
Complete and Effective Robustness Checking by Means of Interpolation
Stefan Frehse1 Görschwin Fey1,3 Eli Arbel2 Karen Yorav2 Rolf Drechsler1,4

1Institute of Computer Science 2IBM Research Labs
University of Bremen, Germany Haifa, Israel

sfrehse@informatik.uni-bremen.de {arbel,yorav}@il.ibm.com

3Institute of Space Systems 4Cyber-Phsyical Systems
German Aerospace Center DFKI-GmbH

Bremen, Germany Bremen, Germany
goerschwin.fey@dlr.de rolf.drechsler@dfki.de

Abstract

Technology scaling continues to downscale feature sizes. As
a side-effect this has some serious drawbacks, in particular
increasing vulnerability of circuits against transient faults
caused, e.g., by radiation. Even under malfunctions of
internal components the circuit must behave as specified.
Several techniques have been proposed to overcome this
problem. However, the implementation of those techniques
in the design might be buggy and needs to be verified.
This paper provides an effective algorithm using formal

reasoning to completely analyze the fault tolerance of a
circuit, under all input sequences and all transient faults.
The algorithm based on interpolation identifies components
in which transient faults are observable. Experiments show
that the newly introduced complete approach analyzes
ITC’99 and IBM circuits, effectively.

I. Introduction

Technology scaling decreases power consumption and
increases the integration density as well as computational
throughput. As a side-effect technology scaling comes
inherently with serious problems. In particular vulnerability
against transient faults increases, caused by radiation or
process variation. Transient faults are modeled as the
negation of a signal at logic level, i.e, switching from
0 to 1 or 1 to 0 for a short period of time. However, the
circuit must behave as specified even under those internal
faults. Various techniques to catch and handle those faults
are available. These techniques operate on different levels of
the design flow. At design level, techniques such as Triple-
Modular-Redundancy (TMR) or Hamming-Code are applied

This work was supported in part by the European Union (Project
DIAMOND, FP7-2009-IST-4-248613).

for detection and correction of internal faults. Furthermore,
application specific techniques are available [1]. However,
the implementation of these techniques in the design may
be faulty itself and needs to be verified to ensure correctness
or to show vulnerable parts of the circuit [2].
To ensure correctness of the implementation complete

robustness checking must be performed: 1) under all
possible input sequences and 2) under all transient faults it
has to be proven that 3) all outputs sequences adhere to
the specification.
Formal approaches have been proposed, which analyze

the impact of transient faults on the functional output of
the circuit. Previous complete approaches [3], [4], [5], [6]
analyzing sequential circuits relying on Binary Decision
Diagrams are restricted to small circuits due to the state
explosion problem. The approach of [7] computes the
vulnerability against a user-defined specification in terms of
a property based on model checking techniques. Approaches
based on Boolean Satisfiability (SAT) are either restricted
to self-checking circuits (e.g. [8]) or consider only short
time intervals [9].
Bounded Model Checking (BMC) based on SAT has

been significantly improved by interpolation [10], which is
further enhanced in, e.g., [11], [12], [13], [14], [15]. The
approach proves or disproves a safety property for finite
systems by a fixed-point computation and is successfully
applied in complex hardware verification in industry.
Here, we propose two approaches for robustness checking:

First, SAT-based robustness checking is improved by
utilizing interpolation similarly to interpolation in BMC.
Second, we go one step beyond by over-approximating the
entire set of reachable states also based on interpolation.
This over-approximation can be utilized in BMC for a series
of safety properties in general. In robustness checking this
is required to identify components that may cause Silent
Data Corruption (SDC) upon failure - called unbounded
dangerous components in the following. Knowing such

components is mandatory as any second fault may corrupt
the system behavior. Previous SAT-based approaches for
robustness checking cannot identify unbounded dangerous
components. Experimental results on hard benchmarks show
the effectiveness in comparison to a previous approach.
The paper is structured as follows: Section II covers

the preliminaries in particular the fault model and the
computational model. In Section III, the approach adapting
interpolation-based model checking for robustness checking
is presented. Section IV describes the complete approach
including the over-approximation of reachable states and
the fixed-point iteration based on interpolation. Section V
provides the evaluation of both approaches and Section VI
concludes.

II. Preliminaries

A. Circuits and Transition Systems

A synchronous circuit C = (V,E, L) is a directed graph
with vertices (components) V , edges E ⊆ V × V , and a
labeling function L : V → {IN,FF,AND,NOT}, which
maps each vertex to a function. The vertices labeled with FF
are state elements. A state of the circuit is represented by
the values of the FF nodes: Each FF vFF ∈ V is mapped to a
Boolean value, i.e., vFF 7→ B. From a circuit C a transition
system M = (I, S, T) is derived. The set I ⊆ S describes
the initial states. The state space of a circuit with m FFs is
given by S = Bm. The transition relation T (s, s′) is true,
if there is a transition from present state s to a next state s′.
The set img(Q) = {s′ ∈ S | ∃s ∈ Q ∧ T (s, s′)} contains
all successor states reachable in one step from the states in
Q ⊆ S. The operator img is called an exact image operator.
Let img(Q)0 = Q and imgi+1(Q) = img(imgi(Q)), all
states reachable from I are given by: S∗ =

⋃
i≥0 imgi(I).

