
TLM Protocol Compliance Checking
at the Electronic System Level∗

Mohamed Bawadekji Daniel Große Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{bawadekji,grosse,drechsle}@informatik.uni-bremen.de

Abstract—Design and verification of embedded systems at
the Electronic System Level (ESL) is common practice. In
particular, Transaction Level Modeling (TLM) is the major
reason for the success of ESL design. However, when detailed
protocols are modeled at lower levels of TLM, the verification
of the communication becomes a critical issue. In this paper, we
present an approach for protocol compliance checking of new
or detailed protocol implementations. They are checked against
user-specified protocol sequences. We also analyze the protocol
coverage achieved by the testbench and visualize the results on a
protocol sequence graph. Experimental results for a SoC model
demonstrate the advantages of our method.

I. INTRODUCTION

SystemC has become an integrating language for the design
and verification of embedded systems. In this Electronic
System Level (ESL) design context the major advantages
of SystemC are the development of hardware and software,
the support of different levels of abstraction by Transaction
Level Modeling (TLM) [1], the modeling of heterogeneous
systems (containing digital, analog and RF) [2], [3], and the
IP integration based on standardized TLM protocols [4].

Looking at a typical (idealized) ESL top-down flow, in the
first step the specification is formalized into an algorithmic
design. Here, the focus is on pure functionality of the sys-
tem. Then, the refinement process starts removing degrees
of freedom while making architectural decisions. For this
task, TLM models in SystemC are created enabling various
levels of timing accuracy and simulation speed. For example,
loosely-timed TLM models aim early software development
since they provide very fast hardware models. Approximately-
timed models give more accurate timing and are used for
architectural analysis and performance evaluation. Continuing
the refinement, cycle-accurate (but not pin-accurate as in
RTL) TLM models are built facilitating precise evaluation of
the communication architecture at the expense of simulation
speed. Finally, these TLM models are refined to RTL.

A key reason for the success of TLM in ESL design is
the straightforward integration of IP. The interoperability is
provided by the OSCI TLM-2.0 standard [5] enabling commu-
nication of models from different sources off-the-shelf, that is
without any modification of the models. The main ingredients
of the TLM-2.0 standard for modeling communication are
the generic payload, the base protocol and the core-interfaces
(e.g. b transport and nb transport fw, bw). In addition, the
usage of standard interfaces and well-defined coding styles
offer the capability to abstract or refine a communication
protocol. When refining the communication – for example to
verify scheduling polices or communication priorities – the
lifetime of a transaction is extended. This is done by defining
new TLM protocol phases which describe the communication

∗This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 01M3088.

protocol in more detail. However, this procedure increases
the complexity of the protocols. Moreover, the more detailed
TLM models serve as reference models for RTL and the
decisions resulting from the analysis approaches need reliable
descriptions.

In this paper we propose the first approach for protocol com-
pliance checking of SystemC TLM models communicating
with new or detailed protocol implementations. From compact
user specifications of protocol sequences a graph represen-
tation is built. During simulation this graph is traversed to
check the correct protocol phase transitions as well as the TLM
responses. If they differ from the specification, this violation
and the executed transaction path is reported to the user.
Furthermore, a protocol coverage analysis has been developed
to identify unverified sequences automatically. This allows to
improve the quality of the testbench and to find more bugs.

Overall, we summarize the contributions of this paper as
follows:

• User-friendly protocol sequence specification
The TLM protocol sequences are specified with a very
intuitive C++ interface.

• Irredundant protocol sequence graph generation
Efficient algorithms have been developed which merge
identical protocol sequences resulting in a graph repre-
sentation which contains no redundant nodes.

• Protocol compliance checking and coverage
The TLM communication is checked against the user-
specified protocol sequences. In addition, uncovered pro-
tocol sequences are identified automatically.

• Protocol graph and result visualization
A graphical representation of the protocol graph is gener-
ated showing the TLM protocol phases and responses. In
addition, the unexecuted protocol sequences are marked
on the graph.

We present experimental results for a TLM SoC model
demonstrating the advantages of our approach.

The rest of this paper is structured as follows: Related work
is discussed in Section II. Section III describes the prelim-
inaries. The proposed approach is introduced in Section IV.
Section V gives the experimental evaluation. Finally, the paper
is concluded in the last section.

