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Abstract As technology scales down into the nanome-
ter era, delay testing of modern chips has become more
and more important. Tests for the path delay fault
model are widely used to detect small delay defects and
to verify the correct temporal behavior of a circuit.

In this article, MONSOON, an efficient SAT-based
approach for generating non-robust and robust test pat-
terns for path delay faults is presented. MONSOON
handles tri-state elements and environmental constraints
occurring in industrial practice using multiple-valued
logics. Structural techniques increase the efficiency of
the algorithm. A comparison with a state-of-the-art ap-
proach shows a significant speed-up. Experimental re-
sults for large industrial circuits demonstrates the fea-
sibility and robustness of MONSOON.

Keywords SAT · Delay testing · ATPG · Path delay
faults · Multiple-valued logics

1 Introduction

Due to the increased speed and continuously shrinking
feature size of modern circuits, delay testing has be-
come an important issue in the post production test.
Several delay fault models have been proposed. Among
them, the prevalent fault models are the transition de-
lay fault model and the Path Delay Fault (PDF) model
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[1,2]. The transition delay fault model assumes a large
delay defect at one fault site, whereas the PDF model
captures small as well as large delay defects distributed
along one path in the circuit. Therefore, the PDF model
is more accurate. However, the number of paths in the
circuit is typically very large. For that reason, usually
only tests for critical paths are generated to ensure the
correct timing behavior of these paths. Furthermore,
tests for the PDFM are used for diagnostic reasons.
High-quality tests are required for diagnosis.

Concerning the quality, tests for PDFs can be rough-
ly classified in two categories [3]: non-robust and robust.
Both categories differ in the sensitization criteria of the
path. Modeling static values for the robust sensitiza-
tion criterion makes the robust test generation harder.
Nonetheless, robust tests provide a higher quality and
are therefore more desirable.

Due to the increased complexity of today’s designs,
structural ATPG algorithms reach their limits, espe-
cially when high quality tests are required. The number
of faults which cannot be classified grows. On the other
hand, powerful Boolean Satisfiability (SAT) solvers e-
merged in the last decade. SAT solvers were shown to
be very robust in the field of ATPG [4,5]. Structural
ATPG algorithms use static implications to prove many
faults untestable [6,7]. In contrast, SAT-based ATPG
algorithms use conflict-based learning [8] to dynami-
cally record additional signal correlations or implica-
tions, respectively in terms of conflict clauses. The ef-
fect of static implications is shown to be subsumed by
conflict-based learning and the reuse of learned infor-
mation [9] in SAT-based ATPG in [10]. However, since
SAT-based algorithms work on a Boolean formula in-
stead of the circuit’s structure, the ATPG problem has
to be converted into a SAT problem.
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Section 1.1 presents the related work, whereas the
contribution of this article is outlined in Section 1.2.

1.1 Related Work

Four different types of test generation algorithms for
PDFs can be identified: structural, non-enumerative,
algebraic and SAT-based algorithms. Structural algo-
rithms, e.g. [11], work directly on the circuit-structure
and benefit from applying efficient implications proce-
dures based on multiple-valued logics. These are typi-
cally applied to a subset of critical paths extracted by
dedicated algorithms, e.g. [12,13].

Non-enumerative procedures, e.g. [14–16], do not
target any specific path, but generate tests for all PDFs
in the circuit. By this, enumerating a potentially expo-
nential number of paths in a circuit is avoided. These
algorithms are usually based on sensitizing sub-paths
or sub-circuits. Algebraic algorithms, e.g. [17], work on
canonical data structures like BDDs. These algorithms
suffer from their large memory consumption. In [18],
a ZBDD-based test generation algorithm for PDF tests
for critical paths is presented. However, only non-robust
tests for full-scanned circuits are considered.

Similar to the structural algorithms, SAT-based al-
gorithms for PDF testing work on a fault list that con-
tains critical paths. Each path is sensitized separately
according to the desired sensitization criterion. The first
SAT-based approach was proposed in [19]. There, a
seven-valued logic is presented to generate robust tests
for PDFs. But the sequential behavior of the circuit,
i.e. launch-on-capture, cannot be modeled adequately
using this logic. In [20,21], Incremental SAT [22,23] is
used to speed up test generation for PDFs. However,
only non-robust tests are considered.

An efficient circuit-based SAT solver was presented
in [24]. This solver which uses ATPG techniques is ap-
plied for PDF test generation in [25,26]. The advantage
of circuit-based SAT solvers is – simply spoken – that
they can apply structural knowledge to speed up the
search process. The approach described in [25] focuses
on non-robust test generation, whereas [26] targets non-
robust as well as robust test generation. However, static
values that are necessary for robust tests are not mod-
eled. The underlying circuit-based SAT solver only sup-
ports Boolean values. Due to this simplification, gener-
ated tests are not guaranteed to be robust.

In the last decade, powerful SAT solvers based on
Conjunctive Normal Form (CNF) (see for instance [8,
27–30]) have been developed. Unlike circuit-based SAT
solvers, they cannot apply structural knowledge about
the circuit-oriented problem natively. Based on the ho-
mogeneity of the CNF, powerful conflict analysis and

fast Boolean Constraint Propagation (BCP) are uti-
lized. Moreover, CNF-based SAT solvers1 are more flex-
ible in use. Additional constraints, e.g. modeling of static
values, can be incorporated more easily. The efficiency
and robustness of CNF-based SAT solvers in the field
of ATPG was already shown in [31,4,5,32].

1.2 Contributions

In this article, the problem of generating robust and
non-robust tests for PDFs in an industrial environment
is targeted. In an industrial environment, modeling only
Boolean values is not sufficient. The additional values
U (unknown) and Z (high impedance) have to be con-
sidered, too. Furthermore, for robust tests, static values
have to be guaranteed. The main contributions of this
article are:

– Multiple-valued logics – A set of multiple-valued
logics (and their Boolean encodings) is presented
that allows to model static values and constraints
occurring in industrial practice in CNF. As a result,
powerful SAT solvers can be applied to industrial
circuits.

– Structural analysis – Applying a multiple-valued log-
ic results in a significant overhead for the SAT solver.
Techniques that reduce the overhead and, by this,
make the application of a SAT solver suitable for
PDF test generation are shown. The concept of logic
classes is presented to support a unified classifica-
tion for PDF test generation with different qual-
ity. Experiments show that the structural analysis
is mandatory for large circuits.

– Incremental SAT formulation – Typically, robust
tests are preferred. However, for a robustly untest-
able fault, a non-robust test is generated. Using the
proposed incremental SAT formulation, robust test
generation benefits directly from the previous non-
robust test generation since parts of the search space
have already been traversed.

The techniques presented in this article were imple-
mented as the SAT-based ATPG tool MONSOON. It is
shown that MONSOON outperforms a state-of-the-art
PDF ATPG tool by several factors on average. Further
experiments on industrial circuits with more than three
million gates are presented to show the feasibility and
the robustness of the approach.

