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Abstract— The influence of crosstalk noise grows as the feature
sizes in modern designs decrease. Crosstalk-induced effects are
able to cause major timing violations, especially if multiple
aggressors affect certain lines. However, conventional Automatic
Test Pattern Generation (ATPG) algorithms for delay test do not
consider these effects during test generation. This increases the
possibility that chips which passed the testing phase might fail
due to crosstalk-induced effects.

In this paper, we propose a new efficient ATPG approach for
generating delay tests considering crosstalk-induced effects using
Boolean Satisfiability (SAT). Previous approaches used a two-step
procedure to increase the crosstalk-induced noise. As a result,
the search space is highly restricted. In contrast, the proposed
approach is able to do test generation and excite multiple
aggressors in one step. By this, more aggressor combinations can
be found and the generated test potentially induce more crosstalk
noise on the victim. In order to maximize the crosstalk-induced
effects of the test, an exact branch-and-bound algorithm and
a static aggressor ordering heuristic are applied and compared.
Experimental results demonstrate the efficiency and effectiveness
of the approach.

I. INTRODUCTION

As the feature sizes continue to scale down, the influence of
crosstalk-induced effects increases. Crosstalk-induced effects
may cause circuit malfunction problems and may be the reason
for timing violations [1]. If two or more lines are physically
adjacent, crosstalk noise from so-called aggressor lines can in-
fluence the behavior on the victim line. The effects can roughly
be categorized into two types: crosstalk-induced glitches and
crosstalk-induced delay. A crosstalk-induced glitch is invoked
when the victim line is in a static state and the aggressor lines
switch. If the victim and the aggressors switch simultaneously,
the delay of the transition on the victim line is influenced.
Switching in the same direction results in a speed-up of the
transition. In contrast, if the aggressors and the victim switch
in the opposite direction, the transition delay of the victim line
increases.

Crosstalk-induced effects can be reduced by, for instance,
redesign techniques [2]. The complete elimination of crosstalk
may not be possible due to stringent area and performance
requirements. Furthermore, process variations are shown to
aggravate these effects [3]. As a result, testing for crosstalk-
induced faults is necessary to ensure the correct circuit opera-
tion. Though, conventional Automatic Test Pattern Algorithms
(ATPG) algorithms do not consider crosstalk-induced effects
during test generation. First approaches that incorporate these
effects, e.g. [4], [5], were focused mostly on single aggressor
scenarios. However, it was reported in [6] that long signal
nets are typically coupled with 40-50 other lines and maximal
crosstalk noise is produced by the simultaneous excitation of
multiple aggressors. Due to logical constraints, it may not be
possible to excite all aggressors at the same time. Therefore,

ATPG approaches dealing with multiple aggressor scenarios
[7]–[12] are mainly focused on determining a subset of ag-
gressors which can be excited simultaneously and produces
maximal crosstalk noise on the victim line.

The approach presented in [7] formulates the problem as
an implication graph and uses a PODEM-based algorithm
to generate the tests. However, the approach produces many
aborts, since the underlying engine is not robust enough. In
[8], the problem of finding the subset of aggressors exciting
maximal crosstalk noise is formulated as an ILP problem.
However, a common test is generated at first to activate the
propagation path. The generated test is then used as constraint
in the ILP formulation. The approach presented in [12] solves
the problem using a structural ATPG algorithm. Again, a
common test is generated at first and given as constraint to
the ATPG tool. Here, a Static Aggressor Ordering (SAO) is
used to heuristically choose a promising aggressor subset.
Furthermore, static timing analysis techniques are used to
prune aggressors whose timing windows do not overlap with
the victim’s timing window. Both approaches have in common,
that they use a two-step procedure. In the first step, a test
pattern is generated which is used as constraint in the second
step. By this, the search space is reduced and the problem is
simplified. However, the subset of aggressors exciting maximal
crosstalk noise may not be found.