The over-approximation operator ˆimg has the following
properties: img(Q) ⊆ ˆimg(Q) for Q ⊆ S and hence it
holds S∗ ⊆ Ŝ with Ŝ =

⋃
i≥0

ˆimg
i
(I).

In this paper a set of states S is often described by a
Boolean predicate δ. We say the set δ is an abbreviation for
S = {s|δ(s) = 1}. Both symbols are used interchangeably.
A formula is called concrete if the formula does not contain

any approximation operators. Otherwise, the formula is
called abstract.

B. Boolean Satisfiability & Interpolation

Given a Boolean function, the Boolean satisfiability
problem (SAT-problem) is to decide whether there exists
an assignment such that the function evaluates to true.
If there exists such an assignment, the formula is called
satisfiable otherwise unsatisfiable. Often a Conjunctive
Normal Form (CNF) is given as input to a SAT solver.

A CNF is a conjunction of clauses, where a clause is a
disjunction of literals. A literal is a variable x or its negation
¬x. A CNF formula F is a set of clauses F = {c1, . . . , ck},
whereas a clause is a set of literals ci = {l1, . . . , lm}. The
set of variables of a formula F is denoted as Var(F).
Given a pair of propositional formulas (A,B) such that
A ∧ B is unsatisfiable, there exists an interpolant σ of
(A,B) with the following properties based on Craig’s
Interpolation Theorem [16]: 1) σ is a propositional formula
over the subset of common variables of A and B, i.e.,
Var(σ) ⊆ Var(A)∩Var(B), 2) A implies σ, and 3) B ∧ σ
is unsatisfiable. Intuitively, this means, σ abstracts some
facts of A while σ contradicts B. Given a resolution proof
of an unsatisfiable CNF an interpolant is computed by,
e.g., [10], [17], [18], [19] in linear time with respect to
the size of the proof. Note, the size of the proof may
be exponentially larger than |A ∪ B|. Let itp(A,B) be a
function that computes an interpolant of the unsatisfiable
pair (A,B).

C. Robustness Checking

The goal of robustness checking is to identify parts of a
circuit that may cause unwanted behavior under occurrences
of transient faults or to prove that any fault of a component
is detected. We consider gates in this work to simplify the
presentation. By considering more complex modules as
components, multiple faults can be modeled as well [9].
Our approach can easily be lifted to component level, too.
A transient fault is modeled as a non-deterministic bit flip

of an output of a node for one time frame. Furthermore,
suppose the circuit is equipped with a fault signal f , which
reports detected faults of the system by setting f to one. If
the system does not have a fault signal, f is equal to zero
is assumed. Components of the circuit are classified based
on the behavior of the system when a fault is injected,
i.e., a component v ∈ C belongs to one of three classes:
non-robust: at least one fault at node v is observable after
any number of time frames at the primary outputs and no
fault is reported, i.e., f = 0, dangerous: any fault at v
only modifies the state after any number of time frames
but is not observable on the primary outputs and f = 0, or
robust: otherwise, i.e., all faults are either masked and not
observable at the primary outputs or they are reported by
the fault signal. Let T be the set of robust components, S the
set of non-robust components and D the set of dangerous
components: V = T ∪ S ∪ D.
Given a circuit under verification C = (V,E, L), the

circuit CD(V ′, E′, L′) with D ⊆ V is constructed by
inserting a multiplexer at the component’s output for
each component v ∈ D and the primary inputs of C
and C ′ are stimulated by the same values. Each new
multiplexer has a selector variable denoted by av for a
component v ∈ D. The data 1-input of the multiplexer

is a fresh primary input and if the selector variable av
is activated, an arbitrary value is chosen for this input.
Otherwise, the normal computation of the component is
performed, based on the data 0-input connected to the
output of the respective component. This construction
allows for a non-deterministic bit flip if one selector variable
av is activated. The derived transition system of CD is
given by MD = (I, S′, T ′) where the transition relation
T ′ is extended as follows: TD = T ′ ∧

(∑
v∈D av = 1

)
,

where
∑

adds Boolean variables, i.e., exactly one fault
injection is performed. Formulas for determining non-robust
components are constructed as follows:

init(l) = I(x0) ∧
l∧
i=1

T (xi−1, xi) (1)

inj(l,D) = T (xl, xl+1) ∧ TD(xl, ẋl+1) (2)

propNR(l, k) =

l+k∧
i=l+1

(T (xi, xi+1) ∧ T (ẋi, ẋi+1))

∧ P (xl+k+1, ẋl+k+1) (3)

where P (xl+k+1, ẋl+k+1) forces the primary outputs to
be different in the last time frame. The fault signal is
forced to be zero to consider scenarios where malfunctions
are not detected. However, this is not explicitly written
in the formula, to keep the formulas simple. Formula (1)
is satisfiable if and only if there is at least one path of
length l from the initial state x0 to a state xl. Formula (2)
computes a normal transition from xl to xl+1 based on
the transition relation T and a transition from xl to ẋl+1

based on TD, i.e., a single fault is injected at a component
v ∈ D. Finally, in Formula (3), the correct state xl+1 and
the faulty state ẋl+1 are propagated over k time frames
and the primary outputs are checked for equivalence at the
last time frame expressed by P . Conjoining these three
formulas the entire formula for determining non-robust
components is obtained:

φ(l, k,D) = init(l) ∧ inj(l,D) ∧ propNR(l, k) (4)

Lemma 1. Given a non-empty set of components to classify
D ⊆ V . If the formula φ(l, k,D) is satisfiable for an l
and k, with av = 1 for a component v ∈ D, then the
component v is non-robust.

