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Abstract—Speedpath diagnosis is one of the major chal-
lenges in designing high-performance Very-Large-Scale Integrated
(VLSI) circuits due to timing variations caused by process
variations and environmental effects. In this paper, an efficient
approach to automate speedpath debugging is presented. The
approach relies on converting the timing behavior of a circuit
and its corresponding timing variations into functional domain.
Afterwards, a SAT-based debug engine is utilized to extract po-
tential failing speedpaths. The experimental results on ISCAS’85
and ISCAS’89 benchmark suites show that our approach achieves
a 63% decrease in the size of model resulting in 54% decrease
in the debugging time compared to previous work while having
a high diagnosis accuracy.

I. INTRODUCTION

Debugging of speedpaths is a major concern in developing
high performance VLSI circuits. At the post-silicon stage, a
speedpath may violate timing constraints due to timing vari-
ations induced by process variations and other environmental
effects. After detecting a speed failure due to frequency con-
straints [1], the debugging starts to identify failing speedpaths.
But this process requires a large effort which consumes a
significant portion of the IC development cycle. In this case,
automated approaches to debug speedpaths can reduce the
development time of IC products.

The work in [2] utilizes integer linear programming to
diagnose segments of failing speedpaths caused by process
variations. On-chip delay sensors are used in [3] to improve
timing prediction in order to isolate failing speedpaths. Failure
logs are processed in [4] at various slower-than-nominal clock
frequencies to enhance the diagnosis accuracy. Delays of a
small set of representative speedpaths are measured in [5]
to predict failing speedpaths using a statistical learning-based
approach. The work in [6] uses at-speed scan test patterns to
debug failing speedpaths. The real-time visibility of speed-
paths is provided by using trace buffers in [7] to diagnose
speedpaths. The work in [8] uses fault dictionary as well
as forward propagation and backward implication techniques
to diagnose stuck-at, stuck-open and delay faults. Diagnosis
based on fault dictionaries is computationally efficient. But this
requires a tight link between test generation and observation of
erroneous behavior. Moreover, typically no model for variation
is underlying dictionary based diagnosis.

The work in [9] investigates the relationship between the
quality of the test vectors for post-silicon validation and the
accuracy of yield-performance predictions. Functional tests
and implications are utilized in [10] to automate speedpath
debugging. Using only functional implications without incor-
porating timing information limits the diagnosis accuracy. The
work in [11] presents a model based on Boolean satisfiability
to automate debugging. But no timing information is included
in the model. A timing analysis tool is proposed in [12] that
integrates a pattern-dependent delay model into its analysis.
An approach to automate the debugging of failing speedpaths
has been presented in [13] using Boolean satisfiability. The
approach constructs a time accurate model of a circuit based
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on a fine-grained but discrete time unit. Copies of a gate are
used to represent the value of a gate at different points in time.
Using multiple copies of a gate increases the size of the model
and consecutively increases the debugging time.

This paper presents an efficient approach to automate speed-
path debugging which integrates static timing analysis and
functional analysis in order to efficiently construct a compact
timing model of a circuit. As a result, the debugging time
decreases significantly. Given an erroneous behavior observed
on circuit outputs due to timing variations, a debugging
instance based on Boolean satisfiability is created to auto-
matically extract potential failing speedpaths. The approach is
also utilized to debug an overclocked circuit which may fail
to produce the expected outputs under timing variations. In
comparison to previous work in [13], the experimental results
on ISCAS’85 and ISCAS’89 benchmark suites show a 63%
decrease in the size of the model resulting in 54% decrease
in the debugging time. At the same time, our new approach
achieves a high diagnosis accuracy.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminary information. Our methodology
is presented in Section III. Section IV explains effects of
timing variations and overclocking on the function of a circuit.
Then in this section, the debugging model and algorithm
are demonstrated. Section V presents experimental results on
benchmark circuits. The last section concludes the work.