This article2 is structured as follows. In Section 2,
the basic knowledge about PDFs and SAT formulation

1 In the following, the term SAT solver always means a CNF-
based SAT solver.

2 Parts of this article, i.e. the SAT formulation for multiple-

valued logics, have been published in [33].
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is introduced. SAT-based non-robust test generation
is described in Section 3. The modeling of static val-
ues needed for robust test generation is presented in
Section 4, whereas PDF test generation in an indus-
trial environment is treated in Section 5. In Section 6,
structural techniques to reduce the size of the SAT in-
stance are studied, whereas in Section 7, the difficulties
when applying incremental SAT to speed up test gener-
ation for non-robust and robust tests are explained and
solved. Experimental results are presented in Section 8
and conclusions are drawn in Section 9.

2 SAT-based ATPG for Path Delay Faults

In this section, the basic concepts of SAT-based ATPG
for PDFs are briefly reviewed. The PDF model is in-
troduced in Section 2.1, whereas Section 2.2 explains
how to formulate a circuit-oriented problem as a SAT
problem.

2.1 Path Delay Fault Model

A PDF models a distributed delay on a path from a
(pseudo) primary input to a (pseudo) primary output of
a circuit C that exceeds the timing specification. Each
structural path in C has two different types of PDFs;
one with a rising transition and one with a falling tran-
sition. Formally, a PDF is defined by F = (P, T ), where
P = (g1, . . . , gn) is a path from an input g1 to an output
gn. The type of transition is given by T ∈ {R,F}, where
R denotes a rising transition and F a falling transition.

To detect a PDF, two test vectors v1, v2 are needed
to propagate the desired transition along the path P

during two consecutive time frames t1, t2. The vector
v1 sets the initial value of T in the initial time frame
t1, whereas v2 launches T in the final time frame t2 at
operating speed. If a delay fault occurs, the final value
cannot be observed at gn. If multiple delay faults are
present, a test might not detect the fault because other
delay faults may mask the targeted PDF.

Therefore, tests are classified into robust and non-
robust tests3. A test is called robust iff it detects the
fault independently of other delay faults in the circuit.
Non-robust tests guarantee the detection of a fault, if
there are no other delay faults in the circuit. Robust
and non-robust tests differ in the constraints on the
off-path inputs of P (sensitization criterion). Off-path
inputs of P are inputs of gate gi, i ∈ 1 . . . n, which are
not on P .

3 For a detailed discussion about the classification of PDF

tests, the reader is referred to [3].

Table 1 Off-path input constraints

Non- Robust
Robust rising falling

AND/NAND X1 X1 S1
OR/NOR X0 S0 X0

The constraints are shown in Table 1. For a non-
robust test, it is sufficient that the off-path inputs have
a non-controlling value (ncv) in t2 (denoted byX0/X1).
Robust tests are more restrictive. If the on-path transi-
tion on gi is from the ncv to the controlling value (cv) of
gi+1, the off-path inputs of gi+1 must have a static ncv
(denoted by S0/S1). Thus, no fault effect can arrive at
off-path inputs and the test is robust.

2.2 SAT Formulation

To apply a SAT solver to a circuit-oriented problem,
the problem has to be formulated in CNF. A CNF Φ

on n Boolean variables is a conjunction of m clauses.
Each clause is a disjunction of literals. A literal is a
Boolean variable in its positive (x) or negative form
(x). The CNF Φ is said to be satisfied iff all clauses are
satisfied. A clause c is satisfied iff at least one literal in
c is satisfied. The CNF Φ is said to be unsatisfiable iff
Φ cannot be satisfied. The task of a SAT solver for a
given Φ is to generate a solution that satisfies Φ or to
prove that no such solution exists.

The CNF ΦC for a circuit C = (S,G) can be derived
as follows, e.g. [34]. A Boolean variable xs is assigned
to each connection s ∈ S. Then, for each gate g ∈ G,
the CNF Φg is derived from the characteristic function,
which can be constructed using the truth table. The
conjunction of the CNF of each gate results in the CNF
of the circuit:

ΦC =
∏

gi∈G

Φgi

3 Non-Robust Test Generation

As described in Section 2.1, two time frames are needed
for a non-robust test. Therefore, two Boolean variables
xs

1, x
s
2 are assigned to each connection; each describing

the value of s in the corresponding time frame. The
CNF for each gate is duplicated using the respective
variables resulting in the CNF ΦC1 for the initial time
frame and ΦC2 for the final time frame. To guarantee
the correct sequential behavior, additional constraints
Φt describe the functionality of the flip-flops. These
constraints guarantee the equivalence of the value of
a pseudo primary output in t1 and the value of the cor-
responding pseudo primary input in t2. This results in
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Fig. 1 Example circuit for path a – d – e – g

the following formula:

ΦCNR
= ΦC1 · ΦC2 · Φt

Finally, the fault specific constraints are added. The
fault specific constraints can be considered as fixed as-
signments to variables and are divided into two parts.
The transition must be launched at g1 (Φtran) and the
off-path inputs of P must be assigned according to the
non-robust sensitization criterion as given in Table 1
(denoted by Φo).

ΦP = ΦCNR
· Φtran · Φo

If ΦP is satisfiable, P is a non-robustly testable path
and the test can be created directly from the calculated
solution.

Example 1 Consider the example circuit shown in Fig-
ure 1 with P = (a, d, e, g) and T = R. The CNF of the
circuit is as follows:

ΦC1 = Φd
ANDt1

· Φe
NANDt1

· Φf
NOTt1

· Φg
ORt1

ΦC2 = Φd
ANDt2

· Φe
NANDt2

· Φf
NOTt2

· Φg
ORt2

Because no flip-flops are contained in this circuit, the
equation Φt = 1 holds. The fault specific constraints for
the rising transition are:

Φtran = (at1) · (at2), Φo = (bt2) · (ct2) · (f t2)

A corresponding test given by the solution of the SAT
solver could be:

v1 = {at1 = 0, bt1 = 0, ct1 = 0}
v2 = {at2 = 1, bt2 = 1, ct2 = 1}

4 Robust Test Generation

According to the robust sensitization criterion, static
values have to be modeled. Therefore, Boolean values
are not sufficient for robust test generation. Using only
Boolean values, two discrete points of time t1, t2 are
modeled, but no information about the transitions be-
tween t1 and t2 is given. The following example moti-
vates the use of a multiple-valued logic.

(a) Boolean modeling (b) Explicit static values

Fig. 2 Guaranteeing static values

Table 2 Truth table for an AND gate in L6s

AND S0 00 01 10 11 S1

S0 S0 S0 S0 S0 S0 S0
00 S0 00 00 00 00 00

01 S0 00 01 00 01 01

10 S0 00 00 10 10 10
11 S0 00 01 10 11 11

S1 S0 00 01 10 11 S1

Example 2 Consider the AND gate in Figure 2. If the
robust sensitization criterion requires that the output is
set to S0, setting both output variables corresponding
to the two time frames to 0 is insufficient.4 Then, a ris-
ing and a falling transition on the inputs would satisfy
the condition, because the controlling value is assumed
in t1, t2 on different inputs as shown in Figure 2(a).
However, if the inputs do not switch simultaneously,
which cannot be guaranteed without timing informa-
tion, a glitch could be produced on the output.