Similar to Formula 4 dangerous components are computed
using the following formula that compares the states in the
last time frame. Here, only the last part is different from
Forumla 4 which is given by:

propD(l, k) =

l+k∧
i=l+1

(T (xi, xi+1) ∧ T (ẋi, ẋi+1))

∧ (xl+k+1 6= ẋl+k+1) (5)

and the entire formula for classifying dangerous components
is given by:

ψ(l, k,D) =init(l) ∧ inj(l,D) ∧ propD(l, k)

The function sol(φ(l, k,D)) computes all non-robust com-
ponents of D and the function sol(ψ(l, k,D)) computes
all dangerous components of D with respect to the values
of l and k. For each combination of l and k non-robust
components are determined and afterwards the dangerous
components are determined.
In order to compute the complete set of non-robust

components of the circuit under verification each com-
bination of l ∈ {0, . . . , l′} and k ∈ {0, . . . , k′} has to be
checked, where l′ and k′ are sufficiently large completeness
thresholds, i.e.,

S =
⋃

l∈{0,...,l′}
k∈{0,...,k′}

sol(φ(l, k, V)).

Once all combinations of l and k have been checked, all
non-robust components are determined. While checking
all combinations of l and k dangerous components are
computed by comparing state bits instead of primary out-
puts. SDC may occur, i.e., components remain classified as
dangerous even when the thresholds for l and k are reached.
That means, under all input sequences, any possible faults
is not observable at any time on the primary outputs,
but at least one fault corrupts the state. This behavior
is classified as unbounded dangerous and components
showing this behavior are in the set U ⊆ V . Given all non-
robust components and unbounded dangerous components,
the robust components are given by T = V \ (S ∪ U).
However, the completeness thresholds might be very large,
which makes it hard or practically impossible to check all
combinations. The threshold for l is given by the diameter
of the transition system M(I, S, T), i.e., l′ = dia(M),
because all reachable states can be reached within this
number time frames. A completeness threshold for k is
given by k′ = 22m with m FFs nodes, because all states
of the product machine of the normal transition system
and the transition system with fault injection have to be
discovered.

III. BMC with Interpolation for Robustness
Checking

Checking every combination of l and k is infeasible in
practice. However, a complete answer can often be given
before reaching l′ by applying interpolation-based model
checking [10] for robustness checking. Interpolation is
exploited in order to a find termination criterion before
unrolling the transition relation l′ times by computing a
fixed-point.

A safety-property holds on a circuit if it is proven that
the property holds in every reachable state of the circuit’s
automaton. BMC has been introduced to check the property
on states by iteratively unrolling the transition relation. All
reachable states are checked when the transition relation
is unfolded l′ times. This may become very expensive for
larger circuits. Interpolation-based model checking [10]
often terminates before reaching l′. Interpolants abstract
some facts which are irrelevant to prove the property and
therefore speeds up the convergence to a fixed-point. In
order to prove a property only relevant states are considered.
In robustness checking a series of safety properties for all
k ∈ {0, · · · , k′} has to be checked. For each new property
a model checking instance is solved determining the set
of non-robust components under relevant reachable states.
Mapping robustness checking to interpolation-based model
checking, avoids considering all values of l ∈ {0, . . . , l′}.
That means, for each k an earlier termination may be
reached.
In the following, interpolation-based model checking [10]

is adapted for robustness checking. Given φ(l, k,D) as
defined in Equation 4, the property to check is composed
of injection, propagation, and forcing the primary outputs
to be different: inj(l,D)∧propNR(l, k). Starting with l = 0,
consider a non-empty set of components to classify D ⊆ V
and the formula pair (A,B) with:

A := I(x0) ∧ T (x0, x1) (6)

B :=

l∧
i=2

T (xi−1, xi) ∧

property of length k+1︷ ︸︸ ︷
inj(l,D) ∧ propNR(l, k) (7)

Suppose all non-robust components have been determined
with respect to the values of l and k and only the remaining
components not shown to be non-robust (at least one,
i.e.,|D| ≥ 1) are extended by a multiplexer to inject a fault.
In this case, A ∧B is unsatisfiable. An interpolant σ with
σ = itp(A,B) is computed based on the resolution proof
of the SAT solver. The interpolant σ is defined over the
state variables expressed by x1, i.e, the common variables
of A and B with Var(σ) ⊆ Var(A) ∩ Var(B).
The part B may be unsatisfiable itself in circuits containing

checker circuitry: The fault signals is constrained to zero
but any injection of a fault forces the fault signal to one.
In this case, determining the interpolant is skipped because
all reachable states are covered.
Otherwise, the interpolant is added to A such that
A = (I(x0) ∨ σ(x0)) ∧ T (x0, x1) where the variable x1

of σ is replaced by x0 and the procedure restarts. A fixed-
point is reached when the disjunction of all previously
computed interpolants implies the new interpolant. Once
the instance becomes satisfiable on such an abstract formula,
a potentially spuriously classified non-robust component
has been determined due to the over-approximation by
the interpolant. Then, the procedure restarts by increasing

non-robust complete

approx.

robust

unbounded dangerous

1
2

3

4

5

Fig. 1: Flow of new approach

the value of l, which either allows for classifying non-
robust components on the concrete formula or makes the
interpolants weaker by strengthening B. A fixed-point will
be eventually found and the classification is complete with
respect to the current value of k [10]. After reaching a
fixed-point, k is increased by one and the interpolation-
based model checking procedure restarts, discarding all
interpolants.

