in [9] that the reuse of learned
information can further reduce the number of unclassified
delay faults significantly. Nonetheless, although being very
robust in classifying many hard-to-test faults, SAT-based
ATPG algorithms suffer from the overhead for solving easy-
to-test faults which represent the majority of all faults. In
particular, this is caused by the following drawbacks of
CNF-based SAT solvers:

• Loss of structural knowledge – Classical ATPG algo-
rithms benefit strongly from the structural knowledge
about the ATPG problem. Due to the transformation
into CNF, this knowledge is typically lost.

• Transformation into CNF – Although the complexity
of the CNF transformation is linear in the number
of gates, the time is not negligible. Especially in the

ATPG domain where many instances based on the same
circuit have to be solved, the transformation time is a
significant overhead as reported in [6], [8].

• Completely specified solution – Due to reasons of
efficiency, CNF-based SAT solvers compute a solution
where all Boolean variables are specified, although
many variables could be assigned with don’t cares. This
is disadvantageous in particular for test compaction
techniques.

A. Related Work
Circuit-based SAT solvers [10], [11] have been developed

orthogonally to CNF-based SAT solver. These solvers do
not work on the CNF representation anymore but directly
on the circuit structure. By this, no transformation is needed
and structural knowledge about the problem such as signal
correlation is retained and can be exploited. However, due
to the loss of the homogeneous structure of the CNF, core
techniques of CNF-based SAT solvers, e.g. conflict analysis
[2], cannot be applied in such an efficient way

Hybrid SAT solvers [12]–[14] work – at least partly –
on the problem in CNF representation but exploit structural
knowledge to speed up the search. Thereby, most of the
approaches benefit primarily from the explicit modeling
of Observability Don’t Cares (ODC). By this, the search
space can be pruned, but the handling of ODCs in the
SAT techniques such as conflict analysis causes additional
computational overhead.

The only circuit-oriented SAT approach that was applied
to ATPG problems was KF-ATPG [15], which is based
on CSAT [10]. KF-ATPG is applied to path sensitization
problems, where only justification of values is needed. A
comparison with KF-ATPG is given in this paper.
B. Contributions

In this paper, we propose the new SAT technique Dynamic
Clause Activation (DCA). Using DCA, the SAT solver
works on a subset of the original problem instance which
is extended dynamically using structural information of the
connectivity of the netlist. This procedure has the following
advantages:

• Exploitation of structural knowledge – Due to retaining
the gate connectivity information, structural knowledge
can be used during the search process.

• Transformation into CNF – The CNF for the circuit is
created only once. The required clauses are dynami-
cally activated and by this the overhead of creating a
complete SAT instance for each fault is significantly
reduced.

• Implicit modeling of ODCs – Due to the DCA tech-
nique, ODCs are modeled implicitly. By this, SAT core
techniques, e.g. Boolean Constraint Propagation (BCP)



1 b e g i n d l l ( )
2 whi le (TRUE)
3 i f ( ! d e c i d e ( ) ) t h e n
4 re turn SATISFIABLE ;
5 whi le ( deduce ( ) == CONFLICT)
6 i f ( ! r e s o l v e C o n f l i c t ( ) ) t h e n
7 re turn UNSATISFIABLE ;
8 end

Figure 1. Pseudocode of the DLL Algorithm

and conflict analysis, do not have to be modified and
retain their efficiency. Additionally, the generated tests
contain an increased number of unspecified bits.

The modeling of ODCs or structural information such as the
j-frontier [6] in SAT-based algorithms is not new. However,
DCA is the first technique that permits the efficient com-
bination of these techniques. We further show that efficient
dynamic learning techniques [9], i.e. the reuse of learned
information, can easily be integrated into the new technique.
The application of DCA in SAT-based ATPG results in a
significant speed-up and the run time gap between structural
and SAT-based ATPG approaches is minimized or even
closed. At the same time, the high level of robustness of
SAT-based ATPG can be retained.

The paper is organized as follows: in Section II, the classi-
cal DLL algorithm is explained as well as the basic concepts
of modern SAT solvers. Furthermore, this section briefly
reviews the general circuit-to-CNF conversion. Section III
introduces the new DCA technique. In Section IV, the
integration of dynamic learning is explained. Experimental
results are provided in Section V and conclusions are drawn
in Section VI.

