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Abstract—It was shown in the past that ATPG based on
the Boolean Satisfiability problem is a beneficial complement to
traditional ATPG techniques. Its advantages can be observed
especially on large industrial circuits. These circuits usually
contain a lot of functional redundancy which, on the one hand,
is often needed during operational mode, but on the other hand,
causes dispensable overhead during ATPG. Using the traditional
circuit-to-CNF transformation, this redundancy is also contained
in the SAT instances.

The contribution of this paper is a new technique to improve
the SAT instance generation for SAT-based ATPG. The objective
of the proposed method is to use Binary Decision Diagrams
(BDDs) to optimize the resulting CNF representations. In order to
apply the proposed technique to industrial circuits, we developed
dedicated BDD operations using a multiple-valued logic. The
experimental results, obtained on large industrial designs, show
that the accomplished optimizations result in a considerable
acceleration of the overall ATPG runtime as well as in a
significant reduction of the unclassified faults.

I. INTRODUCTION

The continuous growth of today’s circuit designs requires
a constant improvement of state-of-the-art Electronic Design
Automation (EDA) tools. Traditional ATPG techniques such as
FAN [1], SOCRATES [2], and ATOM [3] reach their limits,
i.e. the number of faults that cannot be classified by them has
been increasing over the last years. During recent years, SAT-
based ATPG algorithms became a promising complement [4],
[5]. SAT-based methods proved to be highly advantageous in
particular for hard-to-solve problem instances. Most modern
SAT solvers, e.g. [6], [7], [8], require the modeling of a
problem instance in Conjunctive Normal Form (CNF). Hence
the circuit-based ATPG problem needs to be converted into
a Boolean formula. This CNF representation is typically
generated by processing each gate independently, i.e. without
considering its adjacency [9].

Industrial circuits usually contain a large amount of func-
tional redundancy. This has two main reasons. The redundancy
could be caused by the limitation of the underlying library. In
most cases, however, redundancy is intended. Additional gates
are included in the circuit due to timing issues or robustness.
In any case, this redundancy causes overhead for the ATPG
process. A fault effect must be justified and propagated to
compute a test pattern for some fault. Only the circuit’s
functionality is required during those steps; the redundancy
increases the computational costs.

Since the traditional circuit-to-CNF transformation in SAT-
based ATPG is performed for each gate independently [9], this
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redundancy is also included in the generated SAT instances.
This yields a significant increase in CNF variables as well as in
CNF clauses which interferes the subsequent solving process.

In this paper, we propose an optimized SAT instance gen-
eration method to overcome this drawback. We use Binary
Decision Diagrams (BDDs) [10] to represent parts of the
considered circuit. Those BDDs do not contain functional
redundancies. Afterwards, CNF representations are derived
from the BDD. Thus, they do not contain the functional
redundancies either. As a result, both the number of CNF
variables and CNF clauses can be reduced significantly.

While the BDD construction for Boolean circuits is quite
straightforward – because there is a basic operation (If-Then-
Else (ITE) operation) for each basic gate –, industrial circuits,
which require a treatment in multiple-valued logic, cannot be
handled directly. To overcome this drawback, we developed
complex BDD operations which are also discussed in this
work.

We apply SAT-based ATPG for the stuck-at fault model [11]
and the transition fault model [12]. The experimental results
conducted for large industrial designs show that the proposed
approach is able to significantly accelerate the ATPG process.
Additionally, the number of unclassified faults can be reduced
considerably.

The paper is structured as follows. Previous work is dis-
cussed in Section II. Section III describes the construction of
BDDs for industrial circuits. The presentation of our proposed
approach is the objective of Section IV. Experimental results
are reported in Section V. Finally, Section VI concludes the
paper.

II. PREVIOUS WORK

A. SAT-based ATPG
Test pattern generation with respect to some Stuck-At Fault

(SAF) is the search for an input assignment, which conducts
different values at some primary output between the faulty
circuit and the correct circuit. In SAT-based ATPG, this search
is transformed into a Boolean satisfiability problem. It was
initially proposed in [9] and significantly improved in [13] and
[14]. If a test for a particular SAF exists, then the correspond-
ing problem instance is satisfiable and the resulting test pattern
can be directly derived from the satisfying assignment. If the
fault is undetectable, the SAT solver concludes unsatisfiability.