IV. Complete Classification

The approach from the previous Section III may find
earlier termination criterion for each k. However, calling
this approach for all values of k still remains infeasible.
A new approach presented in this section may terminate
earlier than reaching l′ and k′.
A rough overview of the new approach is depicted in

Figure 1: Step 1 classifies non-robust components. The
subsequent Step 2 checks whether all relevant reachable
states are considered for a fixed k. These steps have been
described in the previous Section III and are embedded in
this flow. Any classification of non-robust components is
based on reachable states. If there are more states to be
covered, the transition relation is further unrolled and the
flow goes back to Step 1 . Otherwise, if all relevant states
are considered an over-approximation of the entire set of
reachable states based on a newly introduced construction
of interpolants is performed in Step 3 and is described in
Section IV-A. After having a new over-approximation, non-
robust and dangerous components are over-approximated.
This classification is exploited in order to compute robust
components. All dangerous components are considered for
a further analysis in Step 4 , because these components
are potentially unbounded dangerous. For example, this

S

S∗

I
σ1

σ2

σ3

(a) Interpolation by McMillan: (σ)

S

S∗

I

δ̄

(b) Adequate Approximation: (δ)

Fig. 2: Approximations by Interpolation

occurs in TMR circuits: a fault is corrected by the majority
voter but the affected module remains in an erroneous state.
In order to prove that these components are unbounded
dangerous the proof procedure is called in Step 5 and is
presented in Section IV-C.

A. Over-approximation of Reachable States

The termination before reaching k′ requires that at least
all reachable states are modeled for fault injection. Since
computing the exact set of reachable states is hard, an
over-approximation is introduced in the following based
on interpolation. The difference of the interpolants from
Section III ([10]) and those here is illustrated in Figure 2.
In both figures S is the complete state space and S∗ is the
set of states reachable from the initial state as introduced
in Section II. The left figure shows interpolants σ1, σ2, and
σ3 after reaching a fixed-point in three steps. The union of
all interpolants yields an over-approximation of the exact
set of reachable states. In order to compute a fixed-point
using interpolation-based model checking at least one step
of interpolation is required, often a few steps, in order to
reach a fixed-point. The right figure shows an interpolant δ̄
from the new approach. The computation of this interpolant
requires exactly one step of interpolation with additional
model checking steps.
Both 1) the union of all interpolants from McMillan’s

approach and 2) the interpolant introduced in this work
over-approximate the exact set of reachable states but the
quality, i.e., the number of included non-reachable states
may differ. Due to space limitation a detailed comparison
about differences cannot not be discussed.
The computation of the over-approximation is introduced

in the following. A new partition of (A,B) and a check
whether the computed interpolant is an adequate approxi-
mation are introduced.

. . .

I reach

To compute the
over-approximations,
interpolants are derived
from the formula reach(l)
which models all states

reachable in l steps from the initial state illustrated in the
figure on the right hand side.

reach(l) =I(x0) ∧
l∧
i=1

(I(xi) ∨ T (xi−1, xi)) (8)

All reachable states are modeled on xl, if l ≥ l′. The entire
formula to determine non-robust components becomes:

φreach(l, k,D) = reach(l) ∧ inj(l,D) ∧ propNR(l, k) (9)

The difference between φ(l, k,D) and φreach(l, k,D) is
that the state xl for injection might be any state along
any path of length l from the initial state rather than only
states reachable in l steps. Based on this formulation an
over-approximation of the exact set of reachable states is
derived.

Definition 1. Given a transition system M = (I, S, T) and
a predicate δ defined over the state variables of M . Then
δ is an adequate approximation if the set δ contains only
non-reachable states.

Lemma 2. Given an adequate approximation δ, then for all
s ∈ S∗, δ̄(s) is true. That means δ̄ is an over-approximation
of the reachable states.

In order to compute adequate approximations consider the
following pair (A′, B′) of formulas for given l and k

φreach(l, k,D) =

B′︷ ︸︸ ︷
reach(l)∧

A′︷ ︸︸ ︷
inj(l,D) ∧ propNR(l, k) .

(10)

The interpolant δ = itp(A′, B′) computes states that are
not reachable from the initial state in l or less steps, but A′

implies δ, i.e., states in δ fulfill the property. These states
are possibly reachable from the initial state in more than l
steps or are non-reachable states.

Theorem 1. Given a transition system M = (I, S, T).
There exists an l ≤ l′ and an k ≤ k′ with a non-empty set
D ⊆ V of components proven to be not non-robust with
respect to l and k. Then, φreach(l, k,D) is unsatisfiable and
δ = itp(A′, B′) is an adequate approximation.

Proof: Setting l = l′ and k = k′, reach(l) models
all reachable states and φreach(l, k,D) is unsatisfiable with
|D| ≥ 1. An interpolant δ = itp(A′, B′) is computed. All
states for which A′ is true satisfy δ. These states are only
non-reachable states since δ ∧ B′ is unsatisfiable and B′

models all reachable states for l = l′.
This proves that an adequate over-approximation is com-

puted when setting l to l′. However, in practice an adequate
approximation is often computed before l reaches l′. In
order to verify that the computed interpolant δ is an
adequate approximation, a separate model checking step
is performed, i.e., the interpolant is checked for reachable

states. We employ an interpolation-based model checker to
check the invariant δ̄.
While checking each combination of l and k to determine

non-robust components using φreach(l, k,D), interpolants
are computed based on Theorem 1. If an interpolant is
an adequate approximation, the interpolant is added to the
set ∆, where ∆ contains all adequate approximations.