II. PRELIMINARIES
A. SAT Algorithm and Techniques

In this section, the basic concepts of SAT solving includ-
ing the modern interpretation of the classical DLL algorithm
[16] and the state-of-the-art SAT techniques are briefly
reviewed. Given a Boolean formula f , the SAT problem is
defined as the question whether there exists an assignment a
such that f(a) = 1. The task of a SAT solver is to determine
such an assignment or to prove that no such assignment
exists. Common SAT solvers take a formula represented in
CNF as input. A CNF or SAT instance Φ is a conjunction
of clauses. A clause is a disjunction of literals. Literals are
Boolean variables in positive or negative polarity. The CNF
Φ is satisfied if all clauses are satisfied. A clause is satisfied
if at least one of its literals is satisfied.

The pseudocode of the DLL algorithm is shown in Fig-
ure 1. The algorithm searchs for an assignment which satis-
fies Φ by iteratively choosing values for variables (decide()).
The resulting implications of this decision are detected by
the deduce() function (also called BCP). If deduce() detects a
conflict, i.e. all literals in at least one clause evaluate to false,
the function resolveConflict() tries to resolve this conflict by
undoing former decisions, i.e. backtracking. If the conflict
cannot be resolved, Φ is unsatisfiable. A solution is found
when all variables are assigned and no conflict exists, i.e. Φ
is satisfiable.

If a conflict occurs in modern SAT solvers, it is analyzed.
As a result, non-chronological backtracking is performed
and a learned clause (or conflict clause) is added to the SAT
instance. Learned clauses prevent the SAT solver at an early

Table I
CNF FOR GATE TYPES

gate type CNF
c = a AND b (c + a + b) · (c + a) · (c + b)
c = a NAND b (c + a + b) · (c + a) · (c + b)
c = a OR b (c + a + b) · (c + a) · (c + b)
c = a NOR b (c + a + b) · (c + a) · (c + b)
c = NOT a (c + a) · (c + a)

stage from running into the same conflict again and by this
prune the search space. For a detailed description of non-
chronological backtracking and conflict analysis, we refer to
[2], [17]. If different SAT instances share a large number
of clauses, e.g. coming from the same part of a circuit,
it is possible to share conflict clauses between subsequent
instances to reduce the overall run time. This concept is also
known as incremental SAT [18].
B. Circuit-to-CNF Conversion

ATPG problems have their origin in the circuit structure.
However, modern SAT solvers work on a problem in CNF
representation. Therefore, the problem instance has to be
converted from circuit structure to CNF. This conversion is
briefly reviewed. More information can be found in [19].

Given a circuit C = (G,S) where G is the set of gates
and S the set of signal lines in C, the CNF ΦC of the circuit
is derived as follows. A Boolean variable is assigned to each
signal line s ∈ S of the circuit. The value corresponds to
the logic value on this signal line. Each gate g ∈ G is then
converted to a set of clauses Φg by building the characteristic
function χ(g) via a truthtable or algebraic conversion.

The clauses of the basic gate types with inputs a, b and
output c can be found in Table I. The CNF ΦC of circuit C
is defined as the conjunction of the CNF Φg of each gate
g ∈ G. The final SAT instance ΦSAT is then obtained by a
conjunction of ΦC with the fault specific constraints, e.g. the
fault, in CNF Φcon :

ΦSAT = ΦC · Φcon

Note that a fault usually affects only a small part of the
circuit. In order to make the SAT instance as small as
possible, ΦC only contains the CNF of this part.

III. DYNAMIC CLAUSE ACTIVATION

In this section, the Dynamic Clause Activation is de-
scribed in detail. At first, the overall algorithm is given in
Section III-A. A detailed description of the clause activation
methodology is then presented in Section III-B.
A. Overall Algorithm

The approach exploits the property of circuit-oriented
problems that ΦC contains no contradiction itself and unsat-
isfiability has its reason in the given fault-specific constraints
Φcon. If Φcon is justified considering ΦC , then the SAT
instance is satisfiable. In contrast to common SAT solvers,
the approach does not work on a static SAT instance ΦSAT ,
but on a dynamic SAT instance named Φdyn which is
extended during the search process. To allow for a dynamic
extension of the SAT instance, the proposed SAT engine
using DCA is divided into two parts: a circuit part and an
algorithmic part. This is illustrated in Figure 2.