II. PRELIMINARIES

The amount of time that a signal needs to propagate from
the component inputs to its outputs is called Delay. Timing
variation is a change of the component’s delay. An increase
of the component delay due to timing variation is called
slowdown. A decrease of the component delay due to timing
variation is called speedup.

The Arrival Time (AT) of a signal is the time elapsed for
a signal to arrive at a certain point. The maximum arrival
time AT},q, (minimum arrival time AT,,;,) at a certain point
of a circuit is the maximum (minimum) amount of the time
which a signal requires to propagate from primary inputs to
that point. The Propagation Time (PT) of a certain point of a
circuit along a particular path is the time required for a signal
at that point to propagate to the output.

Each combinational circuit is represented by a directed
acyclic graph G = (K, E), referred to as the circuit graph,
where K is the set of circuit nodes and F, the set of edges,
corresponds to the gate input-output connections in the circuit.
The successors of a node g € K are given by a set of nodes
A = {g;Vj,(g,9;) € E}, |A| is the number of successors
of g. The predecessors of a node g € K are given by a set
of nodes B = {g;|Vj,(g9;,9) € E}, |B| is the number of
predecessors of g. A path P from node g; to node g, is a
sequence of nodes (g1, go, ..., 9r) With (g;,9:11) € E.

III. METHODOLOGY

An overview of our methodology is shown in Figure 1. Post-
silicon validation of correct timing behavior involves applying
test vectors to a chip and clock shrinking [14] [15]. In Figure
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Fig. 1.
1, this step is done in a testbench. When an error is observed
on outputs or flipflops, this error is returned as an Erroneous
Trace (ET). An erroneous trace includes the activating test
vectors at the specified frequency and the observed error. An
erroneous trace includes at least the input vectors of two clock
cycles and is denoted as ET(INg,IN1,0O2,T). Parameters
INg and I N, are the test vectors of two consecutive clock
cycles causing an error. The observed error and the clock
period are shown by parameters Oz and 7.

A slowdown increases the delay of some paths. These
paths may violate the frequency constraint and may create an
erroneous trace. In this case, our goal is to find speedpaths
which have failed and have created the erroneous output
of the corresponding ET. To automated debugging, we also
convert the timing behavior of the circuit in the presence of
variations into the functional domain. In Figure 1, the Instance
Creation engine constructs a functional model. The inputs of
the instance creation engine are a netlist, a delay library, the
clock period 7' and the timing variation v. We discuss the
instance creation engine in Sections IV-B and IV-C in detail.

Having the debugging instance and an ET, debugging starts.
First the inputs and output of the debugging instance are con-
strained according to the values of the corresponding ET. Then,
debugging investigates whether a timing variation on a gate is
observable as the erroneous output value of the corresponding
ET. If debugging finds solutions, they are returned as fault
candidates F'C's and the algorithm terminates. Otherwise, if no
solution is found, the timing variation v increases. Then, a new
instance according to the new timing variation is created. This
procedure repeats until the timing variation reaches maximum
timing variation V.

In the following, first we investigate the effects of tim-
ing variations and overclocking on the function of a circuit
(Section IV-A). Then, our debugging model and algorithm are
presented which are able to diagnose failing speedpaths under
timing variations and overclocking.

Overview of proposed methodology

IV. SPEEDPATH DEBUGGING
A. Overclocking versus Timing Variation

In this section, first we explain the effect of overclocking
on the function of a circuit [16]. Then, the effect of timing
variations on the function of a circuit is investigated and
compared to overclocking. Finally, a model is constructed
which is able to convert the timing behavior of not only
a normal circuit but also an overclocked circuit into the
functional domain under timing variations.

