
LOCALIZING FEATURES OF ESL MODELS FOR
DESIGN UNDERSTANDING

Marc Michael1 Daniel Große1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{mmichael,grosse,drechsle}@informatik.uni-bremen.de

ABSTRACT

The increasing variety of functionality in embedded systems
leads to more and more complex designs. Even abstraction
techniques as applied in ESL design solve this problem only
to a certain extend. In this paper we present an approach to
improve design understanding of ESL models. Our approach
localizes features by comparing simulations on ESL mod-
els. Code coverage techniques are used to highlight source
code implementing a certain feature. This significantly helps
the different team members since for major design tasks like
e.g. refinement, partitioning or optimization it is required to
know where a certain functionality has been implemented.
We demonstrate the advantages of our approach for a com-
plex image processing system.

1. INTRODUCTION

Each new generation of embedded systems adds a huge
amount of new functionality. This steady progress is only
possible by using abstract modeling. Hence, an ecosystem
around Electronic System Level (ESL) design has been de-
veloped by the EDA companies. A major language for ESL
design is the C++ class library SystemC [1, 2, 3, 4]. Besides
abstract modeling, SystemC supports hardware/software co-
design and the creation of heterogeneous systems (containing
digital, analog and RF). A major approach in ESL design is
the creation of advanced virtual prototypes. These prototypes
heavily use Transaction Level Modeling (TLM) to abstract
functionality, communication and timing [5]. Based on the
SystemC TLM 2.0 standard [6] TLM models can be easily
re-used in different projects and IP integration has become an
easier task. Overall, high-speed simulation, architecture eval-
uation and early software development is standard practice in
SystemC-based ESL flows today.

However, the steadily increasing functionality results in
large and complex ESL models, even if unimportant details
at the higher levels have been abstracted using TLM. Thus,
understanding these models is a non-trivial task. During the
design of an ESL model the specification is implemented as
a large set of system features. Following the IEEE Stan-
dard 829 [7] a feature is a distinguishing characteristic of the

ESL model. More specifically, besides concrete functional
features (e.g. running a video filter, converting audio data)
also other features such as performance or dependability are
important properties of an ESL model.

In this paper, we propose an approach to improve design
understanding of ESL models by localizing features automat-
ically, that is, identifying the respective source code imple-
menting the concrete feature. The approach is based on sim-
ulation and works as follows: We compare a simulation run
where the feature is activated against a run where the feature
is not active. During simulation, code coverage techniques
are used such that we can determine the differences between
both runs. Essentially, this delta identifies the relevant source
code implementing the feature.

Major ESL design tasks like for instance refinement, par-
titioning or optimization heavily depend on this information.
In general, since the implementations of different features is
typically spread over several team members this knowledge
is distributed. Furthermore, the integration of new members
(e.g. system architects, software developers or hardware en-
gineers) is accelerated since the design familiarization based
on our approach not only consists of reading long text books
and manual code inspection.

In summary, the contributions of this paper are:

• Pinpointing to relevant source code implementing a
feature

• Following the information flow when presenting the
feature code

• Highlighting involved SystemC modules

In an experimental evaluation we demonstrate the advantages
of our approach for a complex image processing system. Dif-
ferent features can be automatically localized very fast with
very little user interaction. In this way, design understanding
is significantly improved.

The remainder of the paper is structured as follows: Sec-
tion 2 describes related work. In Section 3 our feature local-
ization approach for SystemC ESL models is introduced. The
evaluation is given in Section 4. Finally, the paper is con-
cluded and future work is discussed in Section 5.



2. RELATED WORK

So far no feature localization approach for ESL models has
been presented. However, feature localization has been stud-
ied intensively in the context of software engineering. The
goal of [8] is to help the software engineer during the process
of software maintenance, i.e. if the functionality of a software
system needs to be updated or extended. Different test-cases
are executed and in combination with a test coverage moni-
tor the approach can be used to discover where a particular
program feature is implemented. A quite similar approach
has been presented in [9]. Both approaches consider a set
of test-cases and compute a categorization. These dynamic
approaches have been advanced by incooperating static anal-
ysis techniques. In [10] computational units are identified that
specifically implement a feature as well as the set of jointly or
distinctly required computational units for a set of features.