The circuit part contains the complete CNF of the circuit
(ΦC) and serves as a database, whereas the algorithmic
part contains the search algorithm working on a local CNF
Φdyn. The search algorithm consists of state-of-the-art SAT
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Figure 2. Division of the Proposed SAT Engine

techniques such as conflict analysis and fast BCP. The search
algorithm is executed only on Φdyn. At the beginning of
the search, only the clauses of Φcon, i.e. the fault-specific
constraints, are stored in Φdyn.

The DCA technique can be integrated into the DLL
procedure (shown in Figure 1). An activation request is
sent to the circuit part whenever a variable is assigned,
i.e. in the functions decide() and deduce(). By this, Φdyn

is dynamically extended during the search process. If a
conflict in Φdyn cannot be resolved, then the SAT instance
is UNSAT, i.e. the fault is redundant, because any extension
of Φdyn would also result in UNSAT. By this, redundant
faults can be classified much faster when the reason of the
untestability is locally bounded. In this case, the complete
CNF does not have to be built. In contrast, SAT (testable),
is determined if no more activation requests are sent and all
activated clauses are satisfied. It is important to point out
that each request has to be sent before doing BCP for this
assignment.

After solving one formula, Φdyn is cleared. All clauses are
deactivated. The classical test generation flow as well as the
alternated flow incorporating DCA is shown in Figure 3(a)
and Figure 3(b), respectively. The time consuming step
of circuit-to-CNF conversion is done only once instead
of for each fault. This step is replaced by the activation
methodology which can be efficiently implemented using
pointers to clauses. Only Φcon has to be extracted for each
run. Its size is typically very small.

The correct and efficient handling of the activation
methodology is crucial in this procedure. Therefore, a de-
tailed description of this technique and of the integration of
structural knowledge are given below.

B. Efficient Activation Methodology Using Implicit ODCs
For the activation methodology, the Structural Watch List

(SWL) – a new data structure which is part of the circuit
part – is proposed. Two entries in the SWL are assigned
to each variable x in the circuit: one for the positive form
and one for the negative form (similar to the watch list used
for fast BCP [17]). In other words, one entry is assigned to
each literal of x. Each entry in the list contains again a list
storing those clauses which should be activated, i.e. added
to Φdyn, if the corresponding value is assigned to x, e.g. if
0 is assigned to x, the clauses registered at x are activated.

The activation methodology is motivated by the following
property of a circuit-oriented problem: if the controlling
value of a gate g is assigned to an input of g, the remaining
inputs of g do not influence the output value of g anymore.
The value of the other inputs can be considered as don’t
care.1 Furthermore, if the problem is to justify certain values
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Figure 3. SAT-based ATPG flow

in the circuit, these don’t care inputs do not influence
the search at all. A variable which does not influence the
outcome of the search process can be denoted as ODC
as defined in [13]. Based on this definition, the following
activation methodology is proposed.

Let s be a signal line, vs the corresponding Boolean
variable and gs the gate with s as the outgoing line. Further,
let Φgs be the set of clauses describing the logic function of
gs. If either 0 or 1 is assigned to vs, only those clauses
of Φgs

are activated which are not satisfied under the
current assignment of vs. As a result, some of the input
variables i1, . . . , in of gs may remain unconstrained and,
consequently, unassigned during the search process, because
they do not influence the outcome of the search process.
Hence, such a variable can be considered as ODC. Because
the variable is not explicitly declared as ODC but only
remains unconstrained, it is called Implicit ODC. Due to
the property that ODCs do not influence the outcome of the
search, the procedure is still complete.