The work presented in [13], [14] employs an algorithm
based on Boolean Satisfiability (SAT) wrapped by a Branch-
and-Bound (B&B) algorithm to find the subset of aggressors
exciting maximal crosstalk noise on a victim line. As a result,
false noise can be reduced in order to provide a more accurate
static timing analysis. Since no previously generated test is
given as constraint, this approach is guaranteed to calculate
the subset of aggressors providing maximal crosstalk noise
but without taking test generation into account. The drawback
of this approach is the long run time.

In this paper, we propose an efficient SAT-based test gen-
eration algorithm for delay tests inducing maximal crosstalk
noise on the victim. The new SAT formulation is based on
the SAT formulation introduced in [13] but incorporating test
generation constraints. In contrast to previous test generation
approaches, the approach is able to generate a test and excite
multiple aggressors in one step. By this, the search space
is not restricted and a potentially larger number of logically
valid aggressor combinations can be found. Efficient SAT-
based ATPG techniques are used to handle the increased
complexity. As a result, the amount of induced crosstalk noise
on the victim is significantly increased with acceptable run
time overhead. In order to find the aggressor combination
exciting maximal crosstalk, two different schemes – an exact
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Fig. 1. Example circuit

B&B procedure [13] and an SAO heuristic [12] – are employed
and compared to each other.

The paper is structured as follows. The next section gives a
motivational example introducing the drawbacks of previous
approaches. Section III briefly introduces SAT and presents
the concept of unconstrained aggressor excitation, while Sec-
tion IV introduces different schemes for aggressor selection.
Experimental results are given in Section V and the conclusion
is drawn in Section VI.

II. MOTIVATIONAL EXAMPLE

Consider the example circuit shown in Figure 1. The victim
path in the circuit is path p = (b – f – i – k) with a rising edge
on input b. Three aggressors were previously identified for
p: h, g, j. All aggressors are able to induce crosstalk noise
on line i on p. The aggressor strengths are 3, 10 and 5,
respectively. Assume that the target is to produce maximal
crosstalk-induced delay on the victim.1 Therefore, the maximal
effect is provoked if all aggressors switch in the opposite
directions, i.e. all aggressors have a rising edge. In previous
approaches, a test pattern which sensitizes p is generated at
first. Assume that the generated test is {a = XX, b = 01, c =
X1, d = 11, e = XX} as shown in Figure 1(a). Here, the first
position shows the value in the first time frame, whereas the
second position denotes the value in the second time frame.

In order to maximize the crosstalk-induced delay, the ag-
gressors have to be excited in such a way that the effect
on the victim is maximized. If applying the SAO heuristic
proposed in [12], the aggressors are excited in descending
order of their strength. Since the generated test is taken as
constraint – as done in previous approaches to reduce search
space – it is not possible to excite aggressor g, aggressor j is
already excited and aggressor h can be excited by justifying
the value 01 on line h. This results in a cumulative strength
of 8. However, the aggressor combination inducing maximal
crosstalk delay is missed by taking the generated test into
account. A test inducing maximal crosstalk delay on the victim

1For reasons of simplicity, the descriptions of the techniques are restricted
to crosstalk-induced delay. However, it is easily possible to apply them to
crosstalk-induced speed-up or glitches.
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path is {a = 0X, b = 01, c = X1, d = 01, e = 0X} as shown
in Figure 1(b). Here, aggressor g and h are excited, whereas
aggressor j cannot be excited due to logical correlations. This
results in a cumulative strength of 13 which is more than the
strength of the test given in Figure 1(b).

In the following, it is explained how to efficiently find
the logically valid aggressor combination inducing maximal
crosstalk noise using SAT.