In the context of fault localization, coverage-based meth-
ods have been developed to represent how source code lines
act during passed and failed tests [11]. Several coverage met-
rics can be integrated to improve the results [12].

A method for feature localization of hardware designs has
been presented in [13]. The method uses line coverage and
toggle coverage to find relevant HDL code for a feature. How-
ever, RTL designs are addressed not ESL models.

3. FEATURE LOCALIZATION FOR ESL MODELS

In this section the proposed approach for feature localization
in SystemC ESL models is introduced. First, the general idea
is described. Then, we present our method in more detail.

3.1. General Idea

For finding a feature in a SystemC ESL model two simulation
scenarios are required. The first scenario needs to include the
requested feature and the second scenario must not include
the feature. Then, by comparing the activated source code
of both scenarios after simulation we can extract the source
code which has only been executed in the first scenario. These
code lines show the implementation of the requested feature.
The involved SystemC modules can now be highlighted. If
more than one SystemC module is involved, the respective
source code is presented with regard to the activation during
simulation.

In the following we describe our approach in more detail.
At first, we explain the terms feature and scenario for Sys-
temC ESL models. Then, we define the problem and present
our implementation.

3.2. Features and Scenarios

Several definitions of a feature have been proposed in the
software community, in particular in the context of feature-
oriented software development (for an overview see [14]).
Since we deal with abstract SystemC models, a feature is

a unit of behavior that satisfies a functional and/or non-
functional requirement. For example, a feature could be to
open the menu, to save a picture, or to save the current state
of a system. This feature definition is clearly motivated by
the high level of abstraction at ESL.

A scenario is a sequence of inputs to a SystemC TLM
model. Such a scenario activates a feature if the result of the
feature can be observed when executing the scenario on the
SystemC TLM model.

Here is a concrete scenario example of taking a picture
using a camera:

• Pressing power to turn on the system

• Activating the camera by pressing camera mode

• Taking a picture by pressing the shutter release

• Showing the taken picture by pressing play mode

• Grayscale the image by selecting the grayscale opera-
tor

• Turning off the system by pressing power

Based on these terms, we give the problem formulation in
the next section.

3.3. Problem Formulation

Before we get into more detail, we provide the used notations:

• S denotes the set of scenarios, and

• F = {F1, ..., Fm}, m ∈ N denotes the set of features.

For localization of the implementation of the feature Fi we
need two scenarios, i.e. Sa and Sn, respectively. Sa and Sn

are almost identical except that Sa activates Fi and Sn does
not activate Fi. Now, the desired source code implementing
Fi can be determined using code coverage techniques as:

cov(Sa) \ cov(Sn) = code(Fi),

where cov(A) returns the covered source code lines of sce-
nario A, and code(B) represents the relevant source code
lines of feature B.

In the next section an example and the implementation of
this approach is introduced.

3.4. Example and Implementation

As mentioned in the previous section two scenarios activating
(Sa) and not activating (Sn) the feature need to be defined by
the user. This is a manual step. For the creation of these sce-
narios the specification, documentation or existing test cases
can be used.

Assume we have an ESL model for a digital camera and
we want to localize the feature F1: grayscaling an image.
As activating scenario Sa we use the scenario from Sec-
tion 3.2. For the non-activating scenario Sn we use Sa but



remove pressing the grayscale operator. Now the SystemC
ESL model is simulated with scenario Sa and afterwards with
scenario Sn. During both simulation runs we use gcov [15],
a test coverage program for C++, to log how often each line
of code executes and what lines of code are actually exe-
cuted. A concrete example giving partially logged coverage
information is:

-: 174: // create grey image
3456: 175: for(y=0;y<height;y++)

-: 176: {
17915904: 177: for(x=0;x<width;x+=3)

-: 178: {
17915904: 179: red = *(image+(y*width)+x);
17915904: 180: green = *(image+(y*width)+x+1);
17915904: 181: blue = *(image+(y*width)+x+2);
17915904: 182: *(grey+(y*grey_width)+(x/3))

= 0.299*red
+ 0.587*green
+ 0.114*blue;

-: 183: }
-: 184: }

The first number in each row shows how often a line of
code has been executed. The second number is the actual
line number followed by the original source code line. In the
concrete example an 5, 184× 3, 456 image has been used.