II. RELATED WORK

For designs modeled at lower levels of abstraction, that is
RTL and below, several approaches for protocol compliance
verification have been proposed. For example, in [6] properties
are represented in a HDL and checked during simulation. The
generation has also been automated in [7]. In contrast, formal
methods have been used to prove the protocol correctness in
a mathematical sense [8], [9], [10]. But all these approaches
can not be applied at TLM.

Recently, also approaches for assertion-based verification at
TLM have been introduced, see for example [11], [12]. On

the one hand these approaches require complex specification
languages to describe TLM behavior. On the other hand the
support for TLM-2.0 is limited. In contrast, our approach
offers a very intuitive and compact way for describing protocol
sequences. This results in particular from the developed C++-
interface provided for specification.

To the best of our knowledge, only one method has been
developed for the task of SystemC TLM protocol verification:
the checker from Doulos [13]. However, the method can only
be used for checking the TLM-2.0 base protocol. Our approach
aims to support the designer when modeling new protocols or
refining the current implementation (beyond the TLM base
protocol), i.e. additional TLM phases are included.

III. PRELIMINARIES

In this section we provide the preliminary terms needed
to describe our approach1. Typically, the communication be-
tween SystemC TLM modules is performed through channel’s
interfaces and via ports/exports of the modules. To increase
the interoperability between IP modules, the communication
between SystemC TLM modules has been standardized by
the Open SystemC Initiative (OSCI) by providing generic API
interfaces. The current version of the TLM-2.0 standard [5]
defines two types of transport interfaces, namely the blocking
and non-blocking transport interface.

The blocking transport interface is defined such that the
lifetime of each transaction is restricted to only two timing
points, corresponding to the call to and return from the
b transport method. The blocking transport is generally used
for modeling a hardware design at high level of abstraction
without considering implementation details. By this a so-
called loosely-timed model is provided which is used for early
software development.

The non-blocking transport interface allows the lifetime of a
transaction to be extended to multiple protocol-specific phases.
Therefore, multiple function calls are required to execute a full
transaction. Two non-blocking transport methods are defined:
nb transport fw for forward path and nb transport bw for
backward path (see also Fig. 1). Both method calls are
performed via corresponding sockets. An initiator (respectively
target) socket contains a port for interface method calls on the
forward (respectively target) path and an export for interface
method calls on the backward (respectively forward) path.
The non-blocking transport is used when exploring new TLM
communication protocols with different degrees of accuracy as
well as when promising design alternatives are further refined
to the so-called approximately-timed model.

In addition, TLM-2.0 introduced a standard transaction pay-
load considering a set of private attributes such as command,
address, data and response status. It supports also the extension
of the generic payload by providing the extension mechanism.

A non-blocking method returns a value from the set
{TLM ACCEPTED ,TLM UPDATED ,TLM COMPLETED} to
indicate whether the transaction object has been updated by
making a phase transition. If the callee accepted the call,
both, the transaction and the phase should remain unchanged.
Finally, the completion of the transaction can be explicitly
indicated by returning TLM COMPLETED.

IV. TLM PROTOCOL COMPLIANCE CHECKING

In this section the proposed approach is presented. At first,
the general idea and the overall flow are given. Then, the

1Due to space limitation we refer the reader for a general introduction into
SystemC and TLM to [14], [15].

Fig. 1. OSCI TLM-2.0 connectivity between initiator and target

Integration
and checker
instantiation

SystemC design
with detailed

TLM protocols

Specification
of protocol
sequences

Protocol sequence
graph generation

SystemC
Simulation start

Protocol
compliant
sequence?

Simulation
finished?

Pending
transaction

left?

Report error

PSG
Coverage analysis

false

no

yes

yesno

Fig. 2. Overall flow for protocol compliance checking

specification mechanism for protocol sequences is introduced.
Next, the algorithms for protocol graph generation, protocol
compliance checking and the protocol sequence coverage are
described.

A. General Idea and Overall Flow
When the design team begins to create TLM models for

architectural analysis and performance evaluation, the com-
munication of the actual models needs to be refined. More
precisely, instead of only relying on the TLM base proto-
col for communication the non-blocking interfaces are used
and new timing points are added by introducing additional
TLM phases. Obviously, the complexity of the correspond-
ing protocol implementation increases. Hence, ensuring the
functional correctness becomes more difficult. Since TLM-2.0
provides only the modeling features we propose an approach
for automatically checking the protocol compliance of the
implementation against user-specified protocol sequences.