In the following, the circuit-to-CNF transformation for an
SAF is reviewed. Figure 1 illustrates a combinational circuit.
The fault site denotes a connection c where an SAF is
assumed. The area denoted as output cone, contains all gates
belonging to some path P from c to some primary output in
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Fig. 1. Illustration of influenced circuit areas.

the transitive fanout of c, fanout∗(c). Let us denote the set of
primary outputs reachable from c by Oc. Next the transitive
fanin, fanin∗(Oc), of all primary outputs in Oc is computed,
see Figure 1.

As introduced in [13], two Boolean variables gc and gf are
assigned to every gate g in the transitive fanout of c, g ∈
fanout∗(c), to represent the fault-free circuit and the faulty
circuit, respectively. Both circuits are generated by building
the characteristic function for every gate [15]. Clearly all gates
belonging to the transitive fanin of some primary output in the
set Oc and are not contained in fanout∗(c) only need to be
modeled once, since the SAF at c does not influence their
behavior. Additionally, a Boolean variable gd is assigned to
every gate g ∈ fanout∗(c) to express a difference between
the values gc and gf . If gd is true, then the values gc and gf

differ. A test pattern to detect the SAF at c is found if it is
possible to compute an assignment such that there is a path
P from c to some primary output, where the variable gd for
each gate g ∈ P is true. This path is called D-chain.

The construction of SAT instances for the transition fault
model was shown in [16].

B. Handling of Industrial Circuits

It is not sufficient to consider only the Boolean values
0 and 1 during test pattern generation as has been done
in earlier approaches (e.g. [13]) for industrial applications.
Industrial circuits further contain unknown values (denoted by
U) and values at high impedance (denoted by Z). Of course,
those values have to be considered during ATPG, too. This is
accomplished using a 4-valued logic L4 := {0, 1, U, Z}. The
truth table of an AND gate in L4 is given in Table II(a).

A problem formulated in L4 has to be transformed into
a Boolean problem in order to apply a Boolean SAT solver.
Two Boolean variables are necessary to encode L4. Table II(b)
shows the encoding which has shown to be effective for SAT-
based ATPG and which is used in the following. For instance,
1 ∈ L4 is encoded by (1,0) ∈ B2.

As a consequence, the Boolean variables gc and gf used to
represent the gate g’s values in the fault-free and the faulty
circuit, respectively, are not sufficient anymore. If industrial
circuits are handled by SAT-based ATPG, two variable gc and
g∗c respectively gf and g∗f are used to represent both circuits.

A detailed overview on SAT-based ATPG for industrial
circuits is given in [16].

C. Binary Decision Diagrams

A BDD is a rooted, directed, acyclic graph, where each
node is either an inner node or one of the terminal nodes
0 and 1. Each inner node has exactly two child nodes (the
low-child and the high-child) and is labeled with a Boolean
variable. A BDD is called ordered if there is a variable

TABLE I
APPLICATION OF L4

0 1 U Z
0 0 0 0 0
1 0 1 U U
U 0 U U U
Z 0 U U U

(a) Truth table of an
AND gate.

s xs x∗s
0 0 0
1 1 0
U 1 1
Z 0 1

(b) Boolean
encoding of
L4.

order π and on each path from the root node to a termi-
nal node, the variables occur at most once and according
to π. An ordered BDD is called reduced ordered BDD if
it does not contain any two nodes representing the same
Boolean function. Reduced ordered BDDs are a canonical
representation of Boolean functions [10]. Canonicity allows
significant performance improvements for operations such as
equivalence checking or satisfiability checking. Additionally,
reduced ordered BDDs are a highly effective representation
for large combinational sets. In the following, we imply that
all BDDs are reduced ordered BDDs. For more details about
BDDs, we refer to e.g. [17].

There are multiple ways to derive a CNF from a BDD. The
possibility we use is explained in the following. Each path
from the root node to the zero-terminal node (0-path) corre-
sponds to one clause, which is constructed by the disjunction
of the complemented outcome of each occurring variable.1
Finally, all clauses generated this way are conjuncted.