By comparing the logged coverage information of Sa and
Sn we can extract the source code lines which have only been
executed in one scenario, i.e. in Sa. Hence, these lines of
code contain the implementation of the requested feature Fi

(see above for parts of this code for feature F1). Moreover,
after localizing the relevant code lines the involved SystemC
modules are known, too. By using visualization techniques
similar to [16, 17] we can additionally provide a graphical
representation. In general, the modules and their interconnec-
tion is available. But with the localized source code we can
now only highlight the modules which belong to the requested
feature. This information gives additional information on how
the system is implemented and which module is responsible
for which task.

If the source code of a feature is spread over several Sys-
temC modules all involved modules are highlighted. For a
better understanding of how the feature is implemented all in-
volved modules are ordered with respect to their execution. In
that way we can visualize where a feature starts and how the
execution continues. To get the correct order of the involved
modules a second run of the scenario which includes the fea-
ture is required. On the second run time-stamps are added to
the determined lines of code which enables to compare the
ordering.

In the following section we present the experimental eval-
uation.

4. EXPERIMENTAL EVALUATION

This section presents the experimental results for the pro-
posed approach. At first, we describe our test environment.
Then, we explain the test cases for our feature localization
approach. Finally, the results are discussed.

4.1. Test Environment

We are using an improved version of the image processing
system described in [18]. This system determines the position
of a PlayStationTM Move Controller [19] in a video stream.
On the top of the controller is an illuminated ball. We calcu-
late its 3D position, i.e. x, y, z coordinates where the z coor-
dinate can be derived from the radius of the ball.

Fig. 1 shows the architecture of the SystemC TLM model.
The system includes the Instruction Set Simulator (ISS)
Or1ksim [20] where the control software runs on.

The image capturing module receives the pictures from a
camera and sends them via the bus to the memory. This mod-
ule also initializes the image processing of the grey converter
module which converts the colored image to a grayscale im-
age. Then, edge detection is carried out in the sobel mod-
ule. The result is used for performing a Hough transforma-
tion [21]. Now, the circle around the ball of the controller is
determined (see find circles module). The position of the con-
troller is then displayed on the video stream produced by the
image viewer. For a more detailed description of the system
we refer to [18].

The calculated position of the controller can be used to
interact with the system. For example, starting a game which
can be played via the controller. When starting the game
a white circle, as depicted in Fig. 2, appears on the video
stream. The goal of the game is to cover this circle with the
top of the controller. If the circle is covered the player gets
one point and the circle will appear at a new position. By
reaching a certain number of points the level of difficulty will
be increased by flipping and rotating the video which is com-
puted in the modifier module.

For the evaluation process of our feature localization
approach we replaced the camera stream with video files.
Hence, we ensure that the input to the system is determinis-
tic.

4.2. Test Cases

In Test Case 1 we want to add a new feature to the system.
The system must be modified so that it is able to calculate the
position of two controllers instead of only one. Our goal is
to find feature F1: calculating the position of the controller.
To find F1 we compare scenario S1a where one controller is
displayed on the video stream with scenario S1n where no
controller is displayed.

In Test Case 2 we aim to localize the feature F2: switch-
ing to the next level. For localization we use the following
scenario S2a which activates F2:

• Turning on the system by starting the simulation

• Starting the game with the controller

• Collecting points until we reach the second level

We compare S2a with the almost identical scenario S2n.
The only difference to scenario S2a is to get one point less
than needed to reach the next level.