The overall flow of our approach is depicted in Fig. 2. At
first, the user specifies the legal TLM protocol sequences via
a very intuitive C++-interface and by this also integrates the
specification with the SystemC TLM design. This results in
carrying out the generation of the protocol sequence graph
representing all specified protocol sequences. Moreover, the
protocol checker as well as the system modules have to be

instantiated. Now, after starting the simulation of the system,
each TLM transaction is checked to behave according to the
specification. If a concrete check during the lifetime of the
transaction fails, e.g. an incorrect phase transition is performed
or the TLM return value is invalid, this error is directly
reported to the user. Otherwise, all sequences have finished
as intended or it is possible that a transaction has not reached
the final state (indicated as pending results by our checker
algorithm). In the latter case an error is reported. In the former
case a coverage analysis is performed by our approach to
determine unverified protocol sequences.

In the following, all these steps and the respective algo-
rithms are described in detail.

B. Protocol Sequence Specification and Checker Instantiation

For specifying a TLM protocol sequence we use the fol-
lowing grammar:

S ::= S · S | Line
Line ::= { phase , {retV } }

where phase is an element of the set of all TLM
phases defined for the user-specified protocol at SystemC
TLM level and retV is a list of possible TLM return-
values for the current phase, i.e. retV can contain at most
TLM ACCEPTED ,TLM UPDATED , and TLM COMPLETED.
This allows to describe valid TLM phase transitions and
possible TLM return values which are described line by line.
Note that the protocol sequences can be passed to the checker
interface either individually by calling the checker interface
several times (where a protocol sequence describes a single
protocol path only) or in a combined manner (where a protocol
sequence defines several protocol paths).

Consequently, we decided that the user specifies the protocol
sequences via a C++-interface. Therefore, we used the new
C++0X standard draft [16] which is supported already by
the GNU compiler since version 4.4.0 for implementing the
interface. This allows us to directly map protocol sequences to
a variadic function, i.e. one which accepts a variable number
of arguments. We give a concrete example where our checker
has been instantiated at top-level before:

Example 1: An example protocol sequence for an initiator-
target communication using the developed C++-interface is
shown in Fig. 3 and 4, respectively. In both figures at first,
in Line 2 a unique number (ID) for the current protocol
sequence has to be defined. The concrete sequence is defined
from Line 4 to Line 10. The protocol sequence in Fig. 3
defines a single protocol path only since the return value list
in each line contains at most one element. In contrast, the
protocol sequence of Fig. 4 shows how to specify several
protocol paths, namely eight paths, very compact. Basically,
each possible return value is a predecessor node for the
following phase. However, according to the TLM-2.0 standard
if the callee returns TLM UPDATED as result from a forward
call, the callee directly sets a new phase in the transaction.
Hence, no backward call from the callee is necessary which
has to be accepted by the initiating caller. Therefore, in
this case a written TLM ACCEPTED in the next line of the
protocol sequence is ignored (see e.g. Line 5 in Fig. 4). In
typical bus communication this corresponds to cases where
the callee is a bus which can either directly grant the bus
(corresponding to returning TLM UPDATED) or recognizing the
request and handling it later actively (corresponding to return-
ing TLM ACCEPTED and making an own call later which has to
be accepted).

1 Top.checker->set_protocol_sequence(
2 0,
3 {
4 { { BUS_REQ } , { TLM_UPDATED } },
5 { { GRANT_BUS } },
6 { { BEGIN_REQ } , { TLM_ACCEPTED } },
7 { { END_REQ } , { TLM_ACCEPTED } },
8 { { BEGIN_DATA } , { TLM_UPDATED } },
9 { { END_DATA } },

10 { { UNGRANT_BUS} , { TLM_COMPLETED} }
11 }
12);

Fig. 3. Example for describing a single protocol sequence

1 Top.checker->set_protocol_sequence(
2 0,
3 {
4 { { BUS_REQ } , { TLM_ACCEPTED, TLM_UPDATED } },
5 { { GRANT_BUS } , { TLM_ACCEPTED } },
6 { { BEGIN_REQ } , { TLM_ACCEPTED, TLM_UPDATED } },
7 { { END_REQ } } , { TLM_ACCEPTED } },
8 { { BEGIN_DATA } , { TLM_ACCEPTED, TLM_UPDATED } },
9 { { END_DATA } , { TLM_ACCEPTED } },

10 { { UNGRANT_BUS} , { TLM_COMPLETED } }
11 }
12);

Fig. 4. Example for describing several protocol sequences

Before we can show the (optimized) graphical representa-
tion, the graph build from all protocol sequences as basic data
structure for protocol compliance checking is introduced in
the following.