III. SAT FORMULATION: UNCONSTRAINED AGGRESSOR
EXCITATION

In this section, a brief introduction of SAT is given. Fur-
thermore, it is explained how an ATPG problem is formulated
as a SAT problem. Contrary to classical structural ATPG
algorithms, SAT-based ATPG algorithms do not work on the
circuit structure but on a Boolean formula in Conjunctive
Normal Form (CNF).2 A CNF is a conjunction of clauses and
each clause is a disjunction of literals. A literal is a Boolean
variable in its positive or negative form. A CNF is satisfied
if all clauses are satisfied. A clause is satisfied if at least one
of its literals is satisfied. A SAT solver is used to solve the
CNF. For more information about SAT solving techniques, it
is referred to [15].

In order to apply a SAT solver to an ATPG problem, the
problem has to be converted into a CNF ΦTest. Generally,
the SAT instance ΦTest consists of two different parts: the
considered circuit and the fault-specific constraints. However,
it is not necessary to include the complete circuit in ΦTest.
For a specific path delay fault f on path p on output o, only
the transitive fanin cone F(o) of output o has to be included
(demonstrated in Figure 2). Additionally, the constraints for
path sensitization Φf must be considered. As a result, the SAT
instance for generating a test for F is composed by: ΦTest =
ΦF(o) · Φf .

To create the circuit CNF ΦF(o), each connection c ∈
F(o) is associated with a Boolean variable xc and each gate
g ∈ F(o) is converted to a set of clauses Φg: ΦF(o) =∏

g∈F(o) Φg . The CNF Φf contains constraints for path sen-
sitization. For a detailed description about ΦF and for more
information about SAT-based ATPG, it is referred to [16], [17].
If the SAT solver determines that ΦTest is satisfiable, the fault
is testable. The test pattern can directly be extracted from the
solution provided by the SAT solver. If the SAT solver proves
that ΦTest is unsatisfiable, the fault is untestable.

A. Exciting Multiple Aggressors
In previous work, test generation and aggressor excitation

were divided into two steps. In the first step, a test is generated
sensitizing the victim path. Then taking this test as constraint,

2In preliminary studies in the field of ATPG, we also experimented with
a circuit-based SAT solver but did not observe improvements compared to a
CNF-based SAT solver.
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aggressors are excited to enhance the crosstalk-induced effects
of this test. However, the scenario inducing maximal crosstalk
might be missed using this two-step procedure. In this section,
it is described how test generation and aggressor excitation can
be done in parallel using a SAT formulation.

The SAT instance ΦTest has to be augmented if multiple
aggressors are to be guaranteed to be excited simultaneously.
Since a rising or falling edge is needed to excite an aggressor
a, the test generation algorithm has to justify this value ad-
ditional to the fault-specific constraints. This is schematically
depicted in Figure 3. The fanin cone of each aggressor which
is to be excited has to be included in ΦTest. Additionally,
constraints must be formulated to set the desired edges on
the aggressor lines. For an aggressor a, these constraints are
denoted by Φa

F . Therefore, the SAT instance ΦA
Test is built for

a given fault F and a set of aggressors A = {a1, . . . , an} as
follows:

ΦA
Test = ΦTest ·

n∏
i=1

ΦF(ai)︸ ︷︷ ︸
Circuit

·
n∏

i=1

Φai

F︸ ︷︷ ︸
Excitation

Evaluating ΦA
Test yields a test which excites all aggressors

a1, . . . , an or proves that such a test does not exist.
In contrast to the two-step approach described above, both

test generation and aggressor excitation is done in parallel
using only one SAT instance. Since aggressor excitation is
done unconstrained, evaluating ΦA

Test yields a test which
excites all aggressors ai ∈ A or proves that no such test
exists. Using a one-step approach increases complexity of
test generation, i.e. the search space is larger. However, the
experiments show that SAT-based ATPG techniques are able
to deal with the increased complexity in reasonable time.