Example 1. An example is presented in Figure 2. Figure 2(a)
shows a BDD B containing six nodes: the inner nodes
v1, . . . , v4, where v1 is the root node, and the one-terminal and
zero-terminal nodes v5 and v6, respectively. The BDD depends
on three variables, x1, . . . , x3. The dashed lines denote low-
edges and the solid lines denote high-edges. B is ordered (the
variable order is π = (x1, x2, x3)) and reduced. It contains
three 0-paths, so the CNF φB consists of three clauses.

The first 0-path is given by p1 = v1 → v2 → v4 → v6. All
variables occurring on p1 have a positive outcome, because
the path is traversed only via high-edges. The variable assign-
ment (x1, x2, x3) = (1,1,1) referring to the path evaluates the
function to false. Therefore, it has to be excluded from the solu-
tion space. This is achieved by the clause ω1 = (x1+x2+x3).

The corresponding clauses for paths p2 = v1 → v2 →
v3 → v6 and p3 = v1 → v3 → v6 are ω2 = (x1 + x2 + x3)
and ω3 = (x1 + x3), respectively. Finally, the CNF is given
by φB = ω1 · ω2 · ω3 (see Figure 2(b)).

Note, that φB in the example above is not minimal. The
clause ω2 can be replaced by ω′2 = (x2 +x3). State-of-the-art
BDD packages as used in this approach are able to efficiently
calculate such prime implicants during their path enumeration.

As mentioned above, the number of clauses in the CNF is
equal to the number of 0-paths in the BDD. Unfortunately, the
number of 0-paths is exponential with respect to the number
of nodes in the BDD in the worst case. A sophisticated
approach which introduces auxiliary variables in order to
reduce the number of paths in the BDD is proposed in [18].

1A variable’s outcome depends on the path used from the respective node.
If the child node is reached via a low edge, the variable’s outcome is negative.
Otherwise, it is positive.
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Fig. 2. (a) BDD B, (b) CNF representation φB of B.

The minimization of the number of paths in a BDD using
different sifting strategies is described in [19].

D. Related Work

An approach to reduce the size of CNF representations of
Boolean formulas is proposed in [20]. Gates with fanout count
of 1 are identified and merged with their fanout gate during
their translation into CNF. This method works only on Boolean
formulas and is not efficiently applicable to industrial circuits.
Another SAT instance simplification technique is proposed
in [21]. It describes a method where a CNF is optimized
with respect to its size by applying recursive self-subsumption
within the CNF. The method is not able to identify redundant
circuit parts.

A structural simplification technique is presented in [22].
And-Inverter Graphs (AIGs) – used as representation of
Boolean functions – are structurally and locally optimized. A
CNF that can be derived from the AIG is thus also optimized.
Since our approach addresses industrial circuits, AIG-based
optimization is not directly applicable. An adaption to process
AIGs over L4 (similar to the adaption for BDDs described in
the next Section) is necessary.

A special class of BDDs, Structurally Synthesized BDDs
(SSBDDs), is employed in [23] to improve ATPG. The authors
propose to use SSBDDs as a representations of Fanout-
Free Regions (FFRs) in order to apply fault collapsing and
circuit compaction. Afterwards, they use an equivalent of
the classical ATPG algorithm PODEM [24] to generate test
patterns. SSBDDs are not applicable to our approach because
they preserve structural information.

III. BDD REPRESENTATION OF INDUSTRIAL CIRCUITS

The generation of BDD representations of Boolean circuits
is straightforward. There exists a basic BDD operation for each
basic gate, i.e. transforming a primitive into a BDD requires
only one basic BDD operation, i.e. one ITE operation.

Figure 3(a) shows the BDD representing the characteristic
function for a Boolean AND gate with inputs i1 and i2
and output o. All paths from the root-node to the 1-node
correspond to a legal assignment for the gate, i.e. evaluate
the characteristic function to true.

Generating BDDs for industrial circuits is more difficult.
The contained gates implement functions over L4 which
requires a Boolean encoding as described in Section II-B.
Moreover, there is no basic BDD operation available to
generate a gate’s BDD directly.
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i1 i1
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Fig. 3. Example for BDDs: (a) Boolean AND gate, (b) 4-valued AND gate
– output o, (c) 4-valued AND gate – output o∗.