Considering D and T as the delay of the circuit and the
clock period, respectively, the output at clock cycle i+1 (O;41)
depends on the inputs of the following clock cycles [16]:
IN;, IN;_1, ..., IN,_ b=[D/T] -1
The indices indicate the clock cycles. For example, when D =
10 and T" = 9, the output at clock cycle 2 (O3) depends on the
inputs of clock cycles 1 and 0 (I Ny, INy). In the remainder
of the paper, to sake of simplicity, we discuss the case in
which output Oy depends on the inputs of two previous clock
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Fig. 3. Overclocked circuit, T =9

cycles IN; and I Ny. In this case, the signals on longer paths
fail to arrive at outputs as their delay is longer than the clock
period. Therefore, the output at clock cycle 2 (O3) is affected
by the inputs of clock cycle 1 (I [N1) through shorter paths and
the inputs of clock cycle 0 (I Ny) through longer paths. The
function of the circuit changes such that the output depends on
a special combination of /N1 and I Ng. In the following, we
explain how to construct the new function with an example.

In the original circuit of Figure 2, first AT,,,, and
AT, are calculated by traversing the circuit from inputs
to outputs. In the figure, the arrival times are shown as a
pair (ATin, ATmay). Afterwards, by traversing the circuit
from output to inputs through a path, the propagation time
of each point of the path is calculated. In Figure 2, the
propagation time PT of each point is written after arrival
times. The number on each point p of the circuit denotes
(AT in, AT maz) + PT,. During the backward traversal along
a path, three cases IV, C' and I may occur:

N if ATpas + PT, < T,
C if T < AT\in + PT),
I if ATpin + PT, < T < ATmas + PT,.

Case(p) = (1)

Cases N, C' and [ are also called normal cases. Having the
case of each point in the circuit, the compact timing model
of a circuit in the functional domain can be constructed. In
case N (Non-critical case), the signal at point p of the circuit
has enough time to be propagated to the output along the
corresponding path. Because the sum of the maximum arrival
time from inputs to that point of the circuit (AT},q,) and
the required time to propagate a signal from that point to the
output is smaller than clock period 7. This point of the circuit
is called non-critical point and is denoted by N. In this case,
the function of this point of the circuit depends on only some
inputs of I /N which fall in the input cone of the corresponding
point.

Case C (Critical case) implies a critical point and is denoted
by C. As in this point, no signal has enough time to propagate
to the output, the function of this point depends on only
some inputs of INg which fall in the input cone of the
corresponding point. In case I (Indefinite case), the function of
point p is affected by a combination of inputs /N, and I N.
The backward traversal starting at an I point always leads to
independent C' and N points.



Fig. 4. Faulty circuit with a slowdown at gate a, T = 10

Considering the example of Figure 3, when 7' = 9, the clock
is overscaled. Because the clock period (1T' = 9) is less than
the delay of the longest path (D = 10). Therefore, output Os
depends on a combination of /N and I Ny. In this example,
point Os satisfies the condition of case I and is marked as I.
In Figure 3, a point case is written in capital on top of the wire.
A wire name is written by a lower case letter under the wire.
By backward traversal of point O, this case is decomposed
to case C' and case N. Inputs A and B are critical and are
considered at clock cycle 0. Other inputs are non-critical and
considered at clock cycle 1. In the figure, non-critical parts
are shown by green color. Other parts have red color.

A timing variation may occur at every point in the circuit.
In the example circuit of Figure 4, we assume that there is a
slowdown of one time unit at the output of gate a. Therefore,
the delay of gate a increases from 1 to 2. When 7" = 10 and
there is no timing variation, the circuit has normal behavior.
But by having a timing variation at point a, some paths of
the circuit become critical. In this example, path (A4, a, ¢, O)
becomes critical. Therefore, input A is taken at clock cycle 0.
Although the overclocking has the same effect on all paths, i.e.,
decrease of the clock period for all paths of the circuit, timing
variation may affect only some special paths of the circuit,
i.e., increase of the delay for some paths of the circuit. This
is seen by comparing Figure 3 and Figure 4.