IV. AGGRESSOR SELECTION SCHEMES

A SAT formulation for unconstrained aggressor excitation
was presented in the last section. Typically, there are many
potential aggressors coupled to a victim path. However, due
to logical correlations, it is very unlikely that all of them can be
excited at the same time. Therefore, an aggressor combination
has to be found which is logically valid and provides maximal
induced crosstalk on the victim path. Checking all possible ag-
gressor combinations is not feasible, since for n aggressors, 2n

possible aggressor combinations exist. Two different aggressor
selection schemes were adopted and evaluated in this work:
an exact Branch-and-Bound (B&B) procedure similar to [13]
and a Static Aggressor Ordering (SAO) heuristic as presented
in [12].
A. Branch-and-Bound

The branch-and-bound algorithm used explores a binary
search tree of aggressors as depicted in Figure 4. Each node
in this tree corresponds to a specific aggressor combination
and each branch denotes whether the corresponding aggressor
is included in the current combination (“in”) or not (“out”).
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Fig. 4. Example branch-and-bound search tree

A complete path through the binary tree corresponds to an
aggressor combination where each aggressor is either “in” or
“out”. The validity of each node has to be checked using the
SAT method described in Section III-A. If the SAT solver
determines that the current aggressor combination cannot be
excited, the branch can be bounded. If a complete path is
found, i.e. an aggressor combination, the result is saved. A
branch can also be bounded if the best possible aggressor
combination has less strength than an already found one. Using
the B&B algorithm, it is guaranteed that the aggressor combi-
nation inducing maximal crosstalk is found. The drawback of
this method is the very large number of SAT instances which
have to be solved.
B. Static Aggressor Ordering

Instead of a B&B procedure, a static aggressor ordering is
used in [12] to overcome the drawback of the large number
of possible aggressor combinations. At first, a test which
sensitizes the victim path is generated. Then, all aggressors
are ordered according to their strength. Each aggressor ai is
excited consecutively taking the generated test into account
(“constrained test generation”). If a test is found which ex-
cites ai, the test is updated. This scheme was adopted for
constrained as well as for unconstrained aggressor excitation.

In contrast to the B&B algorithm, this procedure does
not explore the complete search tree. When one aggressor
ak is found to be able to be excited, this aggressor cannot
be removed anymore. Although if one possible combination
of aggressors exists which does not excite ak, but has a
cumulative strength greater than any combination including
ak, this combination will not be found.

V. EXPERIMENTAL RESULTS

The experimental results are presented in this section. The
proposed approach was implemented in C++. All experiments
were conducted on an AMD Athlon64 X2 6000+ (4,096MB,
3GHz, GNU/Linux). The approach was tested on publicly
available benchmark circuits from the ISCAS’85, ISCAS’89
and ITC’99 benchmark suite. The underlying SAT-based
ATPG engine was DynamicSAT [18]. All experiments were
performed using the launch-on-capture scheme. The longest
1,000 non-robustly testable paths were extracted and chosen as
victim paths. The aggressors and their strength were selected
randomly as done in [8], [12]. Table I shows the experimental
results of the test generation procedure. In order to show the
efficiency of the approach, column Single presents the results
of the unconstrained test generation with a single aggressor
line. Here, each victim path is coupled with only one aggressor
line. Column Agg shows how many of these paths are still
testable with this aggressor excited. Column Time presents the



TABLE I
EXPERIMENTAL RESULTS

Constrained Unconstrained
Single Static ordering B&B Static ordering B&B

Circ Agg Time #Agg Str. Time #Agg Str. Time #Agg Str. Time #Agg Str. Time
c1908 72% 0.6 12 1.0x 12.9 21 1.65x 178.4 41 3.27x 30.3 41 3.28x 309.6
c3540 63% 0.6 11 1.0x 33.4 16 1.48x 561.1 34 3.13x 73.1 35 3.23x 857.3
c5315 93% 0.2 68 1.0x 73.1 68 1.00x 312.5 69 1.02x 76.0 69 1.03x 318.6
c7552 92% 0.3 71 1.0x 133.4 71 1.01x 497.6 72 1.01x 134.8 71 1.01x 502.2
s13207 76% 1.2 4 1.0x 39.0 4 1.21x 1,309.2 69 15.39x 215.8 68 15.39x 935.4
s15850 84% 1.6 12 1.0x 59.5 62 4.76x 658.9 70 5.44x 212.1 69 5.44x 942.5
s35932 91% 0.3 84 1.0x 217.1 83 1.00x 443.7 85 1.01x 220.9 84 1.01x 442.0
s38417 98% 1.5 77 1.0x 458.5 82 1.06x 1,177.4 84 1.09x 514.5 83 1.09x 1,187.0
s38584 92% 2.6 64 1.0x 278.5 65 1.03x 1,405.7 75 1.17x 342.6 74 1.18x 1,354.5