This case has to be excluded by explicitly modeling
static values. This ensures that a static value on the
output of a gate has its source in one or more static
values on the inputs. This is shown at the AND gate in
Figure 2(b).

Static values can be handled using the multiple-
valued logic

L6s = {S0, 00, 01, 10, 11, S1}.

The name of the value determines the signal’s behavior
in t1 and t2. The first position gives the value of the
connection in t1, whereas the second position describes
the value in t2. The values S0, S1 represent the static
values. The truth table for an AND gate modeled in
L6s is presented in Table 2.

In order to apply a Boolean SAT solver to a problem
formulated in multiple-valued logic, each value has to
be encoded using Boolean variables. This encoding is
not unique. A good encoding has to be found among
all possibilities. A detailed discussion how to generate
an efficient encoding is given in [35].

4 According to their description, this simplification is done in

[26].
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Table 3 Boolean encoding ηL6s for L6s

var S0 00 01 10 11 S1

x1 0 1 0 1 0 0

x2 0 1 1 1 1 0
x3 0 0 0 1 1 1

As encoding, a logarithmic encoding is used. The
minimal number of Boolean variables n needed to en-
code a value depends on the number of values of a
multiple-valued logic Lm and is calculated as follows:
n = dlog2 |Lm|e. As a result, three variables are needed
to encode each value of L6s. The Boolean encoding ηL6s

for L6s used in this article is shown in Table 3. For ex-
ample, the connection c has three variables xc

1, x
c
2, x

c
3.

Hence, an assignment {xc
1 = 0, xc

2 = 0, xc
3 = 1} is inter-

preted as the value S1 of L6s.
The resulting CNF for a 2-input AND gate with in-

puts a, b and output c using ηL6s is presented in Table 4.
The CNF template for each gate type can be created us-
ing a truth table and a logic minimizer, e.g. ESPRESSO
[36]. This has to be done only once and the generated
CNF templates can be reused for each circuit under
test. The SAT formulation of the circuit using L6s is
similar to the SAT formulation described in Section 3.
However, instead of two variables, three variables are
assigned to each connection and the circuit CNF is de-
rived from the CNF of each gate using ηL6s

. The robust
sensitization criterion is modeled by fixing the corre-
sponding assignments. Note, that there is no need to
build the CNF for the complete circuit. For a specific
PDF, only the fan-in cone of gates on the path has
to be transformed into CNF using L6s. If flip-flops are
contained in this fan-in cone, the fan-in cone of these
flip-flops has to be considered, too. By this, the sequen-
tial behavior is modeled adequately.

Let FF be the set of flip-flops contained in the fan-in
cone of path P . For all gates located in the fan-in cone of
at least one flip-flop in FF but not in the fan-in cone
of P , only the value during t1 is relevant. Therefore,
these gates can be modeled in Boolean logic (one time
frame) as described in Section 2.2. Consequently, only
one variable is needed. Typically, the number of gates
which can be modeled in Boolean logic is far higher
than the number of gates which have to be modeled
in a multiple-valued logic. If a predecessor f of such a
gate g is modeled in L6s, only xf

3 is used for Φg. As Ta-
ble 3 shows, ηL6s

was chosen such that the assignment
of x3 always determines the value of the connection in
t1. This guarantees the consistency of the circuit’s func-
tion.

In contrast to the pure Boolean modeling of the
circuit, using L6s causes a significant overhead for the
CNF size of the circuit. On the other hand, tests with a

Table 4 CNF for an AND gate using ηL6s

(xa
1 + xc

1 + xc
2) (xb

2 + xb
3 + xc

2) (xa
1 + xa

2)

(xb
1 + xc

1 + xc
2) (xa

2 + xb
3 + xc

2) (xb
1 + xb

2)

(xa
3 + xb

3 + xc
3) (xa

3 + xb
2 + xc

2) (xb
3 + xc

3)

(xa
1 + xb

1 + xc
1) (xa

2 + xb
2 + xc

2) (xa
3 + xc

3)
(xa

2 + xa
3 + xc

2) (xa
2 + xb

2 + xc
2) (xc

1 + xc
2)

higher quality can be obtained and, as the experimen-
tal results in Section 8 below show, test generation for
robust tests can be executed in reasonable time.

5 Industrial Application

In this section, the problem of PDF test generation in
industrial practice is considered. Additional constraints
that have to be handled in industrial circuits are intro-
duced and structural techniques to reduce the size of
the SAT instance are presented.

5.1 Additional Values

For industrial applications, more requirements have to
be met for PDF test generation. Besides the Boolean
values, two additional values have to be considered. The
value Z describes the state of high impedance and oc-
curs for example in modeling busses. Gates that are
able to assume Z are named tri-state gates. If a con-
nection has a fixed value which is not known, the value
U (unknown) is assumed. The unknown value can for
instance occur if some flip-flops cannot be controlled.
Then, the output of the flip-flop has always the value
U , i.e. it is fixed to U .

A test generation algorithm has to be able to han-
dle these additional values when it is applied in indus-
trial practice. In [4], a four-valued logic L = {0, 1, U, Z}
used for modeling stuck-at faults in industrial circuits
is presented. For PDF test generation, two time frames
have to be considered; L is not sufficient. Therefore, the
Cartesian product of all values in L is needed to rep-
resent all possible value combinations on a connection.
For non-robust PDF test generation, this results in the
16-valued logic L16:

L16 = {00, 01, 10, 11, 0U, 1U,U0, U1, UU,

0Z, 1Z,Z0, Z1, UZ,ZU,ZZ}

As described in Section 4, additional static values are
needed for robust PDF test generation. Therefore, the
19-valued logic L19s is required:

L19s = {S0, 00, 01, 10, 11, S1, 0U, 1U,U0, U1, UU,

0Z, 1Z,Z0, Z1, UZ,ZU,ZZ, SZ}
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Table 5 Derived logics of L19s and L16

L11s = {S0, 00, 01, 10, 11, S1, 0U, 1U,U0, U1, UU}
L8s = {S0, 00, 01, 10, 11, S1, 0U, 1U}
L6s = {S0, 00, 01, 10, 11, S1}
L9 = {00, 01, 10, 11, 0U, 1U,U0, U1, UU}
L6 = {00, 01, 10, 11, 0U, 1U}
L4 = {00, 01, 10, 11}

Table 6 Mapping between logic class and applied logic

logic class robust non-robust

LCZ L19s L16

LCU1 L11s L9

LCU2 L8s L6

LCB L6s L4

The logic L19s contains three additional static values:
S0, S1, SZ. A static U value is meaningless, because
the behavior of the signal is unknown.