In order to be able to process industrial circuits, we imple-
mented an approach to handle gates defined over L4. Since the
representation of such gates is very complex (remind the truth
table of an 2-input AND gate depicted in Table II(a)), several
ITE operations are necessary to generate the BDD of only
one gate. We derived this chain of basic BDD operations for
each occurring gate primitive automatically from the respective
truth tables and our chosen Boolean encoding of L4. Each
minterm of the function, i.e. each one-column in the truth
table, is transformed into a 1-path of the resulting BDD. So,
this pre-computed ITE-chain is processed whenever a gate is
transformed into a BDD representation.

Example 2. Figures 3(b)-3(c) show the BDDs for an AND
gate in L4 where each BDD represents one of both Boolean
output functions. They were constructed using the approach
described above. Our implemented 4-valued BDD operation
to generate the BDDs needs 66 basic BDD operations.

The assignment a := (i1,i∗1,i2,i
∗
2,o,o

∗) = (1,0,1,0,1,0)
(which corresponds in L4 to the correct expression 1 ∧ 1 = 1)
results in 1-paths in both BDDs. However, the assignment
a = (1,1,0,0,1,0) (which corresponds in L4 to the incorrect
expression U ∧ 0 = 1) results in a 0-path at the BDD in
Figure 3(b). This indicates the illegal assignment.

Note that both BDDs in the above example actually can be
shared in one BDD. However, the distinction was made for
the sake of clarity.

IV. IMPROVED CIRCUIT-TO-CNF TRANSFORMATION

A. Motivation

As already mentioned, industrial circuits contain a lot of
functional redundancy [25]. This redundancy might be in-
tended to guarantee the correctness of the chip, e.g. with
respect to timing, during operational mode. During ATPG,
however, it causes dispensable overhead. Figure 4 gives an
illustration of our argumentation. Assume, the fault effect can
be injected and propagated along the solid lines. Redundancy
that might be contained within the clouds can interfere those
steps: additional implications have to be performed or branch-
ing heuristics are distorted. If the redundant parts are removed,
both steps can be improved without influencing the correctness
of the ATPG process.
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Fig. 4. Redundancy in the circuit is overhead during ATPG.

As discussed in Section II-A, the instance generation in
SAT-based ATPG usually does not consider the adjacent circuit
structure. Therefore, the redundancy in the circuit is also
contained in the CNF – in form of “unnecessary” variables
and clauses. Since a SAT instance’s size has strong influence
on the SAT solver’s performance, a compact CNF without
redundant information can speed up the solving process.

Examples for actual redundancy occurring in industrial
circuits are shown in Figure 5. Figure 5(a) presents a small
part of the industrial circuit p99k, provided by NXP Semi-
conductors GmbH. It can be seen that the entire sub-circuit
consisting of four gates actually implements a three-input
NAND gate. Figure 5(b) illustrates another form of redun-
dancy. The depicted sub-circuit of circuit p44k contains two
inverter chains. Inverting a signal twice results in the signal
itself. So it does not have any influence on the circuit’s logical
function. However, it may be important to assure the signal’s
integrity. Therefore, the circuit structure itself must not be
changed. The used SAT algorithms do not work on the circuit
structure. Therefore, optimizing the CNF representation allows
for improvement without altering the circuit itself.
B. Method

The basic idea of the method is described in the following.
First, information about Fanout-Free Regions (FFRs) is re-
trieved from the circuit structure. This can be done easily and
many ATPG tools already perform this during a preprocess.
Then, a single BDD representation is generated for each FFR.
The FFRs are treated as individual, independent sub-circuits
which is beneficial due to two reasons:
• FFRs are tree-like structures; only FFR-inputs can be

shared. It was proven in [26] that the BDD representation
of tree-like structures is compact. Therefore, the BDDs
can be generated very efficiently.

• Many FFRs are functionally equivalent in industrial cir-
cuits. The BDD generation can profit since in state-of-
the-art BDD packages only one BDD representing all
equivalent FFRs has to be build.

Afterwards, the method to derive a CNF representation from
a BDD described in Section II-C is used to transform each
BDD into an intermediate data structure. It implements the
CNF representation of an FFR as a template and depends on
the Boolean variables {x1, . . . , xn} where n is the number
of variables in the BDD. Thus, the time-consuming prime
implicant extraction from the BDD has to be performed only
once. Since functionally equivalent FFRs share the same BDD,
they also share the same intermediate data structure. Each FFR
only stores a pointer to it as an attribute. A memory explosion
is highly unlikely due to the large extent of sharing.