Having an overclocked circuit, some paths are critical and
some paths are non-critical. In this case, a slowdown fault may
change the function of a circuit more or less severely. This case
is depicted in Figure 5. In the example, 7" is 9 and there is a
slowdown fault at the output of gate f. Therefore, more paths
become critical. If a section of the circuit has contributed in
both a critical path and a non-critical path, that section of
the circuit is duplicated. In the example of Figure 5, gate e
contributes in one critical path (D, e, f, g, h, O) and one
non-critical path (D, e, i, h, O). Thus, it is duplicated such
that in the critical path the input is taken from clock cycle 0
(Dy) and in the non-critical path the input is taken from clock
cycle 1 (Dy).

We assume that the function of a gate itself does not change.
However, there can be more precise models which can also
change the function of a gate. Assume that there is a signal
which has been propagated and arrived at the middle of a gate
and does not have enough time to propagate to the output
of the gate. Therefore, the function of a gate can change
depending on internal structure of a gate.

B. Debugging Model

A debugging model is an instance including timing variation
models. The model is able to activate a timing variation at
every point of a circuit, i.e., it is able to change the function
of each point of a circuit due to an activated timing variation.

In the previous section, we showed what happens if a
slowdown fault at a special point of a circuit is activated.
However, a slowdown fault may occur at every point of a

Fig. 5.
circuit and may change the function of the corresponding
points and circuit outputs. Therefore, we add timing variation
as a parameter to Formula 1 in order to obtain the timing
behavior of each point of the circuit. The new formula is
written as follows:

Overclocked circuit with a slowdown at gate f, T =9

N/
Case(p,v) =< C’

if ATmas + PTp+v < T,
if T < ATpmin + PTp + v,

I if ATpin + PTp+v < T < ATmaz + PTp + v.

@)

In this formula, parameter v denotes the considered slow-
down at point p. Cases N’, C’ and I’ are also called variation
cases. These cases indicate the case of a point of a circuit
when a timing variation (slowdown) occurs. In case N’, even
when having slowdown v, point p is a non-critical point. Case
C' denotes a critical point when considering slowdown v. In
case I', the function of point p, with considering slowdown v,
depends on a combination of the inputs of clock cycle 1 and
clock cycle 0.

The normal case of point p in a circuit can be N, I or
C. While the variation case of point p can be N’, I’ or
C’, which show the case of point p when a timing variation
occurs. The possible transitions from a normal case to a
variation case are shown in Figure 6 (a). In the following,
a transition is denoted by a dot. For example a transition from
case N to case N’ is denoted by N.N’. When the normal
case of a point is N, a slowdown increases the propagation
time of the corresponding point. Therefore, case N may be
converted to cases N’, I’ or C', i.e., transitions N.N’, N.I'
or N.C' may occur. Also increasing the propagation time
in case I may lead to cases I’ or (', i.e., transitions I.I’
or I.C'. The transitions including an indefinite normal case
(I) or an indefinite variation case (I’) are called indefinite
transitions. Indefinite transitions include N.I’, I.I’ and I.C".
Other transitions are called definite transitions: N.N', N.C'
and C.C".

As the arrival times are zero for primary inputs, there is
no indefinite case for a primary input. Therefore, the primary
inputs can have only non-critical and critical cases. The tran-
sition states for a primary input are shown in Figure 6 (b). If a
point of the circuit has the non-critical case (Case(p) = N),
but it is converted to a critical point when considering timing
variation v (Case(p, v) = C'), this variability is modeled
by inserting a multiplexer at point p changing its behavior in
order to debug the circuit.

In the example of Figure 7, clock period 7" is 10 and there
can be a slowdown of one time unit in every point of the
circuit. In this example, Case(A) = Case(a) = N, while
Case(A,1) = Case(a,1) = C'. Therefore, a multiplexer at
point A and one at point a is inserted in order to change the
timing behavior of the corresponding points. Points B and b
also have the same conditions. Moreover, these sections of
the circuit are duplicated enabling to model the effect of both
clock cycle 1 and clock cycle 0. Therefore, gates a and b are
duplicated. If there is a timing variation for example at point
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Fig. 6. Transitions from normal cases to variation cases for a point p: (a) p
is an internal point, (b) p is a primary input
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a, the corresponding multiplexer is activated. In this case, the
input is taken from clock cycle 0. Otherwise, the input is taken
from clock cycle 1. From an input with a multiplexer on it,
along the successor nodes, the multiplexers are also inserted
at the successor nodes whose normal cases or variation cases
are indefinite, i.e., successor nodes with indefinite transitions.