In principle, L19s can be used to model the circuit
for robust PDF test generation. However, logics with
less values are generally more compact in their CNF
representation than logics with more values. The exclu-
sive use of L19s would result in excessively large SAT
instances and typically in longer run time. This also
holds for non-robust test generation using L16 exclu-
sively. Fortunately, typically only a few connections in
a circuit can assume all values contained in L19s or in
L16. For example, there are only very few gates in a
circuit that are able to assume the value Z.

Therefore, it is proposed to use not only one multiple-
valued logic (e.g. L19s) but a set of multiple-valued log-
ics which are derived from L19s (robust test generation)
or L16 (non-robust test generation), respectively. These
derived logics contain a smaller number of values, i.e. a
subset of values. The idea behind this approach is that
each gate is modeled using a logic that contains only
those values which can be assumed by the input and
output connections of the gate. Using this approach,
the size of the CNF is reduced.

5.2 Logic Classes

In order to use a unified structural classification for
non-robust and robust test generation, logic classes are
introduced. Using logic classes allows for grouping gates
independently from the desired quality of the test and
independently from the multiple-valued logics used, re-
spectively. As a result, the structural analysis can be
applied for non-robust as well as for robust test gener-
ation once for a circuit as a pre-processing step.

All gates that can always assume the same set of
values are grouped into one logic class and are mod-
eled in the same logic. Four different logic classes are

identified for the classification of gates:

LCZ , LCU1, LCU2, LCB

In the following, the properties of each logic class are
described as well as the dedicated logics that are used.
Note that for each logic class, two different logics can
be used according to the desired quality of the test,
i.e. non-robust or robust. The derived logics are pre-
sented in Table 5.

– LCZ – A gate g belongs to LCZ if all values of L can
be assumed in t1, t2. Obviously, only tri-state gates
belong to this class. As described above, for robust
test generation, L19s is used, whereas for non-robust
test generation L16 is applied.

– LCU1 – A gate g belongs to LCU1 if the values
0, 1, U can be assumed in t1, t2, but not Z. These
gates are modeled using the derivative logics L11s

(robust) and L9 (non-robust):
– LCU2 – A gate g belongs to LCU2 if the values 0, 1

can be assumed in t1, t2, whereas U can be assumed
only in t2. In other words, a gate is in LCU2 if a
flip-flop in the fan-in cone of the gate is no source
of unknowns but can be fed by a unknown from t1.
As a result, the value U can be propagated only in
t2. The corresponding logics are L8s for robust test
generation and L6 for non-robust test generation.

– LCB – A gate g belongs to LCB if only 0, 1 can be
assumed in t1, t2. Then, L6s (robust) and L4 (non-
robust) are applied. Note that these gates are mod-
eled as described in Section 3 and Section 4.

A summary of the mapping between logic class and
applied logic is given in Table 6. How to classify each
gate is discussed in detail in Section 6.

5.3 Boolean Encoding

For the Boolean encoding of L19s, five Boolean vari-
ables are needed to encode each value. The used encod-
ing ηL19s

which yields the best results in [35] is shown
in Table 7. The encoding of the derived logics is im-
plied by this encoding. For example, the encoding of
the value S1 is {x1x2x3x4x5}. For L11s, which needs
only four variables, S1 is encoded by the first four vari-
ables, i.e. by {x1x2x3x4}, whereas for L6s and L8s, the
value is encoded by {x1x2x3}. For this reason, these en-
codings are said to be compatible with each other. The
procedure for the encoding of L16 and derived logics is
similar.

In Table 8, the impact of the different logics on the
size of the CNF for two example gate types (AND and
busdriver) is presented. The truth table of a busdriver
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Table 7 Boolean encoding ηL19s for L19s

var S0 00 01 10 11 S1 0U 1U U0 U1 UU 0Z 1Z Z0 Z1 UZ ZU ZZ SZ

x1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1

x2 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1
x3 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0

x4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0
x5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 8 Size of CNF for different logics

AND bus driver

logic #var #cls #lit #cls #lit

L19s 5 - - 114 561

L11s 4 30 97 - -

L8s 3 21 71 - -
L6s 3 15 40 - -

L16 4 - - 86 426

L9 4 20 50 - -

L6 3 14 35 - -
L4 2 6 14 - -

Table 9 Truth table of busdriver

control 0 1 Z U

data 0 Z 0 U U

1 Z 1 U U
Z Z Z Z Z

U Z U U U

for one time frame is shown in Table 9. In column logic,
the logic used is named, whereas in column #var, the
number of variables of the encoding is given. In columns
entitled #cls the number of clauses for an AND gate
and a busdriver is shown, respectively. Columns named
#lit report the number of literals. The table entries
are empty when the logic is not applicable for the gate
type, for example, a Z is interpreted as U for an AND
gate, while a busdriver can always assume the value Z
so only L19s and L16 apply.

The overhead of using a higher-valued logic is sig-
nificant. Modeling as many gates as possible in a logic
with fewer values is therefore desirable.

6 Structural Classification

In this section, the algorithm that determines the logic
class of each gate is given. The classification is only ex-
ecuted once for each circuit in a pre-processing step.
Therefore, the overhead is negligible. The overall goal
of the classification is to classify as many gates as pos-
sible into logic class LCB to allow for a compact circuit
representation. The pseudo-code of the structural clas-
sification is described in Algorithm 1.

To begin, the tri-state gates are identified. Typi-
cally, the number of these gates is small compared to
the number of Boolean gates. Because all of them may

assume any value in {0, 1, U, Z} in t1, t2, they are in-
serted into logic class LCZ (line 4). All inputs that are
fixed to an unknown state are also identified and in-
serted into logic class LCU1 because they can assume
the value U in t1, t2 but not the value Z (line 5).

The next step is to determine the output cone of
both, the tri-state gates and the fixed inputs. All gates
which have been inserted into a logic class so far can be
considered as sources of unknown values in the circuit.
Note that a Z-value is interpreted as U in a Boolean
gate. Consequently, each gate in each output cone of
these gates can itself assume an unknown state in t1, t2.
Therefore, they have to be inserted into logic class LCU1.
This is done by the while-loop in lines 9-21.

If an unknown value reaches a flip-flop in the ini-
tial time frame, it is propagated again in the final time
frame (due to launch-on-capture). Therefore, these flip-
flops that are inserted in LCU1 are temporary stored
(lines 16-17). Once all elements of LCU1 are determined,
the stored flip-flops are processed again by the while
loop in lines 22-31, where the output cone of each flip-
flop is determined. If a gate is not in LCU1 and LCZ ,
the value U can only be assumed in t2 but not in t1.
For that reason, it is inserted into LCU2. The remain-
ing gates cannot assume a non-Boolean value in t1 or
t2. Therefore, they are inserted into LCB (lines 32-26).

When, creating the SAT instance for a PDF, each
gate has to be transformed into CNF. Depending on the
desired quality, the logic class is mapped to a specific
logic which have to be used for this gate to provide
a CNF which is as small as possible. The mapping is
summarized in Table 6.