Note, that all steps described so far are done prior to the
actual test pattern generation. The following describes the
steps performed for each fault.

(a)

(b)

Fig. 5. Example for redundancy in a circuit.

The SAT instance generation is generally accomplished as
described in Section II-A (see Figure 1). The fault site c is
marked, the set of influenced outputs Oc is determined, and
the transitive fanin of Oc is traversed. Unlike in the traditional
approach, the Boolean variables gc, g

∗
c , gf , g

∗
f , and gd are only

assigned to FFR-inputs and FFR-outputs.
Then, the CNF for each FFR is derived from the intermedi-

ate data structure instead of using the circuit structure to build
a SAT instance. The actually assigned Boolean variables are
mapped onto the variables of the intermediate data structure.
Obviously, for FFRs contained in fanout∗(c), the CNF gen-
eration has to be applied twice, for the fault-free and for the
faulty circuit. It is easy to see that D-chains are modeled along
FFRs in this approach.

Example 3. Assume the two FFRs F1 and F2 implement
the Boolean AND function. Both FFRs are described by the
BDD presented in Figure 3(a) and thus represented by the
intermediate CNF representation.

φg = (o+ i1 + i2)(o+ i1)(o+ i2),

where the Boolean variable o is associated with the FFR-
output and i1 and i2 are associated with the two FFR-inputs,
respectively.

Whenever an FFR is visited during the circuit traversal
within the actual ATPG, Boolean variables are assigned to
the FFR-inputs and FFR-outputs, e.g. x5, x6 (inputs), and x7

(output) for F1 and x12, x28 (inputs), and x64 (output) for F2

Then, the recently allocated variables replace the variables in
φg resulting in

φF1 = (x7 + x5 + x6)(x7 + x5)(x7 + x6) and
φF2 = (x64 + x12 + x28)(x64 + x12)(x64 + x28).

The CNFs φF1 and φF2 are added to the SAT instance in
order to represent F1 and F2, respectively. Processing the next
fault can lead to other variables xi, xj , xk associated with
the FFRs. Then, the φFi have the same shape but depend on
xi, xj , xk. It can also happen that an FFR F is not considered
for a fault. Obviously, φF is then not added to the SAT
instance.

Note that the fault site could occur on a connection inside an
FFR. A BDD-based optimization is not feasible in that case,
because then this particular connection will not have a Boolean
variable where the fault can be modeled. Therefore, this single
FFR containing the fault is treated the traditional way, i.e. its
CNF is build using the usual circuit-to-CNF transformation.



C. Implementation Details
In the following, we discuss issues regarding the implemen-

tation of the proposed technique. We chose to apply the well-
known CUDD package [27] version 2.4.1 as BDD package.

Although BDDs can usually represent FFRs in a compact
manner, the number of paths might grow exponentially. For
instance, the BDD representation of the EXOR function de-
pending on n variables consists of only 2 ·n+ 1 BDD nodes.
However, there are 2n−1 0-paths. During first experiments,
we observed that the number of prime implicants and hence
the number of clauses derived from a BDD often exceeds the
number of clauses needed by the traditional approach. This
generally reduces the efficiency of the SAT solver.

Therefore, we decided to use a limitation that is able
to prevent an increase of the CNF size. During the BDD
construction for an FFR, the number of clauses that would be
required to generate the corresponding CNF in the traditional
way is calculated. This is accomplished using a look-up table,
since the size depends only on the gate type and the number of
gate inputs. If the number of 0-paths in the BDD representing
the FFR, i.e. the number of clauses in the CNF, is greater than
the number of clauses needed by the traditional circuit-to-CNF
transformation approach, the BDD is dismissed. In that case,
the CNF for the FFR is always generated the traditional way.

Especially large FFRs exceed that bound frequently. There-
fore, we try to reduce the number of paths during the BDD
construction by using a decomposition strategy similar to this
described in [18]. Whenever the path number of the current
sub-BDD exceeds the limit calculated for the current sub-FFR,
the most recent BDD operation is undone, a new BDD variable
is created for each gate input to represent its sub-BDD, and
the BDD operation is repeated. This increases the number of
variables only slightly, but the reduction with respect to the
number of paths is significant. On average, 80%-90% of all
generated BDDs meet the limitation discussed above and thus
provide a more compact CNF than the traditional approach.