B. Approximation of Robust Components

Given a set of adequate approximations ∆ = {δ1, . . . , δn}
non-robust and dangerous components are over-
approximated using the following formulas. All remaining
components are robust components.
At first, the formula for over-approximating non-robust

components is constructed:

φ̂(l, k,D,∆) =
∧
δ∈∆

δ̄(xl) ∧ inj(l,D) ∧ propNR(l, k).

(11)

Lemma 3. Given a non-empty set D ⊆ V and a set of
adequate approximations ∆. Let Skl = sol(φ(l, k,D)) and
Ŝkl = sol(φ̂(l, k,D,∆)), then Skl ⊆ Ŝkl is true for any l and
k. That means, Ŝkl is an over-approximation of non-robust
components.

Since the formula φ̂ may consider more states that φ
because an over-approximation is constrained and thus
non-robust components are over-approximated.
Next, an over-approximation of the set of dangerous

components is introduced. As described in Section II, a
fault injected into a dangerous component corrupts the state
but is not observable at the primary outputs. The formula
to over-approximate dangerous components is given by:

ψ̂(l, k,D,∆) =
∧
δ∈∆

δ̄(xl) ∧ inj(l,D) ∧ propD(l, k) (12)

Lemma 4. Given a non-empty set D ⊆ V and a set
of adequate approximations ∆. Let Dkl = sol(ψ(l, k,D))
and D̂kl = sol(ψ̂(l, k,D,∆)), then Dkl ⊆ D̂kl is true for
any l and k. That means, D̂kl is an over-approximation of
dangerous components.

The over-approximated sets of non-robust and of dangerous
components determine a subset of robust components as
stated in the following lemma.

Lemma 5. Given an over-approximated set of non-robust
Ŝkl and dangerous D̂kl components, respectively. A set of
robust components is given by: Ťkl = V \ (Ŝkl ∪ D̂kl).

By checking all combinations of l and k the final
result of non-robust and robust components is determined,
i.e., S =

⋃
l,k Skl and T =

⋃
l,k Ťkl . Reaching l′ and k′, the

classifications are complete.

However, components are unbounded dangerous on certain
circuits even when the thresholds for l and k are met. All
these unbounded dangerous components are reconsidered in
a next iteration. In order to prove that these components are
unbounded dangerous, it is required to prove that any fault
of these components will not affect the primary outputs for
any combination of l and k. The following section provides
the corresponding proof procedure.

C. Fixed-point Computation on the Property

Suppose arbitrary values for l and k > 0, and a non-
empty set of components D ⊆ V which are to be proven
or to be refuted to be unbounded dangerous components.
Formula (11), φ̂(l, k,D) is unsatisfiable, therefore an
interpolant of σ = itp(X,Y) can be computed where:

X :=
∧
δ∈∆

δ̄(xl) ∧ inj(l,D)

∧ T (xl+1, xl+2) ∧ T (ẋl+1, ẋl+2) (13)

Y :=

l+k+1∧
i=l+2

T (xi, xi+1) ∧ T (ẋi+1, ẋi+1)

∧ P (xl+k+1, ẋl+k+1) (14)

The interpolant σ contains state variables xl+2 and ẋl+2

of transition relation T , i.e., Var(σ) = Var(A′′)∩Var(B′′).
Intuitively, σ computes an approximated set of pairs of
successor states of the correct states and faulty states
reached after injecting a fault. The variables xl+2 and
ẋl+2 of the interpolant σ are replaced by xl+1 and ẋl+1,
respectively. The interpolant is added to X , i.e.,

X ′ =

(
(
∧
δ∈∆

δ̄(xl) ∧ inj(l,D)) ∨ σ(xl+1, ẋl+1)

)
∧ T (xl+1, xl+2) ∧ T (ẋl+1, ẋl+2) (15)

Next, the extended formula X ′ ∧ Y is checked for satis-
fiability. If the formula is satisfiable, the classification is
potentially spurious. In that case, k is increased by one and
the computation proceeds clearing problem instances and
interpolants but keeping ∆. Otherwise, i.e., the formula
is unsatisfiable, a new interpolant is computed and it is
checked whether the disjunction of all previously computed
interpolants implies the new interpolant – a fixed-point
has been reached. This proves that no fault injection in
components of D is observable at the outputs. Thus, all
components of D are proven unbounded dangerous and
constitute the set U .