One problem arising from the use of different log-
ics in modeling a circuit is the handling of logic tran-
sitions. A logic transition occurs if at least one direct
predecessor of gate g is modeled in a different logic than
g. Due to the different Boolean encodings for the log-
ics, inconsistencies would occur at g. Therefore, inputs
of g modeled in a logic with fewer values have to be
converted to the higher-valued logic of g. Inconsisten-
cies are avoided by additional constraints. The following
example demonstrates the procedure.

Example 3 Consider a busdriver b that is modeled in
L19s. The control input of b, named c, is modeled in
L19s, too. The corresponding variables are xb

1, x
b
2, x

b
3, x

b
4,
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Algorithm 1 Structural classification in logic classes
1: LogicClass LCZ , LCU1, LCU2, LCB = ∅
2: GateList l = ∅
3: GateList f = ∅
4: LCZ .insert(all tri state gates())

5: LCU1.insert(all inputs fixed to unknown())
6: l.push(all tri state gates())

7: l.push(all inputs fixed to unknown())

8: mark as seen(l.all())
9: while !l.empty() do

10: Gate g = l.pop first element()

11: for all succ ∈ g.all successors() do
12: if not seen(succ) then

13: mark as seen(succ)

14: l.push(succ)
15: LCU1.insert(succ)

16: if is FlipFlop(succ) then

17: f.push(succ)
18: end if

19: end if
20: end for

21: end while

22: while !f.empty() do
23: Gate g = f.pop first element()

24: for all succ ∈ g.all successors() do

25: if not seen(succ) then
26: mark as seen(succ)

27: f.push(succ)

28: LCU2.insert(succ)
29: end if

30: end for

31: end while
32: for all gate ∈ all gates() do

33: if not seen(gate) then
34: LCB .insert(gate)

35: end if

36: end for

xb
5 and xc

1, x
c
2, x

c
3, x

c
4, x

c
5, respectively. For the data input

of b, named d, L8s is applied. The three corresponding
variables are xd

1, x
d
2, x

d
3. In order to obtain a consistent

CNF, d is converted to L19s and two additional vari-
ables xd

4, x
d
5 are assigned. Due to the compatible encod-

ing of L19s and L8s, it is straight forward to restrict d
to the values of L8s. Table 7 shows that fixing xd

4 to 1
and fixing xd

5 to 0 is sufficient.

The above structural analysis significantly reduces
the complexity of SAT-based PDF test generation for
industrial circuits.

7 Incremental SAT

Generating robust tests for PDFs is desirable. Unfor-
tunately, typically only few paths in a circuit are ro-
bustly testable. For those paths which are not robustly
testable, a non-robust test is generated (if one exists).5

5 This procedure can be directly extended to the functional
sensitization criterion. However, this article is restricted to the

non-robust and robust sensitization criterion.

Table 10 CNF sizes of incremental SAT formulation

logic ηL16 ΦStatic ηL16 + ΦStatic ηL19s

class #cls #lit #cls #lit #v #cls #lit #v #cls #lit

AND

LCU1 20 50 18 58 5 38 108 4 30 97

LCU2 14 35 16 52 4 30 87 3 21 71
LCB 6 14 9 31 3 15 45 3 15 40

busdriver

LCZ 86 426 25 81 5 111 507 5 114 561

The approach considered so far in Section 5 required
two independent SAT instances for both types of tests.
Both instances are optimized either for non-robust or
for robust test generation. A SAT instance built for
non-robust test generation is not suitable for robust
test generation, because static values are not modeled.
On the other hand, a SAT instance built for robust
test generation can generally be used for non-robust
test generation but causes too much overhead for non-
robust test generation.

The fact that robust as well as non-robust test gen-
eration is executed sequentially can be exploited by us-
ing incremental SAT. The use of incremental SAT is
not new in the field of ATPG for PDFs. However, in
previous works, e.g [20], path segments are added in-
crementally to speed up test generation for non-robust
tests considering all paths or a large number of over-
lapping paths. In this work, a new incremental SAT
formulation which is based on complete and also in-
dependent paths is proposed which is more typical in
practice. Here, the encoding of static values is added
incrementally to the SAT instance. Consequently, ro-
bust test generation directly benefits from the previous
non-robust test generation.

The application of this incremental formulation is
as follows. At first, a SAT instance ΦNR−p for non-
robust test generation is built for path p. If it is unsat-
isfiable, p is non-robustly untestable and, consequently,
robustly untestable. If p is non-robustly testable, a SAT
instance ΦR−p for robust test generation is built. The
SAT instance ΦR−p is composed according to the fol-
lowing equation:

ΦR−p = ΦNR−p · Φstatic

The CNF Φstatic describes the static value justification
of p. That means the separate modeling of static values
in contrast to the logic modeling given by ΦNR−p. In-
crementally adding Φstatic to ΦNR−p results in a SAT
instance suitable for robust test generation and pro-
vides the following advantages.

– Build time – Instead of building a completely new
SAT instance for robust tests, execution time is saved
by reusing the existing SAT instance ΦNR−p .
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Table 11 Boolean encoding ηL16 for L16

var 00 01 10 11 0U 1U U0 U1 UU 0Z 1Z Z0 Z1 UZ ZU ZZ

x1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1

x2 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1
x3 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0

x4 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1

– Learned information – Conflict clauses created dur-
ing non-robust test generation can be reused during
robust test generation. This prunes large parts of
the search space.

– Structural information – According to the robust
sensitization criterion, not all off-path inputs of p
have to be guaranteed to be static. Therefore, some
parts of the circuit do not have to be included in
Φstatic.

In the following, a description how to derive Φstatic is
given. At first, an additional variable xS is assigned
to each connection. This variable determines whether
the signal on the connection is static (xS = 1). If a
static signal has to be forced on an off-path input g, xg

S

is fixed to 1. In order to justify this value, additional
implications are added for each gate in the fan-in cone
of g. For gate g with direct predecessors h1, ..., hn, these
are as follows. If the non-controlling value ncv is on the
output of g, all direct predecessors h1, ..., hn have to
be statically non-controlling between both time frames,
too:

(xg
S = 1 ∧ g = ncv)→

n∏
i=1

xhi

S = 1 (1)

If the controlling value cv is on the output of g, at least
one predecessor hi has to be statically controlling:

(xg
S = 1 ∧ g = cv)→

n∑
i=1

(xhi

S = 1 · hi = cv) (2)

Thus, it is guaranteed, that a static value on an off-
path input is justified. These additional implications
are transformed into CNF according to the logic used
and corresponding encoding of g. However, the minimal
size of the CNF is given up for robust test generation
by directly encoding the implications into CNF. The
CNF size using incremental SAT is generally larger than
using ηL19s and more variables are needed.

Table 10 shows the effect on the CNF size for an
AND gate and a busdriver. Column ηL16 gives the CNF
size for non-robust test generation (using the Boolean
encoding shown in Table 11) and column ΦStatic presents
the CNF size for the additional implications for static
value justification. In column ηL16 + ΦStatic, the total
CNF sizes for robust test generation with incremental
SAT is presented. For comparison, the CNF sizes for ro-
bust test generation using ηL19s is repeated in the last
column.