As the debugging instance of Figure 7 shows, a multiplexer
modeling timing variation can be activated in order to change
the function of the circuit according to a point at which a
slowdown occurs. The paths including multiplexers are called
potentially-critical paths.

In the overclocked circuit of Figure 8, paths (A, a, ¢, O) and
(B, b, ¢, O) are critical paths. In this case, a timing variation of
one time unit renders some paths as potentially-critical paths,
i.e., a timing variation on each point of this path can convert
the non-critical path to a critical path. Paths (C, d, f, g, h, O)
and (D, e, f, g, h, O) are potentially-critical paths. The gates
on potentially-critical paths are duplicated in order to model
the effect of timing variations in the functional domain.

For debugging, the inputs and the output of the debug-
ging instance are constrained to the inputs and the output
values of the corresponding erroneous trace (ET). Then, the
debugging engine answers the following question by activating
the multiplexers: If there is a timing variation at a point of
the circuit, can the erroneous behavior of the corresponding
erroneous trace be observed? This investigation is performed
by activating the select lines of multiplexers and observing its
effect on the output. If the debugging instance is satisfiable, the
debugging returns a set of fault candidates. Otherwise, timing
variation v increases and a new instance is constructed until
reaching maximum timing variation V.

C. Instance Creation Algorithm

Figure 9 shows the algorithm to create the debugging
instance in pseudocode. The inputs of the algorithm are an
original circuit, a delay library, clock period 7' and timing
variation v. In the algorithm the original circuit is traversed
and a new circuit is constructed on the fly. A wire in the
original circuit is called original wire. A wire in the new circuit
is called new wire. For each wire of the original circuit, four
flags are considered: N.N’, C.C’, N.C', Indefinite (line 3).
For example, if the flag N.N’ is 1, it shows that the original
wire has already been visited through a non-critical path. In
this case, the corresponding new wire in the new circuit has
already been saved in the variable wy_y+. For case N.C’, two
variables are considered: one variable to save the new wire
for the clock cycle 1 (non-critical wire wy ¢), one variable
to save the new wire for the clock cycle 0 (critical wire wy ).

If an original wire is visited for the first time through a
non-critical path, the flag N.N’ is set. If this original wire
is again visited through another non-critical path, we do not
traverse back the original wire again. Only its corresponding
stored new wire is connected to the parent node. There is the
same scenario for case C.C’ and case N.C'.

In line 6, AT,,;,, and AT, are calculated by Static Timing
Analysis (STA). Then, the algorithm traverses the circuit back
starting at each Primary Output (PO) (lines 7-11). In line 10,
the newly created outputs in the new circuit are stored in

Fig. 7. Debugging instance, T = 10, slowdown = 1

Fig. 8. Debugging instance, T = 9, slowdown = 1

set New_Out. The inputs of function Traverse are an original
gate and its propagation time (line 13). Function Traverse
constructs a new gate (lines 36-42) after all of its inputs in
the original circuit have already been visited. The output of
function Traverse is the output of the newly created gate in
the new circuit. In line 15, each input in of original gate
gate is selected iteratively. The case of input in is calculated
according to Formula 1 and Formula 2 (line 17). The cases
are categorized into definite cases and indefinite cases. In the
definite cases, the behavior of the point in the normal case and
in the case of a timing variation is certain and fixed. Lines 19,
23, and 27 handle the definitive cases. In the indefinite cases
(line 31), the behavior of the point in the normal case or in
the case of a timing variation is not known in advance, i.e.,
the function of this point of the circuit depends on a special
combination of the inputs of clock cycle 1 and clock cycle 0.
This combination may change depending on the propagation
time of the current point in a path.

