
Hardware-Software Co-Visualization:
Developing Systems in the Holodeck

Rolf Drechsler Mathias Soeken

Group for Computer Architecture, University of Bremen, Bremen, Germany
Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{drechsle,msoeken}@informatik.uni-bremen.de

Abstract—Modern systems consisting of hardware and soft-
ware are becoming more and more complex. The underlying
data of next generation systems will consist of billions of entries
in terms of components or lines of code. Handling this data
efficiently is one of the major challenges for future EDA. In
order to provide a meaningful preparation for these complex
issues it is inevitable to deal with highly elaborated visualization
techniques. It is unimaginable how data sets of this size could be
grasped without advanced plotting methods.

Although a lot of effort has been put into research for
visualization of hardware and software, techniques hardly exist
that consider them in combination. Besides that, in most cases
visualization techniques concentrate on the illustration of the
system’s structure and behavior, e.g. to ease debugging. However,
far more information can be integrated. As an example, in the
context of verification the accentuation of coverage metrics on
top of the structural visualization of a system would immediately
pinpoint the verification engineer to areas that are poorly vali-
dated. Furthermore, when considering the co-design of hardware-
software systems, design exploration can be carried out much
easier when the designer gets immediate visual feedback.

Inspired by recent achievements in visualization methods and
the invention of sophisticated machinery, in this invited paper we
propose the use of Hardware-Software Co-Visualization (HSCV).
The potential of current techniques as well as their limitations
will be demonstrated. Furthermore, we are seeking for alternative
methods in system visualization that go beyond monitors and
printed pages. Techniques from 3D rendering and virtual reality
are utilized for this purpose leading to a holistic environment
in which complex systems can be grasped within seconds just as
huge data sets in the context of plots. State-of-the-art is presented
and directions for future work are outlined.

I. INTRODUCTION

Algorithmic visualization has its roots in flowcharts initially
been proposed in [1]. Since then a vast amount of approaches
to visualize both complex hardware and software systems has
been presented for an ease of comprehension. With growing
complexity of the developed systems also requirements for
the visualization methods increase. As an example, it is
not practical to visualize the precise data flow of modern
processors using flowchart diagrams.

Independently from each other various approaches have
been presented that either visualize hardware or software
systems emphasizing on metrics that are particularly important
for the respective area. However, since in modern systems the

borders between hardware and software are rather fluid, new
visualization techniques are required that take both hardware
and software aspects into account. Moreover, besides the
structure and the behavior of a system, also the integration
of quality metrics into the visualization is of importance.

In this invited paper, we present a vision for Hardware-
Software Co-Visualization based on ideas from 3D software vi-
sualization. We have implemented our ideas based on SystemC
TLM designs that are used for modern systems containing both
hardware and software. Furthermore, we envision the use of
virtual worlds in order to facilitate an easy orientation in the
3D visualization.

The paper is structured as follows. The next section reviews
related work in both hardware and software visualization.
Based on the related work, first ideas and results for HSCV
are presented in Section III. Afterwards, Section IV provides
ideas on how designers can interact with the visualizations
through virtual worlds and an implementation is sketched in
Section V. Section VI concludes the paper.

II. RELATED WORK

Visualization is an intensively studied field, however, until
now hardware and software systems have mainly been consid-
ered separately.

Fig. 1. CODECITY



Fig. 2. EXTRAVIS

In [2] an approach called CODECITY has been proposed
in which large software libraries are visualized as cities.
Each class represents a building in a city and its dimension
is determined by its number of methods (height) and its
number of attributes (width and length). Classes from the same
package are grouped within a district in the cities; subpackages
form subdistricts and so on. However, connections between
the classes have not been taken into account. Fig. 1 shows the
visualization of the Java IDE jEdit.

The approach presented in [3] called EXTRAVIS

(cf. Fig. 21) focuses on visualizing the dependencies
between software components. In a large two-dimensional
circle [4] all structural entities are placed at the rim in
different dimensions according to their size. Relations
between the entities are emphasized by lines which thickness
provides information on how tight they are coupled, however,
they do not give detailed information about the data flow.

Approaches for hardware visualization differ depending on
the abstraction level they are targeting. At lower abstraction
levels the efficiency of the algorithms is a primary cost crite-
ria [5]. Two-dimensional visualization techniques for SystemC
models have been presented in [6] and [7] and follow the
ideas for visualization at the register transfer level. A typical
hardware visualization of a design at register transfer level is
illustrated in Fig. 32.

III. HARDWARE-SOFTWARE CO-VISUALIZATION

In this section, we describe how the different visualization
approaches that have been proposed in the past (cf. previous
section) can be combined in order to visualize the interaction
between hardware and software, e.g. in embedded or cyber-
physical systems.