Table 12 CNF for an AND gate using ηL4

(xa
1 + xb

1 + xc
1) (xa

1 + xc
1) (xb

1 + xc
1)

(xa
2 + xb

2 + xc
2) (xa

2 + xc
2) (xb

2 + xc
2)

Table 13 CNF description for static value justification for an
AND gate using ηL4

(xa
2 + xb

1 + xb
2 + xc

S) (xa
1 + xa

2 + xb
1 + xc

S) (xa
S + xb

2 + xc
S)

(xa
1 + xb

1 + xb
2 + xc

S) (xa
S + xb

1 + xc
S) (xa

2 + xb
S + xc

S)

(xa
1 + xa

2 + xb
2 + xc

S) (xa
1 + xb

S + xc
S) (xa

S + xb
S + xc

S)

As mentioned above, not all gates have to be in-
cluded in Φstatic. For example, if a rising transition oc-
curs at the on-path input of an AND gate under the
robust sensitization criterion, the off-path inputs – and
consequently their fan-in cone – do not have to be con-
sidered. This is because according to the sensitization
criterion, no static value has to be guaranteed here. Let
GF

S be the set of gates on which static values have to be
guaranteed for the path delay fault F . Then, only those
gates that are located in the fan-in cone of at least one
gate g ∈ GF

S are included in Φstatic. As a result, the size
of the CNF for robust test generation can be reduced.

Example 4 Consider an AND gate c = a · b with in-
puts a, b. The CNF that models an AND gate under
L4 is shown in Table 12. Given the additional variables
xa

S , x
b
S , x

c
S , the implications ΦStatic described in Equa-

tion 1 and Equation 2 are presented in CNF in Table 13.
Each clause represents an illegal assignment of the vari-
ables. For example, the clause (xa

1 + xb
S + xc

S) implies
that if a static value has to be justified at line c (xc

S = 1)
and the signal on line b is not guaranteed to be static
(xb

S = 0), line a has to assume the value 1 in the first
time frame (xa

1 = 1); see the Boolean encoding given in
Table 11.

Note, that each of these additional clauses contains
the literal xc

S . This means, that these clauses are only
to be considered if xc

S = 1, i.e. a static value has to be
justified at this line. Otherwise, if xc

S = 0, all clauses
are satisfied by this assignment and no implication is
derived.

This incremental approach requires some overhead
when modeling a circuit, as the most compact encoding
cannot always be chosen. Instead, structural informa-
tion about static values is added to the SAT instance for
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Table 14 Run time comparison with competitive approach –
non-robust

circ KF-ATPG MONSOON impr

s5378 0:22m 0:03m 7.3
s9234 0:10m 0:04m 2.5
s13207 0:15m 0:10m 1.5

s15850 0:20m 0:08m 2.5
s35932 0:05m 0:01m 5.0

s38417 0:33m 0:06m 5.5

s38584 0:21m 0:08m 2.6
b14 1:39m 0:26m 3.8

b15 2:11m 0:30m 4.4

b17 2:18m 0:27m 5.1
b18 3:29m 1:50m 1.9

b20 2:34m 1:23m 1.9

b21 2:42m 1:30m 1.8
b22 3:47m 1:57m 1.9

average 3.4

non-robust generation. Additionally, as an advantage,
learned information can be reused.

8 Experimental Results

In this section, experimental results are presented. The
algorithms were implemented in C++ as the tool MON-
SOON. The tool MONSOON was integrated into the
ATPG framework of NXP Semiconductors as a proto-
type. Experiments were performed on an AMD Dual
Opteron 2222 (3.0 GHz, 65,536 MB, GNU/Linux). As
SAT solver, MiniSat v1.14 [28] is used. The 40,000 long-
est paths of each circuit were chosen for PDF test gen-
eration. The fixed delay model was applied for path
extraction. For sake of simplicity, each gate has a fixed
delay of 1. For each targeted PDF, a broadside test
where the first test vector can be fully scanned is gen-
erated.

The experiments are divided in three parts. Sec-
tion 8.1 shows a run time comparison with a compet-
itive approach on Boolean circuits. In Section 8.2, the
industrial circuits are introduced and the benefits of the
structural analysis are evaluated. Finally, experimental
results for non-robust and robust test generation are
shown in Section 8.3. Here, also the advantages of the
incremental SAT formulation are presented.

8.1 Comparison with Competitive Approach

First of all, the efficiency of our CNF-based approach
for non-robust PDF test generation is shown. Table 14
shows a run time comparison with KF-ATPG [25] –
a state-of-the-art circuit-SAT based Path-Delay-Fault
ATPG – which uses structural ATPG techniques. Fur-
thermore, it maintains a path-status graph and such

Table 15 Information about the industrial circuits

circ #PIs #POs #FFs LCZ LCU1 LCU2 LCB

p44k 739 56 2,175 0 0 0 100

p57k 8 19 2,291 <0.1 0.2 25.7 74.0

p80k 152 75 3,878 0 0 0 100
p88k 403 183 4,302 0.6 7.3 21.4 70.7

p99k 167 82 5,747 0 1.5 5.6 92.9
p177k 768 1 10,507 0.8 27.4 54.5 17.3

p456k 1,723 72 14,900 3.3 20.4 75.7 0.6

p462k 1,815 604 29,205 0.2 13.6 34.7 51.5
p565k 996 201 32,409 6.5 7.3 59.0 27.2

p1330k 617 90 104,630 <0.1 9.0 15.0 75.9

p2787k 46,015 274 58,835 0.3 39.4 25.5 34.8
p3327k 4,093 274 148,184 3.5 16.1 80.2 0.2

p3852k 6,052 303 173,738 1.5 15.6 82.5 0.4

works in an incremental manner. Since KF-ATPG is
only able to generate non-robust tests for Boolean cir-
cuits, the run time comparison is performed only for
this type of tests.6 As benchmarks, larger circuits from
the ISCAS’89 as well as from the ITC’99 benchmark
suite are taken. Column circ shows the circuit’s name.
Run time is given in CPU minutes. Results for KF-
ATPG are presented in column KF-ATPG, whereas re-
sults for our approach are given in column MONSOON.
The factor of improvement of MONSOON is shown
in column impr. MONSOON clearly outperforms KF-
ATPG by a factor of up to 7.3. The average factor of
improvement is 3.4.

8.2 Structural Analysis

Industrial circuits provided by NXP Semiconductors
GmbH, Hamburg, Germany are considered for the fur-
ther experiments. All of these circuits are considered as
hard-to-test. Therefore, a timeout is used for each path
to limit the overall run time. If a test for a path could
not be solved within 10 MiniSat restarts7, the path is
listed as aborted or unclassified. The general timeout
for one circuit is set to 72 CPU hours.