b15 69% 10.7 4 1.0x 137.8 37 8.01x 3,990.5 51 11.39x 834.2 51 11.39x 5,918.8
b17 64% 8.5 66 1.0x 5,537.7 66 1.01x 28,126.5 66 1.02x 5,526,0 69 1.05x 27,645.2
b20 87% 14.4 34 1.0x 1,882,0 37 1.09x 8,814.6 78 2.30x 5,070.8 78 2.30x 14,946.4
b21 85% 15.6 4 1.0x 249.4 12 2.54x 4,389.8 75 15.61x 5,059.1 74 15.64x 17,259.6
b22 90% 13.3 13 1.0x 817.2 31 2.33x 6,047.4 83 6.31x 5,463.6 82 6.32x 12,884.0
av. 83% – 37 1.0x 1.0x 47 2.08x 11.2x 68 4.94x 4.0x 68 4.95x 17.7x

run time in CPU seconds. Even for large benchmark circuits,
our approach needs only a few seconds.

Column Constrained presents the results for the constrained
test generation. Here, 100 potential aggressors were selected
and the task was to find the aggressor combination inducing
maximal crosstalk. The results for the SAO heuristic are given
in column Static ordering, whereas the results for the B&B
procedure are presented in column B&B. Column #Agg reports
the average number of aggressors that could be excited for one
victim path. The average strength of the aggressor combination
inducing maximal crosstalk is given in column Str.. The
strength is given in relation to the results of the constrained
test generation with SAO to highlight the improvement of
the proposed approach. First, the results of the constrained
test generation are discussed. As expected, tests found by the
SAO heuristic have less aggressor strength than tests found by
the B&B algorithm. The average factor of aggressor strength
increase is 2. However, the drawback of the branch-and-bound
approach is the long run time which is increased on average
by a factor of 11.

The results for the proposed unconstrained test generation
are presented in column Unconstrained. The unconstrained
approach is able to excite significant more aggressors than
the constrained approach. The average aggressor strength is
increased by a factor of 4.94 and 4.95, respectively. The
aggressor strength of the SAO heuristic is even greater than
the strength of the constrained B&B approach. The difference
in aggressor strength between unconstrained SAO heuristic
and unconstrained B&B algorithm is very small. However,
the run time increase of the B&B algorithm is about a
factor of 17, whereas the run time of the SAO heuristic
increases only by a factor of 4. Therefore, unconstrained test
generation using the SAO heuristic yields the best trade-off
between increasing crosstalk-induced noise and run time of
all evaluated configurations.

VI. CONCLUSION

Previous approaches for test generation with induced
crosstalk noise suffer from the fact that they increase the
crosstalk noise of a previously generated test. This “con-
strained” procedure restricts the search space and typically
avoids that the test with maximal induced crosstalk noise is
found. In this paper, we presented an “unconstrained” proce-
dure which generates a test and excites multiple aggressors in
one step. By this, the complete search space is traversed and a
solution is guaranteed to be found, if existent. Efficient SAT-
based ATPG techniques are used to generate tests exciting

multiple aggressors. Two different schemes for finding the
aggressor combination with maximal induced crosstalk are
evaluated: a static aggressor ordering heuristic and an exact
branch-and-bound algorithm. The unconstrained test genera-
tion is shown to induce significantly more crosstalk noise than
the constrained approach with acceptable run time overhead.
Future work is the integration of static timing analysis tech-
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