The SAT instance is satisfiable if, and only if, all activated
clauses are satisfied. Consequently, the break condition dif-
fers from those of modern SAT solvers, where the instance
is usually satisfiable when all variables are assigned and no
conflict exists. A further improvement of the break condition
is the use of a list similar to the j-frontier known from
ATPG algorithms (j-list) [6]. Clauses that are activated and
therefore have to be satisfied are stored in the j-list and can
also be removed during backtracking. Generally, a clause c
can be removed from the j-list if the assignment that caused
the activation of c is undone. (Due to page limitations, the
concrete modeling of the j-list is not described here.) The
following example demonstrates the activation procedure.

Example 1: Consider the circuit shown in Figure 4. The
corresponding CNF is given in Table II. Each clause is
registered in the SWL at one literal. This literal is denoted
in column entry. Suppose the target is to check whether the
output of the circuit h can be 0: Φcon = (h).

The procedure of the SAT algorithm with DCA runs as
follows. At first, 0 is assigned to h. Clause (1) is activated
and inserted into the j-list due to the SWL entry. Suppose
the decision heuristic then chooses f to be assigned to 0 to
satisfy clause (1). As a consequence, clause (4) is activated
and inserted into the j-list. A decision a = 1 then satisfies
clause (4). Both clauses contained in the j-list are satisfied

1Contrary to structural ATPG algorithms, common SAT solver cannot
explicitly assign a variable with a don’t care value. Their efficiency is based
in part on the fact that their search is defined over Boolean variables.
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Table II
CNF AND SWL ENTRIES FOR THE EXAMPLE CIRCUIT IN FIGURE 4
Cls.No. entry Clause Cls.No. entry Clause

(1) h (h + f + g) (10) d (d + b + c)
(2) h (h + f) (11) d (d + b)
(3) h (h + g) (12) d (d + c)
(4) f (f + a + d) (13) e (e + c)
(5) f (f + a) (14) e (e + c)
(6) f (f + d) (15) i (i + g + j)
(7) g (g + d + e) (16) i (i + g)
(8) g (g + d) (17) i (i + j)
(9) g (g + e)

and consequently the SAT instance is satisfiable with the
partial assignment (a = 1, f = 0, h = 0). The variables d
and g or their transitive fanin cones become implicit ODCs,
because their values remain unassigned.

IV. INTEGRATION OF DYNAMIC LEARNING

Common SAT algorithms benefit significantly from the
learned information in terms of conflict clauses. When a
conflict occurs during the search process, a conflict clause is
learned which avoids running in the same conflict again. As
a result, large parts of the search space are pruned. Recently,
it was shown in [9] that the reuse of learned information,
i.e. conflict clauses, can reduce the number of unclassified
faults significantly. Here, it is shown how dynamic learning
techniques can be integrated into the DCA technique.

After each run, those conflict clauses which can be reused
are extracted and stored into a watch-list. In [9], a variable-
based activation scheme is used. A learned clause c is
added to the SAT instance ΦSAT when the corresponding
“watched” variable is included in ΦSAT . Here, a literal-
based activation scheme is proposed. A Learned Watch
List (LWL) which is very similar to the SWL is used
to keep track of the learned clauses. The LWL is also
contained in the circuit part. In this scheme, a learned clause
c = (l1, . . . , ln) is registered in the list of one or more literals
contained in c. Then, the existing activation methodology is
used to activate the learned clauses in the same way the
original circuit clauses are activated.

None of the learned clauses is activated before the search
process starts. The learned clauses are dynamically added to
Φdyn during the search process. When an activation request
for a literal li is sent, not only the clauses from the SWL
are activated, but additionally those registered at li in the
LWL. Learned clauses registered at literals from other parts
of the circuit are explicitly not touched. The same holds
for clauses registered at li (unless li becomes negated). The
activated learned clauses are treated differently only in one
way. Because learned clauses are redundant, they are ignored
in the break condition.

Example 2: Again, consider the circuit shown in Figure 4.
Assume that in a previous run, the conflict clause c = (h+b)

was learned. The conflict clause is registered in the LWL
in the list of literal b. When b = 1 occurs during the
search process, c is activated and h = 0 is directly implied.
Otherwise, when b = 0, c remains deactivated since it is not
registered at b.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented. The
proposed techniques are implemented in C++ on top of the
data structures of the SAT solver MiniSat [4] resulting in the
new SAT engine DynamicSAT. DynamicSAT in combination
with the dynamic learning techniques proposed in [9] is
named DynamicSAT+.