Visualization techniques are significantly important when
considering the flood of data we are facing in modern designs.
The amount of data is too large that it can efficiently been
handled by computers and as a consequence human assistance

1Source: http://www.win.tue.nl/~dholten/extravis/text_visible.png
2Source: http://www.concept.de/img/rtl-debugger-and-rtl-viewer-I.gif

Fig. 3. RTLVISION

is required. Visual analytics describes techniques that seek
to provide people with better and more effective ways to
understand and analyze large data sets [8]. Some information is
impractical to measure using a computer, e.g. irregular clusters
of data that appear at different spots, which can however
be grasped efficiently assuming that the data is visualized
appropriately.

Besides the amount of data the multi-dimensionality is
presenting a challenge. In the best case all relevant information
should be visualized at the same time including

• structural information such as lines of code, number of
signals, number of attributes, number of methods, and
connectivity;

• behavioral information such as execution times and sim-
ulation traces; and

• quality metrics such as complexity, maintainability, test
and verification coverage.

But even with three-dimensional visualization schemes in-
corporating all this information is not easy. As a consequence,
we are envisioning to use dynamic visualization techniques
besides static ones as reviewed in Section II. As an example,
the behavior of a system can be visualized by dynamic
techniques. Taken the city metaphor, simulation traces can
be visualized by highlighting the building according to their
activity and the data flow. Techniques from visual analytics
can help to immediately determine irregular behavior that is
hard to detect for a computer program.

To visualize both hardware and software components we
make use of both sides of the base area. Everything above the
ground is considered software and everything below represents
hardware. Coverage information can be visualized by coloring
the progress onto the buildings.



Fig. 4. City visualization scheme in a virtual world

Hierarchies are implemented by having several cities and
districts. Houses can be entered in order to obtain more
information about a certain module. The different processes
and methods can be visualized by means of stories or rooms.
In principle, the multi-dimensionality can also be achieved by
offering different views that focus on different attributes.

Example: We want to illustrate this by means of an ex-
ample. The city visualization scheme can be transferred to
ESL designs by adjusting the considered metrics. Instead
of simple code metrics such as the number of lines or the
number of methods we are rather interested in more advanced
quality metrics as listed above. In particular, we are consid-
ering complexity and maintainability as quality attributes. In
software, condition complexity [9] e.g. measures the number
of linear independent paths in a program. For hardware an
entropy-based concept has been presented in [10]. In our
implementation we target SystemC TLM models, therefore,
we use a local metric that we apply to each SystemC module.
Our metric utilizes the size of the TLM payload data, the
memory allocated within a memory, and the operators used in
all member functions.

The goal of maintainability is to reflect the adaptability and
modifiability of a SystemC module which is required to correct
errors or to improve the performance. For this purpose, we
are using the maintainability index as proposed in [11] and
measure it for each single SystemC TLM module.

In general, the measures we are considering in this work
are based on attributes which are directly measurable based
on the code. There are many other interesting attributes [12]
which may be used additionally or as an alternative.

Fig. 4 shows the application of the quality metrics to
visualize a SystemC TLM model. Every module represents
one building in the city, whereas the height and base area

of each building corresponds to the module’s complexity and
its maintainability, respectively. Furthermore, the connectivity
information of the TLM modules are visualized in terms of
streets that connect the buildings.

IV. ACCESS THROUGH VIRTUAL WORLDS

When implementing the visualization schemes that have
been proposed in the previous section by means of a virtual
world, further possibilities for the designer to interact with
the system can be obtained. By using recent achievements
in virtual reality and corresponding hardware devices, it is
possible to basically be inside the chip. This allows for much
better visualization methods and hence a better comprehen-
sion. Irregularities in the design can easily be noticed by
observing the environment making use of plain intuition, since
in a virtual world a complex scene can be grasped within a
few seconds, emphasizing the effects of visual analytics.

We make use of state-of-the-art rendering techniques as they
can be found in the design of modern 3D computer games.
It is already impressive how much more information can be
brought to a computer monitor by just displaying the data
inside a virtual world in which a character is navigated using
simple keyboard and mouse control. In contrast, in some 3D
visualization tools it sometimes feels cumbersome to bring the
displayed model into the right perspective. We use the city
metaphor described in the previous section for an appropriate
visualization of the design in the virtual world.

By making use of sophisticated hardware devices the virtual
world should actually be entered. There are two important
devices to realize this undertaking, namely a hollow sphere to
control rotation and direction according to the user’s footsteps
and a head mounted display to project the virtual world
directly to the eyes of the designer.



All together, this allows for a true-to-reality experience en-
abling to make use of the designer’s intuition for some design
flow tasks. Also dynamic visualization techniques can easily
be implemented in virtual worlds. An ongoing simulation can
be visualized while the user is just watching the impact on
the scene and detects irregularities by making use of plain
intuition when some things “just look wrong.”