C. Protocol Sequence Graph Generation

The Protocol Sequence Graph (PSG) represents all specified
protocol sequences. Formally, a PSG is defined as follows:

Definition 1: A PSG is a rooted, directed graph
G = (V,E), where the vertex set V contains three
types of vertices: A phase-vertex has the name of a
TLM phase as attribute while a return-value-vertex
holds the name of one of the three possible TLM
return values {TLM ACCEPTED ,TLM UPDATED ,

TLM COMPLETED}. The third type of vertices are nodes to
represent the root of the PSG (termed start vertex S ∈ V) as
well as the terminal of the PSG (final vertex F ∈ V). The
edges define the dependencies between the TLM phases and
TLM return-values.

Since we are interested in a compact representation of the
PSG for the user-specified protocol sequences, we build the
PSG such that no redundant successor vertices (or subgraphs)
are created. For this task we have developed Algorithm 1.

The basic idea of the algorithm is to add each protocol
sequence to the initially empty PSG G. Therefore, the current
protocol sequence PS is processed top-down line by line while
using two global maps to avoid the creation of redundant
vertices (Line 17 - Line 32). We have specified the auxiliary
function create or lookup+ (Line 1 - Line 12) to make the
core of the algorithm easier to follow. The key value used
there for hashing is a tuple containing two elements: The
first element describes either the name of a phase or the
name of a return value read in the currently processed Line
of the protocol sequence. The second element stores a list
of predecessor vertices Vpreds specified by evaluating the
previous Line of the current protocol sequence (Line 24, 30,
32). If no entry for the key exists in the map, a new vertex for
the appropriate phase or return value is created and connected
to all its predecessors (stored in Vpreds; Line 8). Finally, the

Algorithm 1: Build protocol sequence graph
Input: TLM protocol sequence PS
Output: Add PS to PSG G
// Vpreds is a list of vertices1
create or lookup+((name, Vpreds), map)2
begin3

if (name, Vpreds) ∈ keys(map) then4
v =map[(name, Vpreds)];5

else6
V = V ∪ {v};7
foreach w ∈ Vpreds do8

E = E ∪ {(w, v)};9

map[(name, Vpreds)]=v;10

return(v);11
end12

13
foreach (phi, RetVi) ∈ PS from first to last do14

if TLM UPDATED ∈ RetVi and |RetVi| ≥ 2 then15
RetUP+ = RetUP+ ∪ phi+1;16

vretv = vph = S;17
foreach (ph, RetV) ∈ PS from first to last do18

if phpreds == ∅ then phpreds = {vph} ;19
vph=create or look up+((ph, phpreds), map);20
phpreds = ∅ ;21
if ph ∈ RetUP+ then22

vphSec=create or lookup+((ph, {phuppred}), map up);23
phpreds = {vphSec} ;24

phuppred = ∅ ;25
if RetV 6= ∅ then26

foreach retv ∈ RetV do27
vretv= create or lookup+((retv, {vph}), map) ;28
if retv == TLM UPDATED then29

phuppred = {vretv} ;30
else31

phpreds = phpreds ∪ {vretv} ;32

key value is inserted and initialized with the new created
vertex.

To distinguish between several protocol sequence paths
described in a single function call to the checker interface,
specific phases have to identified depending on the return
values to create two vertices for the same phase during adding
the PS (see Line 22 - Line 24). This is the case if the size
of the return value list RetV in the processed Line is at least
two and contains the return value TLM UPDATED (Line 14
- Line 16), then the following phase has to be inserted to
RetUP+. The vertices representing the return values of the
current protocol sequence Line are created from Line 26
- Line 32. Since the proposed algorithm avoids creating
redundant vertices until the names of two vertices differ, we
additionally employ an optimization step (not shown) in which
all remaining redundant paths are identified and merged in
bottom-up manner. This will increase the efficiency of the
protocol compliance checking algorithm during the simulation.