If a definite point has already been visited (lines 20, 24,
and 28), it is not traversed back again through a path with
the same case. In this case, only the stored wire of the corre-
sponding point is used to create the parent node. Otherwise,
the backward traversal continues (lines 21, 25, and 29). In the
algorithm, whenever an indefinite case is visited, the backward
traversal continues (line 33) until reaching a definite case.

After traversing all of the inputs of an original gate, a new
gate is created. If at least one of the gate inputs is a Primary
Input (PI) with case N.C’ (potentially-critical point) (line 36),
or one of the gate inputs is along a potentially-critical path
(line 37), then two gates and one multiplexer are created in
the new circuit (lines 38-40). This case can be seen in the
example of Figure 7 where gate a, gate a’, and a multiplexer
are created. Otherwise, one new gate is created (line 42). After
creating the new gate, the output of the new gate is saved in
its corresponding variable on the original gate, and also its
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function DBG_Instance (In: Circ, DelayLib, T, v)

Orig_Wire Flags: N.N’, C.C’, N.C’, Indefinite
Orig_Wire New_Wires: wy. N/, Wo.cry WN.C7s Wiy o

STA()
foreach out € PO do
{
gate = pre(out)
New_Out = New_Out U Traverse(gate, 0)
}

W_out Traverse(gate, PT)
foreach in € gate.inputs do

switch Case(in).Case(in,v)
{
case N.N':
if NN ' ==1 then W_in=W_inUwy n/
else W_in = W_in U Traverse(pre(in), PT + gate.D)

case C.C':
if C.C'’==1 then W_in=W_inUwg. ¢
else W_in = W_in U Traverse(pre(in), PT + gate.D)

case N.C':
if NC'==1 then W_in=W_inUwy.c U w?v'c,
else W_in = W_in U Traverse(pre(in), PT + gate.D)

case [.I'||I.C" || N.I'":
// Indefinite
W_in = W_in U Traverse(pre(in), PT + gate.D)
} 1
if (Jin: in € PI && incurrent_case == N.C’) 11
(Fw: weW_in && w is mux_out) then
W_out = W_out U Create_Gate(W _in)
W_out = W_out U Create_Gate' (W_in)
W_out = W_out U Create_Mux()
else
W_out = W_out U Create_Gate(W _in)

Set_Flags_and_New_Wires(gate.output, W _out)
return W_out

}

end function

Fig. 9.
corresponding flag is set (line 44).

In sequential circuits, the error may be detected several
clock cycles after fault activation. In this case, the sequential
circuit is unrolled as many times as the number of clock cycles
constituting the erroneous trace. In each unrolled clock cycle,
a debugging instance is created where its output depends on
the inputs and state bits of two clock cycles.

Debugging Instance Creation

V. EXPERIMENTAL RESULTS

In this section, we use our proposed debugging approach to
debug logic circuits under timing variations. The experiments
are carried out on a Dual-Core AMD Opteron(tm) Processor
2220 SE (2.8 GHz, 32 GB main memory) running Linux.
The combinational and sequential circuits of ISCAS’85 and
ISCAS’89 benchmark suites are used to evaluate our approach.
We synthesize the circuits using Synopsys Design Compiler
with Nangate 45nm Open Cell Library [17]. The speedpath
debugging approach described in this paper is implemented
using C++ in the WoLFram environment [18]. For the experi-
ments, one time unit is 0.01ns. MiniSAT is used as underlying
SAT solver [19].