Statistical information about the industrial circuits
is provided in Table 15. The first column gives the cir-
cuit’s name. The name denotes roughly the size of the
circuit, e.g. p3852k contains over 3.8 million elements.
Besides Boolean gates, the industrial circuits contain
primitives such as MUX gates. In column #PIs and
#POs the number of primary inputs and primary out-
puts are given, respectively, whereas column #FFs pre-
sents the number of flip-flops. The last four columns

6 To the best of our knowledge, no free PDF test generator
that can generate robust tests and/or can handle static values

and industrial constraints is available for comparison.
7 A restart is defined as a certain number of conflicts (100

at the beginning). After each restart, the number of conflicts is

increased (by 50%).
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Table 16 Run time comparison with and without structural analysis – non-robust

MONSOON – Non-Robust
w/o analysis with analysis

circ #vars #cls ab. time bld #vars #cls ab. time bld impr

p44k 131,494 479,817 12,799 > 72h 1:23h 62,429 155,466 0 1:35h 41:38m 45.5

p57k 71,069 259,606 1,259 3:52h 42:28m 34,908 93,828 7 46:00m 19:06m 5.0

p80k 44,556 167,459 13,844 20:33h 39:18m 17,870 49,526 16 49:25m 15:13m 25.2
p88k 22,950 81,055 0 40:08m 9:16m 11,099 27,618 0 6:39m 4:02m 6.0

p99k 11,699 43,150 5 22:59m 5:23m 5,675 14,380 0 5:30m 2:14m 4.2
p177k 120,702 432,912 9,338 39:46h 2:45h 81,972 251,580 8,274 39:22h 1:49h 1.0

p456k 34,644 136,304 1,107 3:34h 55:52m 24,872 86,077 652 2:09h 39:04m 1.7

p462k 22,428 78,172 0 1:00h 33:53m 14,983 45,590 0 33:06m 22:39m 1.8
p565k 8,338 33,277 293 47:40m 14:40m 5,497 17,955 1 25:03m 8:41m 1.9

p1330k 31,448 101,800 0 1:05h 42:26m 27,727 85,049 0 58:14m 37:19m 1.1

p2787k 91,873 328,164 613 5:07h 2:20h 76,700 250,263 473 4:08h 1:53h 1.2
p3327k 57,154 187,002 665 8:11h 1:26h 33,089 91,337 94 4:31h 52:51m 1.8

p3852k 101,761 334,016 2,855 19:14h 2:25h 59,009 162,237 865 9:10h 1:25h 2.1

42,778 14:22h 10,392 9:10h 7.6

show the results of the structural pre-processing of the
circuit. In each of these columns, the percentage of gates
contained in the identified logic class is presented. Note
that the number of gates in logic class LCU2 is larger
than the number of gates in LCU1, because unknown
values reaching a flip-flop after the first time frame are
propagated again in the second time frame. The large
circuits especially contain a large number of gates which
are not in the Boolean logic class LCB . For example,
only 0.2% of all gates in p3327k can be modeled in
Boolean logic. On the other hand, the percentage of
gates in LCZ is also very small.

In order to show the benefit of the structural anal-
ysis, a run time comparison of non-robust generation
with and without structural analysis is given in the fol-
lowing. We also made experiments for robust test gen-
eration. However, the effect was similar. Therefore, the
results are not reported here. Table 16 presents the run
time results for non-robust PDF test generation. The
approach without incorporating the analysis (column
w/o analysis) handles all gates in the highest-valued
logic L9/L16. Columns named #vars give the average
number of variables contained in the SAT instance. In
columns #cls, the average number of clauses is pre-
sented. The number of aborts, i.e. PDFs which could
not be classified in the given interval, is shown in col-
umn ab. and the run time in CPU minutes (m) or CPU
hours (h) is listed in columns named time. Columns bld
give the total run time spent for building the SAT in-
stances.

The results clearly show that the structural analysis
is mandatory for efficient SAT-based PDF test gener-
ation. The highest speed-up factor is greater than 45x
for non-robust test generation (p44k) and the average
speed-up factor is 7.6x. Parts of the improvement stems
from run time savings during CNF generation. The

CNF is larger without structural analysis which influ-
ences the run time needed to build the SAT instances.
Without structural analysis all gates are conservatively
modeled as belonging to LCZ/LCU1 – even gates be-
longing to LCB . The structural analysis unveils this
overhead and gates are modeled more compactly. This
is directly reflected by the overall size of the CNFs.
With structural analysis, gates in LCB are modeled
by less clauses than gates in LCZ/LCU1. The SAT in-
stances are therefore generally more easy to solve. The
number of unclassified faults also significantly decreases
by using the structural analysis. The portion of unclas-
sified PDFs is only about 24%.

8.3 Different Configurations

Next, five different PDF test generation configurations
are evaluated:

– Non-Robust – Only non-robust test generation us-
ing L16 and derived logics is performed.

– Robust – Only robust test generation using L19s and
derived logics is performed.

– Sequential – At first, non-robust test generation us-
ing L16 and derived logics is performed. If the PDF
is non-robustly testable, robust test generation is
executed. Here, a completely new SAT instance is
built using L19s and derived logics. This configura-
tion is the typical flow used to generate a test with
highest quality if no incremental approach is avail-
able.

– Incremental – Similar to the sequential configura-
tion. However, if the PDF is non-robustly testable,
robust test generation is performed using the incre-
mental SAT formulation. All learned information is
kept. By this, robust test generation benefits from
the previous non-robust test generation.
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Table 17 Average CNF sizes for each configuration

Non-Robust Robust Sequential Incremental Incr. (Rob.)
circ #vars #cls #vars #cls #vars #cls #vars #cls #vars #cls

p44k 62,429 155,466 83,751 304,889 79,898 277,887 85,212 257,278 90,229 279,676
p57k 34,908 93,828 38,241 130,065 35,835 104,666 36,468 102,749 40,157 122,184

p80k 17,870 49,562 20,724 73,356 19,831 65,962 20,129 61,122 21,257 66,704

p88k 11,099 27,618 12,765 41,134 11,903 34,222 12,191 32,379 13,245 36,936
p99k 5,675 14,380 6,875 24,078 6,410 20,161 6,693 19,000 7,330 22,092

p177k 81,972 251,580 82,623 307,409 81,991 253,060 82,261 253,383 93,782 326,946
p456k 24,782 86,077 24,815 118,519 24,789 91,165 25,899 93,719 31,081 132,433

p462k 14,983 45,590 15,671 55,857 15,176 47,030 15,262 46,747 17,379 57,856

p565k 5,497 17,955 5,649 25,602 5,510 19,573 5,855 20,341 7,211 28,747
p1330k 27,727 85,049 28,002 110,745 27,771 85,560 27,819 85,422 31,698 106,243

p2787k 76,700 250,263 77,475 291,814 76,709 250,717 76,807 250,888 82,085 288,757

p3327k 33,089 91,337 33,187 105,472 33,124 94,769 34,425 96,951 38,283 113,297
p3852k 59,009 162,237 59,049 189,187 59,021 165,461 60,248 167,442 68,837 207,156