D. Algorithm

The overall procedure which exploits Theorem 1 and the
fixed-point iteration on the property from Section IV-C is

Algorithm 1: ROB-COMPL
Input: C = (V,E, L) a sequential circuit
Output: (S,T,U) with S ⊆ V the non-robust and T ⊆ V the robust as

well as U unbounded dangerous comps.
begin1

k = l = 0; ∆ = ∅;2
S = T = U = ∅;3
D = V ;4
while true do5

S = S ∪ sol(φ(l, k,D));6
D = D \ S;7
if (S ∪ T = V) or (k = k′) then return (S,T,U);8
δ = itp(inj(l, D) ∧ propNR(l, k), reach(l));9
if δ is an adequate approximation then10

∆ = ∆ ∪ δ;11
end12
if necessary states are checked with respect to k then13

l = 0;14
else15

l = l + 1;16
continue;17

end18
Ŝkl = sol(φ̂(l, k,D,∆));19
D̂kl = sol(ψ̂(l, k,D \ Ŝkl ,∆));20
Ťkl = V \ (Ŝkl ∪ D̂kl);21
D = D \ Ťkl ;22
T = T ∪ Ťkl ;23
if T ∪ S = V then24

return (S,T,U)25
else26

if k = 0 then k = 1; continue;27
Q =

∧
δ∈∆ δ̄(xl) ∧ inj(l, D̂kl);28

X = T (xl+1, xl+2) ∧ T (ẋl+1, ẋl+2);29
Y =

∧l+k+1
i=l+2 T (xi, xi+1) ∧ T (ẋi+1, ẋi+1) ∧30

P (xl+k+1, ẋlk+1);
repeat31

σ = itp(Q ∧X,Y);32
if Q→ σ then33

U = U ∪ D̂kl ;34
D = D \ D̂kl ;35
continue;36

else37
Q = Q ∨ σ(xl+1, ẋl+1);38

end39
until Q ∧X ∧ Y is satisfiable ;40
k = k + 1;41

end42
end43

end44

shown as pseudo-code in Algorithm 1. The algorithm gets
the circuit under verification as input and determines the
set of non-robust as well as robust components. Lines 2-
4 initialize the required sets and the values for l and k.
All components are to be classified, i.e., D = V . The
while-loop iterates until all components are classified or
the threshold for k is reached (line 8). In each iteration at
first non-robust components are determined (line 6) and are
excluded from the components to be classified in further
iterations (line 7). Next, in line 9 an interpolant is computed
based on Formula (10) and it is checked whether the
interpolant is an adequate approximation using interpolation-
based model checking (line 10). If the computed interpolant
is an adequate approximation, then the interpolant is added
to the set ∆ (line 11). If all necessary states are covered
as checked by interpolation-based fixed-point computation,
then l is set to zero and the algorithm proceeds with line 19.
Otherwise, the value of l is increased by one (line 16) if
not all necessary states are checked for the current value

of k and the outer loop restarts. That means either further
classifications are performed or an adequate approximation
will be found by strengthening A′ by increasing l by one.
Eventually an adequate approximation will be found

according to Theorem 1 and the procedure continues with
line 19. Here, the over-approximations of the set of non-
robust and dangerous components are computed, such
that a subset of the robust components is determined. In
line 27–41 the fixed-point computation on the property
is performed. If a fixed-point is found, all components
previously classified as dangerous in line 22 are proven
to be unbounded dangerous components. If the formula
becomes satisfiable, k is increased by one to get a weaker
approximation by interpolation on the property. In a next
iteration further non-robust components may be classified
from the set of remaining dangerous components.

E. Adequate Approximation in Model Checking

Since, the computed adequate approximations are invari-
ants specifying reachable states of the circuits they can be
used in model checking in general. While model checking
to prove a property, adequate approximations can be derived
in the same way as described above. These adequate
approximations may be applied as invariants to prune the
search space while proving other properties.

V. Experiments

An evaluation of the proposed approaches is presented
in this section. Experiments have been carried out on a
Dual-Core AMD OpteronTM Processor with 3.0 Ghz and
64GB main memory under Linux. Reaching a timeout of 15
hours is marked by timeout. As SAT-solver MiniSAT’s proof
logging version [20] has been used and interpolants are
computed based on McMillan’s interpolation system [10].
Preliminary experiments have shown that the HKP [17],
[18], [19] interpolants yielded consistently longer run
times of the proposed algorithms than using McMillan’s
interpolants. Interpolants are represented as And-Inverter-
Graphs (AIG) by the Aiger software package1.

A. ITC’99 Benchmarks

For the first evaluations ITC’99 benchmarks were taken and
enhanced with TMR techniques to catch single transient
faults. TMR circuits are marked with the suffix -tmr.
Faults are injected into gates and flipflops, i.e., initially
D = V . The two proposed approaches from Section III and
Section IV as well as the approach from the work of [9]
are compared in this section.
The circuits are known to be hard for formal robustness

checking, because fault effects propagate until reaching the

1Available under: http://fmv.jku.at/aiger/

APPROACH OF [9] INTERP.-BASED BMC COMPLETE APPROACH

Circuit |IN| |OUT| |FF| Rlb Rub Runtime k Rub Runtime l k invalid valid ∅ size Rlb Rub Runtime