We implemented a simulation testbench using Verilog in the
ModelSim environment. The simulation testbench is utilized to
obtain the effect of timing variations on the outputs. There are
two instances of a circuit in the simulation testbench: golden
instance and faulty instance. The outputs of these two instances
are compared to detect an error and constitute an erroneous

trace. A single slowdown fault of one time unit is injected
in the circuit to create a faulty instance. Several random
points in the circuit are chosen as fault locations. Random
test vectors are generated and applied to the golden instance
and the faulty instance of the circuit at a clock period T'. If no
error is observed for the activated faults, the clock period is
decreased (clock shrinking). Using a shorter clock period, the
procedure repeats until erroneous behavior is observed. Clock
shrinking and random test vectors can activate the timing
faults on short paths. Therefore, timing faults on short paths
can also be diagnosed. Test vectors activating the fault at the
specified frequency and the corresponding erroneous output
values constitute an erroneous trace. The erroneous trace is
given to the debugging engine. Having the initial erroneous
trace, debugging starts to find potential fault candidates.

The experimental results are presented in Table 1. The table
shows the circuit name (first column), the total number of
gates (#Gates), the required run time (Time) measured in CPU
seconds (s), and the final number of fault candidates (#FC).
In the table, a column with name T'AM shows the results of
the approach presented in [13]. A column with name NEW
indicates the approach presented in this paper.

The total number of gates in an original circuit, TAM and
our instance is shown in columns 2 through 4. Column 5 shows
the amount of decrease in the size of the NEW model in
comparison to the TAM model in percent. The times in the
table are indicated as the required time to create a debugging
instance (Instance Creation Time), the required time to debug
(Debugging Time) and the total time. Column 12 shows the
amount of decrease in the total time of the NEW approach
in comparison to the TAM approach in percent.

In Section #F'C of the table, column Gate shows the total
number of gates returned as fault candidates. In this column,
each fault candidate is a gate indicating if a slowdown of
one time unit at the appropriate time step on the output of
the corresponding gate occurs, the erroneous behavior of the
erroneous trace is created. The total number of possible paths
constituted by the gates in column Gate is shown in column
Path. A path does not necessarily start at a primary input node
reaching a primary output node. The path can be a segment in
the middle of the circuit. The length of the shortest path from
a real fault location to the fault candidates is shown in column
Dist. Therefore, if the fault candidates include the real fault
location, the distance is zero. A smaller number of paths in
Path with a smaller number of gates on them (Gate) with a
shorter distance from a real fault location indicates a higher
diagnosis accuracy. The diagnosis accuracy can be increased
by having higher quality erroneous traces [20]. One advantage
of our approach is automatically extracting a segment of a path
as fault candidate.

As the table indicates, the number of gates in our model is
always smaller than the number of gates used in the approach
in [13] (comparison of column 3 and column 4). Therefore, the
memory consumption of our approach is less than the TAM
approach. On average, our approach needs 2580 gates while
the TAM needs 7030 gates which implies the new approach
has 63% decrease in the size of the model in comparison to
the TAM.

The required time to create a debugging instance in the
new approach is always shorter than the TAM approach. This
decrease of the instance creation time is tangible especially
for large and complex circuits. The debugging time depends
on not only the size of the model but also on the number of