Memory Modifier Game User Interface

BUS
Image
Capturing

Camera Image
Viewer

ISS

Control
Software

Grey Sobel Hough Find Circles

Fig. 1. Architecture of image processing system

Fig. 2. Example video output

To make the system robust different dependability mea-
sures have been implemented [18]. Hence, a damaged camera
can be simulated to validate one of the dependability mea-
sures. The idea is to introduce some image artifacts using
mutation on the image data. The respective mutations are in-
jected using XML-definitions (e.g. size of the artifacts) fol-
lowing [18]. Now, in Test Case 3 the feature F3 is: controlled
modification of image data. For our approach we use a stan-
dard scenario but include the injection of 5% random artifacts
for S3a, and only the standard scenario without any error in-
jection as S3n, respectively.

Test Case 4 also simulates an error similar to Test Case 3.
However, Test Case 4 represents a corrupted connectivity be-
tween the bus and the grey module. The corrupted connectiv-
ity is represented as mutated TLM attributes, in particular the
TLM command and the data length. Unlike Test Case 3 it is
more important if the mutations can be fixed and where they
will be fixed. The goal is to locate feature F4: error correction
of communication. Like in S3a of Test Case 3 we activate in
S4a the communication errors, and in S4n no errors are in-
jected.

Table 1. Experimental results
Feature # Modules # Methods # LOC
F1 2 2 35
F2 2 2 19
F3 0 3 141
F4 1 5 192

4.3. Results

Table 1 summarizes the results of all test cases. The first col-
umn Feature gives the requested features of the test cases.
Column Modules gives the number of modules which include
located source code of the feature. The respective number of
methods are given in column Methods. Finally, column LOC
reports the actual number of lines of code for the identified
relevant source code implementing the feature.

In Test Case 1 two modules are involved. In each module
one method is invoked. The automatically created graph of
the system (see Fig. 3) shows that the module find circles has
been executed before the module image viewer. The identified
method of the first module find circles directly points to the
code we are interested in: With the Hough transformation all
circles on the current image are computed and the final result
is the one with the best fitting circle with respect to the dimen-
sion of the PlayStation controller. The module image viewer
draws only the position of the controller if it has been found.

In Test Case 2 two relevant SystemC modules have been
identified by our approach. Fig. 4 shows the involved modules
for feature F2 in the order of execution, i.e. at first the game
module is active followed by the modifier module. A screen
shot showing the relevant feature code is depicted in Fig. 5.
As can be seen, variable mem−>level of module game will be
increased when points%points2nextLvl becomes zero. As soon
as mem−>level will be increased from 0 to 1 the code in the
SystemC modifier module becomes active (see Fig. 6). In
this case the input image from the camera will be swapped
vertically. Using this information a developer can easily add



Memory Modifier Game User Interface

BUS
Image
Capturing

Camera Image
Viewer

ISS

Control
Software

Grey Sobel Hough Find Circles

1

2

Fig. 3. Involved modules for Test Case 1

Memory Modifier Game User Interface

12

BUS
Image
Capturing

Camera Image
Viewer

ISS

Control
Software

Grey Sobel Hough Find Circles

Fig. 4. Involved modules for Test Case 2

additional conditions for reaching the next level or changing
the axis for swapping the image.

In Test Case 3 no modules of the system are involved for
feature F3. The modification has been implemented in the ex-
tended version of the TLM library (see [18]). Three methods
have been identified to be relevant by our feature localiza-
tion approach. Taking a closer look on these methods we saw
that one method is responsible to load the specified modifi-
cations from the XML file, the second method is looking for
modifications and calls the third method if modifications are
specified.

For Test Case 4 our approach also localized code of the
extended TLM library to be relevant for feature F4. More-
over, two methods in the grey module are located which cor-
rect the communication error.

In summary, our feature localization approach clearly
improves design understanding since automatically relevant
source code as well as involved modules (and methods) for a
feature are identified.