Experiments were conducted for three different fault
models: path delay, stuck-at and transition. The concrete
SAT modeling of the fault models is slightly different than
for classical SAT algorithms. Details cannot be given due
to page limitations. The experiments for path delay test
generation (non-robust) were run on a 64-bit Intel Xeon
(GNU/Linux, 3GHz, 32,768MB), whereas the experiments
for stuck-at and transition test generation were run on a 64-
bit AMD Opteron (GNU/Linux, 2.8GHz, 32,768MB).

The experiments were performed on large industrial cir-
cuits containing unknown states and tri-state elements pro-
vided by NXP Semiconductors, Germany. Note that the
name of the circuit roughly denotes the size of the circuit,
e.g. p2787k contains over 2.7 million elements. For path
delay test generation, DynamicSAT is compared to the state-
of-the-art SAT solver MiniSat [4] and KF-ATPG [15] which
uses a path-status graph to keep track of unsensitizable
path segments and by this works in an incremental manner.
Since KF-ATPG does not support unknown states and tri-
state elements, the comparison is made with ISCAS’89
and ITC’99 benchmarks. For stuck-at and transition test
generation, the proposed approaches are compared to a
highly optimized industrial FAN-based algorithm as well as
to the SAT-based ATPG approach PASSAT [7] which uses
MiniSat as core engine.

The total memory usage of DynamicSAT is higher than of
PASSAT. This is due to the complete circuit CNF which is
kept in the memory during the search process. Overall, twice
as much memory is needed for the complete ATPG process.
Reducing the memory consumption of DynamicSAT, e.g. by
circuit partitioning, is therefore future work.
A. Path Delay Faults

Table III shows the experimental results for non-robust
path delay test generation. In the upper part, DynamicSAT
is compared to KF-ATPG. For each circuit, 1,000,000 path
delay faults are chosen randomly (except s35932, which
contains only 394,282 path delay faults). Since KF-ATPG
does not support a timeout, no timeout was used for the
other approaches to allow for a fair comparison. The run
time is measured in CPU minutes (m) or CPU hours (h)
and presented in columns entitled Time. The fastest approach
is highlighted. DynamicSAT outperforms KF-ATPG clearly
by up to a factor of 67 (for s35932). The average speed-up
factor is 14. The run time can often be further reduced by
DynamicSAT+.

In the lower part of the table, DynamicSAT is compared
to MiniSat on industrial circuits. The search process of a
SAT solver can be measured in restarts. The timeout was



Table III
EXPERIMENTAL RESULTS FOR PATH SENSITIZATION

KF-ATPG DynamicSAT DynamicSAT+
Circ Ab. Time Ab. Time Ab. Time

s15850 - 11:16m - 2:06m - 1:41m
s35932 - 6:42m - 0:06m - 0:09m
s38417 - 48:10m - 6:08m - 3:49m
s38584 - 16:14m - 2:49m - 3:27m

b14 - 24:39m - 1:33m - 1:14m
b15 - 12:26m - 0:44m - 0:45m
b17 - 18:43m - 2:55m - 0:38m
b18 - 1:13h - 22:12m - 5:24m
b19 - 2:08h - 1:22h - 19:59m
b20 - 53:31m - 3:11m - 2:01m
b21 - 55:48m - 3:20m - 1:59m
b22 - 3:16h - 27:27m - 11:49m

MiniSat DynamicSAT DynamicSAT+
Circ Ab. Time Ab. Time Ab. Time

p177k 2,453 3:06h 7 27:34m 0 28:51m
p462k 0 14:14m 1 6:13m 0 6:14m
p565k 212 8:24m 529 11:20m 57 15:06m
p1330k 0 24:40m 3 9:09m 0 9:46m
p2787k 133 50:00m 26 28:30m 0 28:46m
p3327k 554 1:52h 15 47:50m 2 46:35m
p3852k 1,887 3:23h 1 57:48m 0 57:07m

set to 7 restarts for each fault. For each circuit, 20,000 path
delay faults describing a (long) path with more than 50 gates
are chosen for test generation. Faults which could not be
classified within the interval are called unclassified. In order
to indicate the robustness of each single approach, those
numbers are highlighted (in column Ab.) which denotes that
the number of unclassified faults is less than 0.1% of the
total number of targeted faults.