Table 18 Experimental results for PDF test generation with MONSOON

Non-Robust Robust Sequential Incremental

circ #nr ab. time #rob ab. time #rob ab.(r) time #rob ab.(r) time

p44k 19,152 0 1:35h 7,400 0 2:02h +0 0 3:15h +0 0 4:48h

p57k 4,149 7 46:00m 1,509 898 1:40h +0 896 2:04h +884 0 59:51m
p80k 15,175 16 49:25m 401 901 1:01h +0 885 1:32h +750 2 59:04m

p88k 5,851 0 6:39m 1,606 0 8:30m +0 0 11:09m +0 0 8:32m

p99k 7,095 0 5:30m 702 1 6:12m +0 0 8:53m +0 0 6:50m
p177k 1,195 8,274 39:22h 846 3,042 10:17h -588 30 39:47h -558 0 39:37h

p456k 7,330 652 2:09h 1,214 164 1:32h -30 50 2:38h -22 0 2:16h
p462k 8,855 0 33:06m 2,602 0 39:49m +0 0 35:52m +0 0 36:26m

p565k 10,033 1 25:03m 2,340 78 27:53m +0 59 34:49m +33 0 28:11m

p1330k 8,473 0 58:14m 6,740 0 1:09h +0 0 56:51m +0 0 59:29m
p2787k 1,949 473 4:08h 411 55 3:13h -1 4 4:13h +3 0 4:10h

p3327k 18,284 94 4:31h 6,251 23 1:34h -2 23 5:03h +17 0 4:37h

p3852k 11,413 865 9:10h 3,411 72 4:14h -131 3 10:21h -132 4 9:41h

total 10,382 5,234 -752 1,950 +869 6

– Incr. (Rob.) – Here, robust test generation only is
performed with the incremental SAT formulation.
In contrast to the incremental configuration, only
one SAT instance is solved.

Table 17 shows the average CNF sizes for each con-
figuration. As expected, the number of variables and
clauses is higher for the robust configuration. More vari-
ables and clauses are needed for the additional con-
straints. Again, as expected, the average number of
variables and clauses of the sequential configuration lies
between the non-robust and robust configuration, be-
cause non-robustly untestable PDFs are also robustly
untestable and no SAT instance for a robust test has
to be built. The incremental configuration needs con-
stantly more variables than the sequential configura-
tion but in most cases less clauses. The same effect is
observed when comparing the average CNF size of the
incremental (robust only) and the robust configuration.

Table 18 presents the experimental results for PDF
test generation. The first column circ gives the name of
the circuit. Column #nr (#rob) shows the number of
non-robustly (robustly) testable paths. The results for

each configuration are shown in the respective column.
In the last two configurations (sequential and incre-
mental), non-robust test generation is performed first
(as presented in column Non-robust) followed by ro-
bust test generation if needed. Here, column #rob shows
the number of robust test pattern compared to the ro-
bust configuration. The presented number of aborts in
column ab.(r) gives the number of unclassified robust
PDFs. For example, p3852k has 865 unclassified non-
robust PDFs. For these aborted faults, robust test gen-
eration is not performed.

Although being typically more complex, in some
cases robust test generation is much faster – up to a
factor of 2.9 (p3327k) – than non-robust test genera-
tion. This can be explained by the decreased fault cov-
erage. As expected, the sequential configuration needs
more run time than the non-robust configuration, since
non-robust test generation is performed for each fault
at first. However, the sequential configuration generates
fewer robust tests than the robust generation when the
number of non-robust aborts is high – especially for
p177k, p456k and p3852k. This is due to the large num-
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Table 19 Comparison between robust and incremental configu-
ration

Robust Incr. (Rob.) impr
circ ab. time %bld ab. time %bld

p44k 0 2:02h 73% 0 2:39h 56% 1.30
p57k 898 1:40h 26% 2 53:28m 54% 0.53

p80k 901 1:01h 41% 10 36:10m 78% 0.59
p88k 0 8:30m 82% 0 7:55m 91% 0.93

p99k 1 6:12m 78% 0 5:44m 91% 0.92

p177k 3,042 10:17h 23% 2,959 17:39h 14% 1.72
p456k 164 1:32h 67% 61 1:27h 88% 0.95

p462k 0 39:49m 96% 0 40:54m 98% 1.03

p565k 78 27:53m 64% 2 26:37m 82% 0.95
p1330k 0 1:09h 95% 0 1:12h 94% 1.04

p2787k 55 3:13h 85% 1 3:04h 98% 0.95

p3327k 23 1:34h 77% 12 1:52h 78% 1.19
p3852k 72 4:14h 42% 223 4:31h 46% 1.07

total 5,234 65% 3,270 74% 1.01

ber of aborts for which robust test generation is not
performed.

The incremental configuration is faster than the se-
quential configuration (except for p44k) and nearly as
fast as the non-robust configuration. As a result, the
overhead of generating a robust test on top of a non-
robust test is very small. At the same time, due to the
learned information and structural knowledge, very few
PDFs could not be classified robustly. As a result, the
total number of robust tests significantly increases com-
pared to the sequential configuration and even com-
pared to the robust configuration. Therefore, if non-
robust and robust test generation are to be executed,
the incremental configuration is the best choice.

Table 19 shows a direct comparison between ro-
bust and incremental configuration for generating ro-
bust tests only. The SAT solver is called for the incre-
mental configuration (column Incr. (Rob.)) only once
and no learned clauses from a previous non-robust test
generation are available. The improvement of the ro-
bust configuration over the incremental (robust only)
configuration is shown in column impr.

Although the SAT instances are larger using the in-
cremental configuration (see Table 10), the run time is
comparable on average. However, the incremental con-
figuration produces less aborts than the robust configu-
ration even without the information learned from non-
robust test generation. The reason for this is that the
explicit encoding of static values supports the reason-
ing engine. Therefore, the incremental configuration is
preferable.

9 Conclusions

In this article, MONSOON, a SAT-based approach for
generating non-robust and robust tests for PDFs in an

industrial environment is presented. For modeling static
values as well as industrial constraints, a set of multiple-
valued logics and the transformation to Boolean SAT
was described. Furthermore, to reduce the complexity
of PDF test generation in industrial circuits, a struc-
tural analysis is shown to be mandatory. The concept
of logic classes to support a unified structural classifi-
cation for test generation with different quality is in-
troduced. In addition, to exploit the similarity of non-
robust and robust PDF test generation, an incremental
SAT formulation was presented which further reduces
the number of aborts. A comparison with a state-of-
the-art PDF ATPG tool yields a significant speed-up.
Further experiments on large industrial circuits with
over 3.8 million elements show the scalability and the
robustness of MONSOON.
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3. Krstić, A., Cheng, K.T.: Delay Fault Testing for VLSI Cir-

cuits. Kluwer Academic Publishers, Boston, MA (1998)
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