5. DISCUSSION AND FUTURE WORK

In this paper we have presented an approach for feature local-
ization in ESL models. Basically, we compare a run which
invokes the feature to a run which does not invoke the feature.
Based on code coverage techniques we then compute the rel-
evant source code implementing the feature. Besides the code
we are also able to show the involved SystemC modules ac-
cording to their order of activation. For a complex SystemC
ESL design, implementing a video image processing system,
we localized different features very fast.

In future work we want to increase the accuracy of our ap-
proach and to support situations where for example two fea-
tures run in parallel. Therefore we plan to consider more than
two scenarios as well as structural information. This allows
for example to identify shared code of several features as well
as more exact code localization.



Fig. 5. Highlighted code in game module of feature F2

6. ACKNOWLEDGEMENTS

This work was supported in part by the German Federal Min-
istry of Education and Research (BMBF) within the project
SANITAS under contract no. 01M3088 and by the German
Research Foundation (DFG) within the Reinhart Koselleck
project DR 287/23-1.

7. REFERENCES

[1] Accellera Systems Initiative, “SystemC,” 2012, avail-
able at http://www.systemc.org.

[2] D. C. Black and J. Donovan, SystemC: From the Ground
Up. Springer-Verlag New York, Inc., 2005.

[3] D. Große and R. Drechsler, Quality-Driven SystemC
Design. Springer, 2010.

[4] IEEE Standard SystemC Language Reference Manual,
IEEE Std. 1666, 2005.

[5] L. Cai and D. Gajski, “Transaction level modeling:
an overview,” in IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Syn-
thesis, 2003, pp. 19–24.

[6] J. Aynsley, OSCI TLM-2.0 LANGUAGE REFERENCE
MANUAL. Open SystemC Initiative (OSCI), 2009.

[7] “IEEE standard for software and system test documen-
tation,” IEEE Std 829-2008, 2008.

[8] N. Wilde and M. C. Scully, “Software reconnaissance:
Mapping program features to code,” Journal of Software
Maintenance, vol. 7, pp. 49–62, January 1995.

[9] W. Wong, S. Gokhale, J. Horgan, and K. Trivedi,
“Locating program features using execution slices,” in
Application-Specific Systems and Software Engineering
and Technology, 1999. ASSET ’99. Proceedings. 1999
IEEE Symposium on, 1999, pp. 194 –203.

[10] T. Eisenbarth, R. Koschke, and D. Simon, “Locating

Fig. 6. Highlighted code in modifier module of feature F2

features in source code,” IEEE Trans. Software Eng.,
vol. 29, no. 3, pp. 210–224, 2003.

[11] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization
for fault localization,” in Proceedings of the Workshop
on Software Visualization, 2001.

[12] R. A. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold,
“Lightweight fault-localization using multiple coverage
types,” in ICSE, 2009, pp. 56–66.

[13] J. Malburg, A. Finder, and G. Fey, “Automated feature
localization for hardware designs using coverage met-
rics,” in Design Automation Conf., 2012, pp. 941–946.

[14] S. Apel and C. Kästner, “An overview of feature-
oriented software development,” Journal of Object
Technology (JOT), vol. 8, no. 5, pp. 49–84, July/August
2009.

[15] “Gcov - using the gnu compiler collection (gcc),”
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[16] D. Große, R. Drechsler, L. Linhard, and G. Angst, “Ef-
ficient automatic visualization of SystemC designs,” in
Forum on specification and Design Languages, 2003,
pp. 646–657.

[17] C. Genz, R. Drechsler, G. Angst, and L. Linhard, “Vi-
sualization of SystemC designs,” in IEEE International
Symposium on Circuits and Systems, 2007, pp. 413–416.

[18] M. Michael, D. Große, and R. Drechsler, “Analyzing de-
pendability measures at the Electronic System Level,”
in Forum on specification and Design Languages, 2011,
pp. 1–8.

[19] “PlaystationTM move motion controller,”
http://uk.playstation.com/psmove.

[20] J. Bennett, Or1ksim User Guide, 2010.
[21] D. Ballard, “Generalizing the hough transform to detect

arbitrary shapes,” Pattern Recognition, vol. 13, no. 2,
pp. 111 – 122, 1981.