D. Protocol Compliance Checking
In this section, we introduce the Protocol Compliance

(PC) checking mechanism of our approach. Basically, when a
transaction is started we have to traverse the PSG from the root
and proceed according to current status of the transaction. If
the transaction behaves according to the protocol specification
we finally reach the terminal vertex of the PSG while always
performing valid TLM phase transitions and obtaining legal
TLM responses, respectively.

Algorithm 2: Protocol sequence compliance checking
Input: transaction trans, name of phase or return value name,

PSG G
Output: complete, violate or pending stating compliant

transaction, failure or no violation so far
check transaction(trans, name, G)1
begin2

P = mapt[trans].P ;3
name matched = false ;4
(v0, v1, . . . , vk) = P ;5
foreach (vk, vsucc) ∈ E do6

if name(vsucc) == name then7
P .add(vsucc) ;8
name matched = true ;9
break;10

if name matched == true then11
mapt[trans].P = P ;12
(v0, v1, . . . , vl) = P ;13
if vl == F then14

mark path as visited(P);15
status = complete;16

else17
status = pending ;18

else19
status = violate;20

mapt[trans].status = status;21
return status;22

end23

When simulating the TLM design a transaction is observed
with monitors between the TLM modules. The monitors are
inserted during binding and provide the current transaction
to the centralized PC checker. By doing this, the PC checker
can analyze the current transaction before forwarding the non-
blocking transport call to the destination module and also
before the backward function is executed (see also Fig. 1).
To distinguish between different transactions we use a map
hashing the address of the transaction (denoted later mapt).
This address remains the same during the lifetime of a
transaction while updating the transaction elements and the
related phase. The associated hash values for a transaction
consists of:

• status: The result when checking the current transaction.
The status can be complete if the transaction conforms
to the protocol which means that for the transaction a
protocol path from the root to the terminal has been
successfully traversed. In case of pending the final result
can not be decided yet. The last value is violate , i.e. a
protocol violation has just been detected.

• P : This is the path (list of vertices) already traversed for
the current transaction.

The main part for protocol compliance checking is shown
in Algorithm 2. When the PC checker is called for the
first time for a transaction, the path P for this transaction
is initialized to the start vertex of the PSG (not shown in
the algorithm). Now, during simulation check transaction is
called by the PC checker whenever a new phase transaction
or TLM response should be carried out. Thereby, the name of
the new phase or return value is passed as argument name .
The algorithm checks whether the end vertex of the already
traversed transaction path P has a successor matching to name
(see Line 7). If this is the case, the path is extended by
this vertex (Line 8). If this new vertex is the terminal vertex
(Line 14), the current transaction is protocol compliant and
the status becomes complete. In addition, we mark the path

P of the compliant transaction as visited during simulation for
the coverage analysis later. Otherwise, the result can not be
determined yet and the status is set to pending (Line 18). If
no matching successor vertex could be found (illegal phase
transition or illegal return value with respect to the user-
specified protocol sequences), the status is set to violate
(Line 20). Finally, the status of the current transaction is
updated in the hash table.

At the end of the simulation we also check whether there
is any pending transaction left which is also reported as error.

Note that a complex TLM design consists typically of
multiple interconnects and hence a transaction is transported
through several TLM modules via successive calls to the
non-blocking transport methods. In this case, if the protocol
compliance checker is used as a central module for verifying
the entire protocol specification, the same transaction phase
or return value would be verified against the PSG each time
a successive call to the non-blocking transport interfaces is
made. This would lead to a protocol violation, since the PSG is
constructed depending on the phase transitions of the specified
protocol and not according to the components which basically
forward the transaction. To overcome this problem, we call
Algorithm 2 only once at the beginning of the successive call
sequence, but store the phase and the return value. This allows
us to check if a protocol violation occurs if the transaction is
not passed correctly to the destination.

E. Protocol Sequence Coverage
Before detailed protocol implementations can be further

refined to lower levels and finally to RTL it is very important to
thoroughly verify the communication. Hence, the effectiveness
of the test generation needs to be guaranteed.

Thus, we analyze the protocol sequence coverage using
the PSG to detect protocol sequences that have never been
executed during the simulation. This points the design team to
either a weakness of the test generator or to incorrect behavior
of the TLM model with respect to the protocol specification.