TABLE I
SPEEDPATH DEBUGGING

Circuit #Gates Instance Creation Time (s) Debugging Time (s) Total Time (s) #FC
Comb. Original TAM NEW %Decrease TAM NEW TAM NEW TAM NEW %Decrease | Gate Path  Dist.
cl7 6 16 9 43.75 0.00 0.00 260.63 267.22 260.63 267.22 -2.53 2 1 0
c432 115 7128 3089 56.66 241.11 0.16 2156.11 1999.59 2397.22 1999.75 16.58 20 1 0
c499 179 1824 1429 21.66 13.58 0.10 294.75 287.52 308.33 287.62 6.72 2 1 0
c880 172 2860 534 81.33 45.39 0.09 1796.25 1631.90 1841.64 1631.99 11.38 17 1 0
c1355 238 6044 4215 30.26 170.95 0.19 288947 2462.80 3060.42 2462.99 19.52 26 2 0
1908 142 2240 276 87.68 18.19 0.04 391.61 372.61 409.80 372.65 9.07 3 1 0
2670 280 3980 776 80.50 109.40 0.32 2022.07 2044.68 213147 2045.00 4.06 19 1 0
c3540 391 22934 5314 76.83 3063.39 0.40 1061.53 674.73 412492 675.13 83.63 6 2 0
c5315 632 7714 1381 82.10 504.08 0.89 827.67 768.74 1331.75 769.63 4221 6 3 0
c7552 772 24738 15533 37.21 4008.44 4.26 3568.92 233299 757136 233725 69.15 22 | 1 0
Seq.
s27 9 36 29 19.44 0.01 0.00 361.54 374.11 361.55 374.11 -3.47 3 1 0
5298 59 414 125 69.81 0.20 0.01 64791 652.75 648.11 652.76 -0.72 6 1 0
s386 67 262 146 44.27 0.09 0.01 54374 546.38 543.83 546.39 -0.47 5 2 0
s444 83 554 184 66.79 0.53 0.03 749.76 738.20 750.29 738.23 1.61 7 1 0
$526 97 568 219 61.44 0.60 0.02 745.57 754.66 746.17 754.68 -1.14 7 1 0
s713 96 1726 592 65.70 18.55 0.06 1439.69 1301.63 1458.24 1301.69 10.74 13 1 0
s838 130 956 340 64.44 6.77 0.11 1167.48 1123.31 1174.25 112342 433 11 1 0
s953 216 1670 367 78.02 16.85 0.11 990.54 960.95 1007.39 961.06 4.60 9 1 0
s1196 280 4244 591 86.07 111.89 0.12 2370.67 2078.69 2482.56 2078.81 16.26 21 3 0
51238 278 5046 742 85.30 158.46 0.12 1729.87 1528.15 1888.33 1528.27 19.07 15 1 0
51494 315 2078 398 80.85 22.38 0.09 41531 374.21 437.69 374.30 14.48 3 1 0
$5378 635 3800 1556 59.05 143.61 281 844.62 752.11 988.23 754.92 23.61 7 1 0
$9234 813 7894 3621 54.13 428.18 6.24 1159.88 951.07 1588.06 957.31 39.72 9 2 0
515850 1537 26258 3230 87.70 5478.62 41.89 1145.70 580.37 6624.32 622.26 90.61 5 1 0
835932 3630 7606 4178 45.07 1374.00 | 249.00 745.58 567.67 2119.58 816.67 61.47 4 1 0
$38584 6438 40188 18214 54.68 11123.10 | 423.06 1198.25 264.74 12321.40 687.80 94.42 1 1 0
Average 677.31 7029.92 | 2580.31 63.30 1040.71 28.08 121250 1015.07 2253.21 1043.15 53.70 96| 1300

fault candidates. When the number of fault candidates is larger,
the solver (debugging engine) needs a longer time to extract
fault candidates. The total time is the sum of the instance
creation time and the debugging time. As the table shows, for
the large circuits, the new approach needs a shorter total time.
On average, the new approach spends 1043 seconds while the
TAM approach spends 2253 seconds which indicates a 54%
decrease in the required total time.

For circuit c¢880, the number of gates as fault candidates is
17 which constitute one path. While for circuit c1355, there
are 26 gates as fault candidates constituting 2 paths. Also
the distance is zero which shows the set of fault candidates
includes the real fault location. For all circuits, the diagnosis
accuracy of the new approach is same as the TAM approach
for single faults.

VI. CONCLUSION

We introduced a methodology to automate debugging for
logic circuits under timing variations. The approach was based
on converting the timing behavior of a circuit and its corre-
sponding timing variations into the functional domain. Having
the new circuit in the functional domain and an erroneous
trace, our debugging approach finds potential failing speed-
paths. The experimental results on ISCAS’85 and ISCAS’89
benchmarks suites show a 63% decrease in the size of model
resulting in 54% decrease in the debugging time in comparison
to previous work while our new approach achieves a high
diagnosis accuracy.
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