b01-tmr 2 2 15 7.9 98.2 timeout 236 97.8 timeout 17 4 15 4 3k 97.8 97.8 3
b02-tmr 1 1 12 1.7 98.2 timeout 351 98.0 timeout 25 9 23 4 1k 98.0 98.0 <1
b03-tmr 4 4 90 1.2 98.7 timeout 40 98.7 timeout 24 4 22 4 91k 98.7 98.7 31
b04-tmr 11 8 198 0.6 100.0 timeout 1 100.0 timeout 6 1 4 1 3583k 0.0 99.2 timeout
b05-tmr 1 36 102 6.9 99.0 timeout 70 98.9 timeout 16 4 14 3 29k 98.9 98.9 319
b06-tmr 2 6 27 3.6 97.0 timeout 28 96.7 timeout 9 3 7 3 6k 96.7 96.7 11
b07-tmr 1 8 147 0.9 99.5 timeout 72 99.4 timeout 21 4 19 3 22k 99.4 99.4 1621
b08-tmr 9 4 63 1.2 99.4 timeout 25 99.4 timeout 14 5 12 3 4k 99.4 99.4 68
b09-tmr 1 1 84 0.3 99.6 timeout 84 99.6 timeout 19 4 17 4 6k 99.6 99.6 44
b10-tmr 11 6 51 1.5 97.8 timeout 9 97.8 timeout 16 4 14 3 1286k 97.8 97.8 778
b11-tmr 7 6 93 0.6 99.4 timeout 11 99.4 timeout 13 2 11 3 537k 99.4 99.4 373
b12-tmr 5 6 363 0.3 99.8 timeout 12 99.8 timeout 19 2 17 3 1012k 99.8 99.8 395
b13-tmr 10 10 159 2.3 99.0 timeout 4 99.0 timeout 7 3 5 3 9k 99.0 99.0 213

TABLE I: Determined robustness of ITC’99 circuits

majority voter and are then masked late in the design. This
structure is hard for most SAT-solvers to handle causing
long run times. Furthermore, faults on most components
do not affect the primary outputs of the circuit, i.e., the
faults are masked by the majority voter, but modify the
state. That means, in each iteration most components are
reconsidered as dangerous until they are finally proven to
be unbounded dangerous components. The approach of [9]
and from Section III are practically not able to compute the
unbounded dangerous components, due to the large value
of k′. The new complete approach that does not explicitly
unroll the transition relation for k′ time frames.
Results are shown in Table I. Properties of the circuit

like name, number of primary inputs, number of primary
outputs and number of state elements are shown in the first
four columns. Values for the robustness are computed as
follows:

Rlb =
|T ∪ U|
|V |

, Rub = 1− |S|
|V |

. (16)

The runtimes are given in seconds.
Once the computation is finished by the evaluated ap-

proaches, the robustness is computed based on the respec-
tive sets of non-robust and robust components returned by
the approaches. The approach from Section III computes
only a set of non-robust components and therefore only
the upper bound of the robustness Rub is computed.
Furthermore, the values for l and k are shown for the
complete approach in Table I, to denote when the approach
finished with a complete answer. Furthermore, details
about the interpolants are given. The approach computes
interpolants to get adequate approximations. Column invalid
denotes the number of interpolants which are not an
adequate approximation. Column valid denotes the number
of adequate approximations. Column ∅ size denotes the
average size of the interpolants given as number of nodes
of the AIGs. The run times to check whether an interpolant
is an adequate approximation are quite short, i.e., less than
5 minutes accumulated over all instances.
For the approach from [9] the gap of the bounds is very

large for each considered circuit. This happens, because
almost all faults are masked by the majority voter of the
TMR circuit, but are not corrected such that one of the
TMR modules is corrupted unless resetting the circuit. That
means, the approach of [9] was not able to prove that the
dangerous components will not affect the primary outputs
at any time.
The approach from Section III computes a tight up-

per bound. As shown in the table the approach clas-
sifies some more components as non-robust than the
approach of [9] for the circuits, b01-tmr, b02-tmr,
b04.tmr, b05-tmr, b06-tmr, b07-tmr. Rather
than a pre-defined under-approximation of reachable
states [9], necessary reachability information is computed.
In principle, the approach of [9] uses fixed values l = 10

and k = 10 that prevent a complete classification. The
BMC-based approach does not terminate even for a large
observation window as no fixed-point iteration after fault
injection is performed. However, a complete classification
is possible even for a small observation window k which
also requires precise reachability information. This shows
that both interpolation steps are required for an effective
classification.
The complete approach proves lower and upper bounds

very effectively and provides an exact analysis for almost
all circuits. In these cases lower bound and upper bound
meet.

B. IBM Benchmarks

Next, we checked the proposed complete method on a set
of IBM design blocks. In this setting, two groups of design
blocks were used: 1) blocks taken from a data-path design,
and 2) blocks taken from a micro-processor control unit.
All of these design blocks contain self error checking and
correction mechanisms implemented in hardware. In this
benchmark, an Intel i5 processor running at 3.1GHz with
4GB RAM was used. Table II summarizes the benchmark
results: blocks D1-13 are the data-path blocks, D14-D27

Circuit |IN| |OUT| |FF| Classified [%] l k Runtime

D1 204 259 1430 9.30% 2 0 2728
D2 228 65 1424 17.49% 5 1 783
D3 727 293 1395 7.74% 3 0 220
D4 700 497 1038 70.52% 7 1 678
D5 364 142 940 100.00% 2 1 60
D6 105 60 699 99.86% 2 57 1699
D7 284 262 513 84.99% 18 3 3797
D8 112 56 456 100.00% 6 2 144
D9 268 99 447 89.26% 8 1 8281
D10 734 194 435 87.36% 2 1 611
D11 155 120 394 100.00% 2 1 11
D12 53 37 322 100.00% 2 1 19
D13 124 67 222 48.20% 5 3 37