V. IMPLEMENTATION

Although the idea might seem futuristic, all parts that are
needed for an implementation are already existing, and they
only need to be put together appropriately. For this purpose, we
distinguish between the software side and the hardware side.
The software side is responsible for rendering the circuit or
system and displaying it in a three dimensional virtual world,
whereas the hardware side consists of a collection of devices
in order to navigate and control the virtual world.

Development kits such as the Unreal Development Kit3

or the Unity Game Engine4 can be used to create virtual
worlds. While this software usually manages the organization
of the actual world, the navigation of the character, and the
interaction with virtual objects, the creation of 3D assets
should be carried out using off-the-shelf 3D modeling software
such as Blender5.

In order to get a true-to-reality experience we are aiming
for a solution in which the designer can literally enter the
virtual world. For this purpose, we are making use of modern
hardware that allows for navigating the virtual character and
adjusting the visual viewpoint according to the body position.

An example implementation could consists of a hollow
sphere such as the VirtuSphere [13] which can be entered by
a human and can be rotated in any direction by the user’s
steps. The information received from this device can be used
in order to apply an appropriate transformation to the virtual
world thereby enabling the feeling that one can move around
in the world like in a real world.

To amplify the feeling of being in the virtual world that is
displaying the circuit or system being designed, one can make
use of head mounted displays [14] instead of conventional
computer monitors. As a consequence, the virtual world is
directly displayed in front of the eyes and since one monitor
is used for each eye also a more realistic 3D visualization can
be achieved.

Using such an information enhances the access to all rele-
vant information. As a result, the effects described by visual
analytics are emphasized, therefore enabling to solve design
flow tasks that currently cannot be handled automatically by
a computer alone.

3www.unrealengine.com
4www.unity3d.com
5www.blender.org

VI. CONCLUSION

In this paper we have presented Hardware-Software Co-
Visualization. For this purpose, we have reviewed state-of-
the-art visualization techniques and described how they can
be used and extended to visualize systems that contain both
hardware and software. Visualization should help to manage
challenges that cannot be handled by the computer alone
anymore. Techniques of visual analytics are taken into account
in order to make use of human abilities to detect e.g. irregular
patterns in the behavior. We have discussed further metrics that
should be taken into consideration that go beyond structural
and behavioral information. Furthermore, we illustrated how
the implementation in a virtual world can enhance the access
to all relevant information.

ACKNOWLEDGMENTS

The authors thank Daniel Große and Marc Michael for help-
ful discussions and their support in preparing this manuscript
and implementing the prototype.

REFERENCES

[1] H. H. Goldstine and J. von Neumann, “Planning and coding of problems
for an electronic computing instrument,” Tech. Rep. Part II, Volume II,
1947.

[2] R. Wettel and M. Lanza, “Program comprehension through software
habitability,” in Int’l Conf. on Program Comprehension, Jun. 2007, pp.
231–240.

[3] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen,
and J. J. van Wijk, “Execution trace analysis through massive sequence
and circular bundle views,” Journal of Systems and Software, vol. 81,
no. 12, pp. 2252–2268, Dec. 2008.

[4] D. Holten, “Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data,” IEEE Trans. Vis. Comput. Graph., vol. 12,
no. 5, pp. 741–748, Sep. 2006.

[5] R. Drechsler, W. Günther, T. Eschbach, L. Linhard, and G. Angst,
“Recursive bi-partitioning of netlists for large number of partitions,”
Journal of Systems Architecture, vol. 49, no. 12–15, pp. 521–528, Dec.
2003.

[6] D. Große, R. Drechsler, L. Linhard, and G. Angst, “Efficient automatic
visualization of SystemC designs,” in Forum on Specification and Design
Languages, Sep. 2003, pp. 646–658.

[7] C. Genz, R. Drechsler, G. Angst, and L. Linhard, “Visualization of
SystemC designs,” in Int’l Symp. on Circuits and Systems, May 2007,
pp. 413–416.

[8] D. A. Keim, L. Zhang, M. Krstajic, and S. Simon, “Solving problems
with visual analytics: Challenges and applications,” JMPT, vol. 3, no. 1,
pp. 1–11, 2012.

[9] T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308–320, Dec. 1976.

[10] B. Menhorn and F. Slomka, “Design entropy concept: a measurement for
complexity,” in Int’l Conf. on Hardware/Software Codesign and System
Synthesis, Oct. 2011, pp. 285–294.

[11] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development and
application of an automated source code maintainability index,” Journal
of Software Maintenance, vol. 9, no. 3, pp. 127–159, May 1997.

[12] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. Boston, MA, USA: PWS Publishing Co.,
1998.

[13] E. Medina, R. Fruland, and S. Weghorst, “VIRTUSPHERE: Walking
in a human size VR “hamster ball”,” Human Factors and Ergonomics
Society Annual Meeting, vol. 52, no. 27, pp. 2102–2106, Sep. 2008.

[14] T. Shibata, “Head mounted display,” Displays, vol. 23, no. 1–2, pp. 57–
64, Apr. 2002.