For nearly all circuits (except p565k), DynamicSAT is
faster than MiniSat. The highest speed-up factor is 6.7
(p177k). The average speed-up factor is 2.9. Besides the
reduced run time, the number of unclassified faults can also
be reduced significantly. In total, the number of unclassified
faults is reduced by 89%. The integration of dynamic
learning techniques (DynamicSAT+) leads to comparable
run time (except for p565k), but the number of unclassified
faults is further reduced by 90% compared to DynamicSAT.

B. Stuck-at Faults

The experimental results for stuck-at test generation are
presented in Table IV. The results of the highly optimized
industrial FAN-based algorithm are shown in column FAN
and FAN inc. FAN inc uses a highly increased backtrack
limit to reduce the number of unclassified faults. The results
for PASSAT, DynamicSAT and DynamicSAT+ are presented
in the corresponding columns. The timeout was set to 7
restarts for each fault. The number of unclassified faults is
highlighted if the number is less than 0.1% of all faults. All
experiments were conducted with fault dropping enabled.

The average number of specified bits are reported in
column Bits. PASSAT uses a post-processor to reduce the
specified bits as described in [20]. Note that the number of
specified bits of all SAT-based approaches are higher than for
the industrial FAN algorithm which cannot be given here.
The presented numbers show that DynamicSAT produces
slightly less specified bits on average than PASSAT with a
post-processor.

The fastest ATPG approach is clearly the FAN algorithm
having the smallest run time for nearly all circuits. However,
FAN produces a large number of unclassified faults. The

FAN inc approach can reduce the number of unclassified
faults only slightly, but needs much more run time. PASSAT
can reduce the number of unclassified faults drastically
compared to both FAN configurations. However, the run time
increases significantly.

Using the proposed DynamicSAT approach, the run time
of SAT-based ATPG can be significantly reduced up to a
factor of 10 compared to the run time needed by PASSAT.
The run time is reduced by a factor of 3.7 on average. At the
same time, the number of unclassified faults is in most cases
equal or only slightly increased. As a result, DynamicSAT
is much faster than PASSAT and retains the low number
of unclassified faults. The run time of DynamicSAT+ is
comparable to the run time of DynamicSAT, but the number
of unclassified faults could be considerably reduced.
C. Transition Faults

The experimental results for transition faults are presented
in Table V. Here, a general timeout of 72 hours is used. Con-
cerning the average number of specified bits, DynamicSAT
has in most cases less specified bits than PASSAT with post-
processor (up to a factor of 4). DynamicSAT+ even increases
the average number of don’t cares. As it can be seen at the
increased run time and grown number of unclassified faults,
ATPG for transition faults is more complex than for stuck-at
faults. Here, the number of unclassified faults is highlighted
if the number is less than 1% of all faults.

The FAN approach can be again considered as the fastest
algorithm. However, the advance is not as clear as for the
stuck-at fault model. Furthermore, the number of unclas-
sified faults is very large. FAN inc does not perform very
well. The reduction of unclassified faults is for most circuits
small, but the increase in run time is very high. For most cir-
cuits, PASSAT produces constantly fewer unclassified faults
compared to the FAN approaches. Compared to PASSAT,
DynamicSAT can decrease the run time for most circuits.
For p2787k, except FAN, all approaches could not process
all faults during 72 hours. Instead of the run time, the relative
number of processed faults (of 4,063,500 faults) is given in
the respective column.

Most notable is the run time reduction for circuit p177k.
Here, a speed-up factor of over 60 can be achieved. At the
same time, the number of unclassified faults is significantly
decreased. The average speed-up factor is 9.6. For some
circuits, DynamicSAT even outperforms the FAN algorithm.
Generally, the run time difference between FAN and SAT-
based ATPG can be considerably reduced. Again, the run
time of DynamicSAT and DynamicSAT+ is comparable, but
the number of unclassified faults is significantly reduced.
DynamicSAT+ is the only approach for which the number
of unclassified faults is less than 1% for all circuits.