D14 119 112 878 81.55% 5 3 1492
D15 140 55 804 88.56% 31 0 710
D16 29 24 555 15.86% 61 1 1201
D17 377 25 506 70.16% 6 6 1504
D18 176 154 464 70.26% 55 1 2044
D19 252 131 451 56.54% 7 7 1714
D20 327 102 428 67.06% 3 44 9050
D21 173 256 412 88.35% 8 4 486
D22 135 206 247 90.28% 2 33 23170
D23 218 96 231 95.24% 2 86 3631
D24 119 57 231 96.54% 2 2 580
D25 227 114 216 95.37% 4 95 7589
D26 70 51 210 17.62% 131 0 3697
D27 103 63 207 91.30% 7 6 598
D28 130 79 195 95.90% 2 80 35888
D29 100 37 126 100.00% 5 5 353
D30 139 94 123 100.00% 4 5 59

TABLE II: IBM Benchmarks

are the control logic blocks, number of flip flops, primary
inputs and primary outputs are given for each design in
the |IN|, |OUT| and |FF| columns respectively. In addition,
the percentage of classified flip-flops are given, as well as
the l and k bounds which were reached during each run.
One can see in Table II, the method was able to classify

significant percentage of flip-flops in most of the blocks. In
case where the implementation ran out of memory less than
100% of the flip flops were classified. This can be attributed
to several reasons: 1) The underlying SAT solver simply
ran out of memory trying to solve a particular instance,
2) problem instance itself may get too large to fit into
memory. In addition it is worth noting that in the current
implementation the interpolants are not being optimized,
which might also contribute to sub-optimal performance.
However, the implementation of the newly introduced
approach was able to effectively classify industrial design
coming from a micro-processor design.

VI. Conclusion

This work proposed a new complete approach for robust-
ness checking utilizing interpolants to overcome complexity
problems. We over-approximate the exact set of reachable
states and compute a fixed-point on the property. Our
approach is effective and provides exact results for hard
benchmarks.

References

[1] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P.
Hayes, “Enhancing design robustness with reliability-aware
resynthesis and logic simulation,” in ICCAD, 2007, pp. 149–
154.

[2] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-based attack
of RSA authentication,” in DATE, 2010, pp. 855–860.

[3] J. Hayes, I. Polian, and B. Becker, “An analysis framework
for transient-error tolerance,” in VTS, may 2007, pp. 249–
255.

[4] N. Miskov-Zivanov and D. Marculescu, “Multiple transient
faults in combinational and sequential circuits: A systematic
approach,” IEEE Trans. on CAD, vol. 29, no. 10, pp. 1614
–1627, 2010.

[5] M. Bozzano, A. Cimatti, and F. Tapparo, “Symbolic fault
tree analysis for reactive systems,” in ATVA, ser. LNCS, vol.
4762, 2007, pp. 162–176.

[6] R. Leveugle, “A new approach for early dependability
evaluation based on formal property checking and controlled
mutations,” in IOLTS, 2005, pp. 260–265.

[7] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft
error resilience,” in DATE, 2007, pp. 1442–1447.

[8] M. Hunger, S. Hellebrand, A. Czutro, I. Polian, and
B. Becker, “ATPG-based grading of strong fault-secureness,”
in IOLTS, 2009, pp. 269 –274.

[9] G. Fey, A. Sülflow, S. Frehse, and R. Drechsler, “Effective
robustness analysis using bounded model checking tech-
niques,” IEEE Trans. on CAD, vol. 30, no. 8, pp. 1239
–1252, 2011.

[10] K. L. McMillan, “Interpolation and SAT-Based model
checking,” in CAV, ser. LNCS, 2003, pp. 1–13.

[11] J. Marques-Silva, “Interpolant learning and reuse in SAT-
based model checking,” Electron. Notes Theor. Comput. Sci.,
vol. 174, no. 3, pp. 31–43, May 2007.

[12] V. D’Silva, M. Purandare, G. Weissenbacher, and D. Kroen-
ing, “Interpolant strength,” in VMCAI, ser. LNCS, vol. 5944,
2010, pp. 129–145.

[13] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Boost-
ing interpolation with dynamic localized abstraction and
redundancy removal,” TODAES, vol. 13, no. 1, pp. 1–20,
2008.

[14] V. D’Silva, M. Purandare, and D. Kroening, “Approximation
refinement for interpolation-based model checking.” in
VMCAI, ser. LNCS, 2008, pp. 68–82.

[15] S. F. Rollini, O. Sery, and N. Sharygina, “Leveraging
interpolant strength in model checking,” in CAV, Springer.
Berkeley, California, USA: Springer, 2012.

[16] W. Craig, “Linear reasoning. A new form of the Herbrand-
Gentzen theorem,” The Journal of Symbolic Logic, vol. 22,
no. 3, pp. 250–268, 1957.

[17] G. Huang, “Constructing Craig interpolation formulas,”
in Annual International Conference on Computing and
Combinatorics, 1995, pp. 181–190.

[18] J. Krajicek, “Interpolation theorems, lower bounds for proof
systems, and independence results for bounded arithmetic,”
The Journal of Symbolic Logic, vol. 62, no. 2, pp. 457–486,
1997.

[19] P. Pudlák, “Lower bounds for resolution and cutting plane
proofs and monotone computations,” The Journal of Sym-
bolic Logic, vol. 62, no. 3, pp. 981–998, 1997.

[20] N. Eén and N. Sörensson, “An extensible SAT solver,” in
SAT 2003, ser. LNCS, 2003, pp. 502–518.