In order to identify uncovered protocol sequences on the
PSG, we firstly have to check for each particular vertex how
many times the outgoing edges had been traversed from each
of its incoming edges during the simulation. For this purpose,
we assign to each in- and outgoing edge several counters
such that each counter uniquely defines for an outgoing edge
which incoming edge has been traversed during simulation.
Once a given transaction successfully reache the final node
and describes a particular path, the appropriate counters of all
related edges will be incremented. This step is performed by
calling the function shown in Algorithm 2, Line 15.

After the simulation has finished, the PSG is traversed using
a depth-first search algorithm. For each visited vertex, all
counters of any associated outgoing edge are automatically
computed and compared against the counters of the incoming
edges. In this way, any uncovered protocol sequence as well
as all sequences which are not completely traversed can be
found. Furthermore, an outgoing edge will be marked in PSG
if all associated counters of this edge are zero. Finally, the
graphical representation of PSG is generated to visualize the
uncovered protocol paths.

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
proposed approach. At first the SoC model used for evaluation
is described. Then, the results obtained by our approach are
presented.

Fig. 5. SoC model

A. Model Description
The proposed protocol compliance checking approach has

been applied during the design of a SoC model running a bus
protocol based on AMBA AHB specification [17]. The compo-
nents have been implemented at high level of abstraction using
the OSCI TLM-2.0 approximately-timed coding style. The
SoC model consists of a bus-arbitration module and 8 masters
generating the required test traffic and 5 slaves representing
SRAM and ROM memories with different response time (see
Fig. 5). The target architecture is configurable and allows
several parameters such as the number of processing units,
delay times and memory parameters to be configured for each
simulation run.

The data transfer for read or write access is executed in the
SoC model as a single transfer (also termed single burst in the
AHB terminology). Therefore, a master has to request access
to the bus each time it wants to exchange data with other mod-
ules. In addition, the communication delays for transactions
and bus arbitration policy as well as the computation times
have been modeled. To ensure synchronization between the
involved masters, we use the round-robin arbitration policy to
control the access on the bus. In the following we describe the
protocol sequences using the TLM phases of the implemented
parts of the AMBA AHB protocol:

• Each master requests access to the bus with the phase
BUS REQ resulting in a query of the arbiter.

• If the bus is not busy, it assigns the appropriate master
access with the phase GRANT BUS.

• When a master gets access to the bus, it starts requesting
the target slave with the phase BEGIN REQ through the bus.
At this point, all required information like address, byte
length and access type can be set in the given transaction.
The target slave sets the phase to END REQ if it is ready
to handle the master request.

• For write transfer the master sends the data through the
phase BEGIN DATA, for read transfer the slave answers
with the phase BEGIN RESP. The completion of the transfer
is notified through the phase END DATA or END RESP,
respectively. In these cases, the master cannot access
the bus anymore which is communicated by the phase
UNGRANT BUS.

These protocol sequences have been realized in TLM-2.0 and
hence a complex protocol implementation results; it handles
the different protocol states in the respective components
according to the TLM return values. Note, that a phase
transition can only take place if the return-value of the non-

blocking transport is TLM UPDATED. Otherwise, a TLM module
has to return the value TLM ACCEPTED if it doesn’t change any
of the transaction parameters or if the data transfer can not be
finished now. When returning TLM COMPLETED, the lifetime of
the current transaction has to be terminated by the initiator.

B. Results

In the elaboration phase, i.e. just before the simulation
starts, all modules are instantiated and bound according to the
configuration (given by a configuration file). Moreover, the
PSG is build for the specified protocol sequences. By running
the simulation, the protocol compliance checker indicated a
protocol violation and aborted the simulation immediately.
By analyzing the reported error it was clear that the SRAM
updated the phase from BEGIN REQ to BEGIN RESP and loaded
the required data to the master in response to the master read
request. This phase transition is valid in the base protocol,
i.e. the target can annotate directly the response delay time and
can start data transfer. However, the AHB protocol allows data
transfer only if the target acknowledges explicitly that it has
executed the master request correctly by returning the value
TLM ACCEPTED or updating the transaction phase to END REQ.
When implementing this protocol functionality the designer
assumed the same behavior as in the base protocol and hence
caused this bug.