VI. CONCLUSIONS

SAT-based ATPG algorithms are very robust for hard-to-
test faults but suffer from the overhead for easy-to-test faults.
Classical structural ATPG algorithms are usually very fast,
but have problems to cope with hard-to-test faults which
occur more and more frequently in today’s complex designs.
The new SAT technique of Dynamic Clause Activation
(DCA) was presented for speeding up SAT-based ATPG and,
at the same time, retaining the high level of robustness.

Experimental results on large industrial circuits for differ-
ent fault models have shown that the proposed techniques



Table IV
EXPERIMENTAL RESULTS FOR ATPG FOR STUCK-AT FAULTS

FAN FAN inc PASSAT DynamicSAT DynamicSAT+
Circ Ab. Time Ab. Time Bits Ab. Time Bits Ab. Time Bits Ab. Time
p44k 0 1:13m 0 1:13m 236 0 58:49m 102 0 5:40m 99 0 5:46m
p57k 197 1:21m 138 6:55m 90 2 4:29m 65 7 1:06m 59 2 1:08m
p77k 0 0:07m 0 0:07m 16 0 0:14m 10 0 0:08m 10 0 0:08m
p80k 18 1:41m 12 2:40m 115 0 5:33m 54 0 1:34m 54 0 1:34m
p88k 56 1:36m 35 2:34m 56 0 3:46m 51 0 1:39m 50 0 1:38m
p99k 988 1:29m 455 6:05m 52 3 1:54m 29 17 1:29m 29 8 1:44m

p177k 99 2:13m 59 3:32m 88 3 2:59h 307 1 7:00m 307 1 7:13m
p462k 1,009 9:17m 785 11:06m 45 66 1:25h 42 409 20:25m 42 97 24:55m
p565k 263 8:41m 175 11:21m 31 0 27:42m 30 0 19:57m 30 0 19:37m
p1330k 412 12:38m 282 13:33m 54 0 49:55m 55 57 25:49m 55 47 36:00m
p2787k 218,292 2:21h 165,699 11:53h 130 10,719 25:07h 92 43,806 13:11h 107 212 20:40h

Table V
EXPERIMENTAL RESULTS FOR ATPG FOR TRANSITION FAULTS

FAN FAN inc PASSAT DynamicSAT DynamicSAT+
Circ Ab. Time Ab. Time Bits Ab. Time Bits Ab. Time Bits Ab. Time
p44k 648 18:45m 539 30:29m 333 0 5:38h 83 30 19:41m 74 22 19:34m
p57k 2,467 14:45m 1,465 1:06h 225 44 1:00h 115 70 17:07m 94 48 15:08m
p77k 49,452 9:05m 36,803 1:49h 37 5421 1:17h 34 10,772 52:57m 32 0 5:42m
p80k 4,527 10:56m 3,022 53:35m 326 9 12:15m 152 9 9:59m 150 5 8:44m
p88k 6,964 1:13h 3,833 3:54h 91 0 33:44m 93 0 36:15m 84 0 35:45m
p99k 13,448 56:14m 11,462 8:28h 59 73 21:55m 73 85 28:50m 69 53 30:12m

p177k 13,206 46:53m 7,992 3:25h 267 19,002 TO 137 442 1:11h 128 181 2:12h
p462k 17,452 1:15h 13,353 3:41h 64 551 7:09h 62 122 1:15h 58 5 1:14h
p565k 9,708 3:47h 5,548 7:37h 122 412 4:12h 110 480 2:43h 112 178 2:44h
p1330k 11,328 2:40h 5,679 4:12h 219 3 9:18h 52 41 2:47h 48 11 2:47h
p2787k 698,387 19:22h 321,025 83% 168 34,689 70% 95 116,492 89% 91 5,357 80%

are able to significantly reduce the run time of SAT-based
ATPG by several factors on average and reduce or even close
the run time gap between structural and SAT-based ATPG
approaches. Furthermore, DynamicSAT produces only a
small number of unclassified faults which can be further
reduced by the integration of dynamic learning techniques.
The application of the proposed techniques in the field
of dynamic compaction and the reduction of the memory
consumption is focus of future work.
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