V. EXPERIMENTAL RESULTS

This section contains an experimental evaluation of our
proposed methodology. The new technique was applied to a
set of benchmarks consisting of the publicly available ITC’99
circuits [28] and twelve large industrial designs provided by
NXP Semiconductors GmbH. The name of the benchmarks
reflects the approximate number of elements contained in the
circuit. For example benchmark p1330k contains roughly 1.3
million elements. The SAT solver used is MiniSat version
2.0 [8]. The experiments were performed on an AMD Athlon
64 system (3.0 GHz, 4 GByte RAM, GNU/Linux).

The BDD generation and transformation into the interme-
diate data structure for each considered circuit requires less
than one minute of CPU time and the additional memory
consumption does not exceed 50 MByte.

Table II gives an overview on the CNF sizes for SAT-based
ATPG. The circuits’ names are shown in the first column.
Column Traditional presents the results of the traditional
approach where each CNF is generated without considering
the adjacent circuit structure of the gates. Our proposed
technique is presented in column BDD-based. The average
SAT instance sizes with respect to the number of variables
(columns Vars.) and the number of clauses (columns Cls.) are
given for the stuck-at fault model as well as for the transition
fault model in the respective columns. As described earlier, our

TABLE II
OVERVIEW IN THE AVERAGE SAT INSTANCE SIZES FOR THE STUCK-AT

FAULT MODEL AND THE TRANSITION FAULT MODEL

Stuck-at Faults Model Transition Fault Model
Traditional BDD-based Traditional BDD-based

Circuit Vars. Cls. Vars. Cls. Vars. Cls. Vars. Cls.
b14 3931 10802 2041 8167 11225 31639 4860 21468
b15 5071 14320 2635 11778 10618 30527 4785 23183
b17 4515 12403 2364 10407 11069 31005 4737 22494
b18 4376 11875 2369 9808 12935 35978 5884 25075
b20 5301 14601 2517 10555 15445 43208 6427 28586
b21 5374 14825 2469 10399 15573 43650 6291 28430
b22 5154 14180 2434 10325 15579 43435 6478 28638
p44k 24498 61535 19256 52639 35502 90622 20089 58965
p49k 67709 235737 28640 130813 117958 407267 51740 238434
p77k 397 1044 164 626 2353 6302 804 3458
p80k 2684 6314 1905 4882 2667 6906 1885 5612
p88k 1677 4021 1068 2949 6626 16344 3558 10722
p99k 1900 4342 1441 3448 4243 11151 2114 7015

p141k 26096 78564 20429 76325 71554 227845 46232 188710
p177k 30075 87477 20340 74795 84842 259636 48865 196263
p456k 5124 14709 3029 10797 18131 56148 10297 39318
p462k 3397 9497 2505 8879 17965 50543 12039 44026
p565k 1190 3146 762 2545 4735 14411 3548 12428
p1330k 12928 40243 8497 35403 29111 88025 18493 71920

TABLE III
EXPERIMENTAL RESULTS FOR THE STUCK-AT FAULT MODEL

Traditional BDD-based
Circuit Targets Untest. Ab. Time Ab. Time %Time

b14 22,700 156 0 1:27m 0 1:10m 80%
b15 21,850 727 0 2:48m 0 2:48m 100%
b17 76,493 1,958 0 6:46m 0 6:52m 101%
b18 264,043 2,844 0 14:06m 0 14:08m 100%
b20 45,461 319 0 3:40m 0 2:22m 65%
b21 46,156 378 0 3:25m 0 2:37m 77%
b22 67,540 344 0 4:28m 0 3:12m 72%
p44k 64,105 2,385 0 1:33h 0 1:13h 78%
p49k 142,461 774 4,842 6:43h 790 2:59h 44%
p77k 163,310 9,181 0 0:18m 0 0:17m 94%
p80k 197,834 124 1 8:04m 0 5:49m 72%
p88k 147,742 2,640 0 2:56m 0 2:23m 81%
p99k 162,019 2,141 0 2:02m 0 1:37m 80%

p141k 267,948 13,815 1,273 2:17h 200 1:40h 73%
p177k 268,176 13,840 1,002 2:06h 273 1:38h 78%
p456k 740,660 35,396 182 59:23m 42 33:43m 57%
p462k 673,465 132,249 491 1:37h 250 1:18h 80%
p565k 1,025,273 28,287 0 7:37m 0 6:53m 90%
p1330k 1,510,574 44,299 59 1:13h 56 1:01h 84%

proposed method aims for optimizing the SAT instances such
as redundancy removal which leads to more compact CNFs.
This can be confirmed by the shown results. The average sizes
of the conducted SAT instances are reduced significantly for
all circuits.