We simulated the SoC model with the same testbench
configuration again after fixing the bug in the SRAM. The sim-
ulation finished successfully without any protocol violation.
However, the protocol sequence coverage approach identified
untested protocol flow. Fig. 6 depicts the relevant protocol
sequences. The beginning of the unexecuted protocol path can
be seen in the upper right part of the figure (edges are shown
dashed red). This problem can be due to the two following
reasons: The testbench is inadequate or there is a bug in the
design. In our case, the test generator provides the required test
traffic for each module with respect to the configured delay
times to stimulate each protocol path. Thus, after analyzing the
bus implementation, we recognized that a specific case has not
been implemented, namely, if only one master requests access
to the bus at a certain time point where also the bus is not
busy and no request is stored in the request list, then it shall
update the transaction phase to GRANT BUS by returning the
value TLM UPDATED without triggering the arbitration process.
In summary, our proposed approach found two major bugs in
the non-trivial protocol implementation of our SoC model.

VI. CONCLUSIONS

In this paper we have presented an approach for TLM
protocol compliance checking. From user-specified protocol
sequences a protocol sequence graph is built. During simula-
tion the graph is traversed for each transaction to determine
the protocol compliance. Furthermore, we identify unverified
protocol paths to improve the testbench or revealing additional
design bugs.

The experimental results have clearly shown the advantages
of our approach. During the design of a SoC model at
approximately-timed level using parts of the AMBA AHB
protocol for communication two protocol implementation bugs
have been found.

For future work, we plan to extend our method for support-
ing a pipelined burst transfer mode for on-chip communication
protocols. Moreover, we also want to check user-defined
extensions for a given transaction.

Fig. 6. Protocol sequence graph describing the protocol sequences for the
write and read accesses

REFERENCES
[1] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in IEEE/ACM/I-

FIP International Conference on Hardware/Software Codesign and System Syn-
thesis, 2003, pp. 19–24.

[2] “SystemC-AMS,” http://www.systemc-ams.org.
[3] A. Vachoux, C. Grimm, and K. Einwich, “SystemC-AMS requirements, design

objectives and rationale,” in Design, Automation and Test in Europe, 2003, pp.
10 388–10 395.

[4] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription
for Electronic System Level Methodology. Morgan Kaufmann/Elsevier, 2007.

[5] J. Aynsley, OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL. Open SystemC
Initiative (OSCI), 2009.

[6] K. Shimizu, D. Dill, and A. Hu, “Monitor-based formal specification of PCI,” in
Int’l Conf. on Formal Methods in CAD, ser. LNCS, vol. 1954, 2000, pp. 335–353.

[7] M. Oliveira and A. Hu, “High-level specification and generation of IP monitors,”
in Design Automation Conf., 2002, pp. 129–134.

[8] Y.-C. Yang, J.-D. Huang, C.-C. Yen, C.-H. Shih, and J.-Y. Jou, “Formal compliance
verification of interface protocols,” in International Symposium on VLSI Design,
Automation, and Test, 2005, pp. 12 – 15.

[9] G. Fey, D. Große, and R. Drechsler, “Avoiding false negatives in formal verification
for protocol-driven blocks,” in Design, Automation and Test in Europe, 2006, pp.
1225–1226.

[10] M. D. Nguyen, M. Thalmaier, M. Wedler, D. Stoffel, and W. Kunz, “A re-use
methodology for formal SoC protocol compliance,” in Forum on specification and
Design Languages, 2009.

[11] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull, “Interactive presentation:
Implementation of a transaction level assertion framework in SystemC,” in Design,
Automation and Test in Europe, 2007, pp. 894–899.

[12] L. Ferro and L. Pierre, “ISIS: runtime verification of TLM platforms,” in Forum
on specification and Design Languages, 2009, pp. 1–6.

[13] J. Aynsley, “TLM-2.0 Base Protocol Checker.” [Online]. Available: http:
//www.doulos.com/knowhow/systemc/tlm2/base protocol checker

[14] D. C. Black and J. Donovan, SystemC: From the Ground Up. Springer-Verlag
New York, Inc., 2005.

[15] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems. Springer, 2006.

[16] “Working draft, standard for programming language C++.” [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3126.pdf

[17] ARM, AMBA Specification (Rev. 2), 1999.

