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ABSTRACT
Complex Systems on Chip are developed by large design
teams integrating various different blocks. Typically, no sin-
gle person in the design team understands all details of such
a design. Integrating new designers into the team as well as
debugging failures or performance problems becomes a time-
consuming cost-generating threat to the overall project.

We envision tool support for these critical steps. The
paths of information flow are automatically extracted and
explanations for certain behavior are derived by reasoning
engines. Then, the designer interactively explores the design
within this environment.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Design, Productivity

1. INTRODUCTION
Complex Systems on Chip can only be created by large de-

sign teams. These teams assemble third party blocks, com-
munication blocks, newly designed sophisticated blocks for
application specific operations, and customized module in-
terfaces. Consequently, no single person in the team knows
all details about the entire design. In this situation tool
support is required not only for complex computation inten-
sive tasks like synthesis or routing, but also for work that
typically needs human intuition and interaction.

Recent examples for such tool support have been pro-
posed, e.g., for debugging or verification. For debugging
in-field failures, data is gathered and potential reasons for
the failure are pinpointed [5]. In design debugging, failing
traces are explained to the designer by relating the failure
to very similar passing traces [4]. If formal verification suc-
ceeds, the partial specifications in terms of formal properties
may be hard to understand. These partial specifications are
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therefore lifted to higher level specifications that capture the
design intent [1, 7]. Finally, a formal specification may not
be available. But even from simulation traces properties [6]
or transaction level descriptions [3] are semi-automatically
extracted. All of these approaches provide innovative solu-
tions to speed up tasks that otherwise require time consum-
ing manual interaction. The designer still has to be in the
loop as human intuition and creativity cannot be replaced
in the design flow.

We propose to go a step further with such tool support.
Orchestrated Multi-level Information flow analysis (OMI1)
familiarizes a designer with a complex SoC and supports
her in debugging failures. Paths of information flow are au-
tomatically extracted and explanations for the activation of
certain paths are given on demand. For this purpose analysis
techniques from testbench creation, formal verification, or
compiler construction are orchestrated. The analysis takes
multiple design levels from a global component view down
to module descriptions in Hardware Description Language
(HDL) into account. Descriptions on architectural or trans-
action level can be utilized as additional data sources. The
designer sees one path of information flow on the component
level at the beginning that was extracted from a testbench.
Starting at this view she interactively navigates along this
path where she may decent into the design to understand
interfaces or branching conditions on a detailed level. Al-
ternatively, the designer may ask OMI whether some path
from one module to another exists. OMI explains how to
activate such a path.

2. ORCHESTRATED MULTI-LEVEL
INFORMATION FLOW ANALYSIS

OMI relies on various analysis techniques whose results
are integrated into an abstract view of the SoC design. Fig-
ure 1 shows an overview of the framework. The envisioned
analysis components of OMI are described in the following.
The interactive navigation is considered afterwards.

2.1 Structural and Functional Paths
The simplest analysis step is the extraction of structural

paths on the component level. These paths are extracted
from the global interconnect structure of the system, e.g.,
buses, buffered communication via dedicated memory, and
specialized point-to-point connections. Due to their large
number, structural paths are not explicitly represented, but
represented as an abstracted communication graph where
each communication device – sender, recipient, or channel
– is represented as a node. Edges between nodes denote
communication lines.

1“Omi” is a German word for “granny”.
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Figure 1: Overview of OMI

On the module level control flow and data flow are ex-
tracted by standard techniques known from compiler con-
struction. This information is extracted on demand for each
module that becomes relevant during the interactive explo-
ration.

2.2 Relevant Paths
The communication graph represents possible paths of in-

formation flow. Only a small subset of these paths will be
active in the SoC. Relevant paths of information flow are
extracted from the running system. Tagged simulation is
used for this purpose. Tags are added to data packets en-
tering the system, these tags are carried through the system
to follow the flow of information for the stimuli generated
by the testbench. Note, that tagged simulation does not
require descriptions of all components on the HDL level.
Tagged simulation can be performed on any representation
of the system that can be simulated and represents data
accurately.

The result of tagged simulation is an overall picture of the
information flow on a global component level and also on
the module level (see the red arrows in Figure 1). This pic-
ture of the information flow is necessarily incomplete as the
number of possible communication paths increases exponen-
tially with the number of modules if powerful communica-
tion switches or bus structure are available. But commonly
used paths for information flow in the system become visi-
ble. Also statistical knowledge is generated showing which
paths are used most, which paths are only used at start-
up etc. All this information is gathered before the designer
starts to work with OMI.

2.3 Explanations
While seeing the paths of information flow already helps to

understand the typical communication within the SoC, fur-
ther information is required to understand why these paths
are taken. For this purpose reasoning engines as applied in
formal verification derive explanations for certain aspects of
the system behavior. An explanation is defined as the min-
imal set of assignments that are required for a certain event
to occur. Such a set of assignments may not be unique, but
with respect to the assignments that occurred during tagged
simulation, relevant candidate sets are extracted. Moreover,
the traces seen during tagged simulation reduce the search
space for the formal methods. As a result explanations can
be calculated on-demand where needed by the designer. The

explanations can only be derived from descriptions acces-
sible to the reasoning engines. This holds, e.g., for HDL
source, but also for parts of transaction level descriptions
and other higher level descriptions. The following questions
provide a few examples where explanations provide an an-
swer:

• Why is data transferred from Module H to Module I
(see dotted arrow in Figure 1)?

• Why is a certain control path activated in a module?
• What are the conditions to activate a communication

interface?

2.4 Interactive Exploration
A designer hardly understands an SoC after being con-

fronted with the above information in a static manner. Also
when debugging failures, explanations are required at very
specific spots within the design, new questions arise and have
to be answered. Therefore OMI will be used interactively.

To get a first insight into the SoC the designer may se-
lect a certain path of information flow and then surf along
this path through the design. Questions can be asked in-
teractively, the above procedure provides explanations, e.g.
by way of logic queries [2]. Alternatively, when debugging,
the designer may choose an arbitrary point for starting the
navigation and then trace backwards along the information
flow to understand, e.g., that modules have been assembled
in an unspecified way.

While navigating through the design, component level
views, structural views on module level, and source views
are linked. Zooming within the hierarchy is supported and
the paths of information are visible in all views.

3. EXPECTED IMPACT
Not only new designers entering the team, but also those

designing a proprietary block may use OMI to understand
under which conditions their block operates. By this, the de-
signer immediately answers these questions herself without
waiting for a team meeting and without interrupting other
team members. Also for debugging failures the explanatory
features of OMI support a designer in debugging even parts
of the SoC she is not familiar with.

As a consequence, OMI increases design productivity.
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