Table III provides the experimental results for the stuck-
at fault model. The first three columns contain information
about the circuits, such as circuit name, number of targets,
and number of untestable targets, respectively. The set of
targets contains the number of faults to be considered after
fault collapsing. The number of unclassified faults (column
Ab.) and the required runtime (column Time) are reported
for both approaches. The test pattern generation for a fault
is aborted after 5 million propagations in the SAT solving
process. Furthermore, column %Time shows the percentage
of the runtime needed by the BDD-based approach with
respect to the runtime required by the traditional approach.
The experimental results show a considerable speed-up of the
entire ATPG process for almost all circuits. The number of
unclassified faults is also reduced significantly; see circuit
p49k for example.



TABLE IV
EXPERIMENTAL RESULTS FOR THE TRANSITION FAULT MODEL

Traditional BDD-based
Circuit Targets Untest. Ab. Time Ab. Time %Time

b14 40,068 2,831 273 16:40m 7 10:33m 63%
b15 38,094 5,392 32 16:13m 0 12:37m 78%
b17 133,804 20,272 50 49:23m 4 37:38m 76%
b18 459,360 97,321 386 3:59h 2 2:43h 68%
b20 80,606 5,212 558 36:39m 2 22:27m 61%
b21 82,060 5,410 576 38:47m 2 24:03m 62%
b22 119,810 7,539 831 58:33m 4 35:19m 60%

p44k 109,806 45,139 4,861 8:40h 232 4:55h 57%
p49k 255,326 6,302 — —
p77k 282,728 199,008 0 45:31m 0 21:55m 48%
p80k 311,416 14,293 15 13:21m 4 9:13m 69%
p88k 256,050 22,263 0 33:12m 0 21:47m 66%
p99k 274,376 28,026 0 20:43m 0 14:23m 69%
p141k 361,502 95,275 48,737 39:14h 12,210 18:55h 48%
p177k 410,240 97,867 58,072 45:17h 15,904 22:37h 50%
p456k 1,177,260 165,496 12,333 20:17h 1,032 7:42h 38%
p462k 1,134,924 485,788 1,469 13:24h 1,030 10:41h 80%
p565k 1,524,044 87,213 65 2:59h 0 2:24h 80%

p1330k 2,464,440 237,352 496 11:34h 207 8:48h 76%

Please note that the achieved speed-ups using our proposed
technique base besides the acceleration of the SAT solving
process also on a faster SAT instance generation. We observed
that on average 10% of the runtime reduction are thanks to an
accelerated CNF generation process.

Table IV presents an overview on the experimental results
for the transition fault model. Note that neither of both
approaches was able to finish ATPG for circuit p49k within
the given limit of 72 hours. Again, a significant reduction of
the number of unclassified faults can be observed. Using our
method speeds up the ATPG process for all considered circuit
considerably. The runtime could be decreased for circuit p456k
to only 38% of the traditional approach’s runtime and the
number of unclassified faults was reduced by more than a
factor of eleven. For the circuit p44k, the number of unclassi-
fied fautls has been reduced by more than 95%. As a result,
the application of the proposed technique clearly enhances the
robustness of the ATPG process for large industrial circuits.

VI. CONCLUSIONS

The contribution of this work is a method to accelerate
SAT-based ATPG for industrial designs and strengthen its
robustness. It employs BDDs as a canonical data structure
for Boolean functions in order to remove redundancy. CNF
representations that are derived from BDDs do not contain
this redundancy either. This reduces the resulting problem
instances with respect to the number of clauses and the
amount of CNF variables. Experiments confirm that using
our technique considerably speeds up the ATPG process and
reduces the number of unclassified faults significantly.
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