
Incorporating User Preferences in Many-Objective Optimization using
Relation ε-Preferred
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Abstract: During the last 10 years, many-objective optimization problems, i.e. optimization problems with more than
three objectives, are getting more and more important in the area of multi-objective optimization. Many real-
world optimization problems consist of more than three mutually dependent subproblems, that have to be
considered in parallel. Furthermore, the objectives have different levels of importance. For this, priorities
have to be assigned to the objectives. In this paper we present a new model for many-objective optimization
called Prio-ε-Preferred, where the objectives can have different levels of priorities or user preferences. This
relation is used for ranking a set of solutions such that an ordering of the solutions is determined. Prio-ε-
Preferred is controlled by a parameter ε, that is problem specific and has to be adjusted experimentally by
the designer. Therefore we also present an extension called Adapted-ε-Preferred (AEP), that determines the ε

values automatically without any user interaction. To demonstrate the efficiency of our approach, experiments
are performed.

1 INTRODUCTION

Many real-world optimization problems consist of
several mutually dependent subproblems that have
to be optimized in parallel. The so called Multi-
Objective Optimization (MOO) problems and ap-
proaches for solving them have been intensively stud-
ied in the past. For this, in the area of Evolution-
ary Algorithms (EAs) many models and algorithms
for MOO have been presented (Fonseca and Flem-
ing, 1995; Zitzler and Thiele, 1999; Deb, 2001;
Bader and Zitzler, 2011). If more than three opti-
mization objectives are considered, the corresponding
MOO problems are called Many-Objective Optimiza-
tion problems in literature. Especially, real-world op-
timization problems often have more than three objec-
tives (Drechsler et al., 2001; Hughes, 2007; Pizzuti,
2012). Furthermore, several MOO problems in indus-
trial applications consist of subproblems that have dif-
ferent levels of importance. The importance of a sub-
problem is specified by the user and different meth-
ods exist to model these user preferences or priori-
ties (Schmiedle et al., 2001; Wickramasinghe and Li,
2009; Wagner and Trautmann, 2012). Considering
both, many-objective optimization problems and user

preferences, there is a need for algorithms that can
combine these properties.

One classical approach to deal with multiple opti-
mization criteria is the weighted sum approach. It is
often used in industrial applications, since it is easy
to implement and on a first view scales well (see
e.g. (Burke et al., 2004)). If only a small region of
the Pareto-front is of interest, weighted sums can be
used to control the optimization process. The ob-
jectives’ priorities can be set by the choice of the
weights. In the context of Many-Objective Opti-
mization this method reaches its limit, because it is
hard to determine the weights, such that the search is
guided in the desired direction (Drechsler et al., 2001;
Geiger, 2009). Additionally, the weighted sum ap-
proach is unable to find compromise solutions of con-
cave Pareto fronts.

In evolutionary MOO one of the first approaches
was the use of Pareto-optimal elements (Goldberg,
1989). Here, the goal is to explore the Pareto-set of
a given MOO problem, such that as many elements
as possible of the Pareto-set are calculated. To guide
the search, a basic Dominates relation is defined, that
is used to compare the solution elements. Based on
this relation many approaches for MOO have been in-



tensively studied (Fonseca and Fleming, 1995; Zit-
zler and Thiele, 1999; Deb, 2001). But often, these
methods only consider two or three optimization ob-
jectives (Deb, 2001). If many-objective optimization
problems are considered, these methods have several
drawbacks. For example in (Deb, 2001) it is reported,
that the number of individuals in the Pareto-set in-
crease with the number of optimization objectives.
Experiments have shown, that for 20 objectives the
ranking of solutions is nearly impossible. For this,
the ratio of solutions that cannot be distinguished us-
ing the Dominates relation is almost 100%. But, if
EAs are used, a ranking of the solutions is necessary
to guide the search.

To overcome these problems in many-objective
optimization several approaches have been presented
(see e.g. (Fleming et al., 2005; Corne and Knowles,
2007; Ishibuchi et al., 2008; Brockhoff and Zitzler,
2009; Bader and Zitzler, 2011)). A promising ap-
proach in evolutionary many-objective optimization
is objective reduction based on the Dominates relation
(Brockhoff and Zitzler, 2009). There, the considered
objectives are reduced during decision making while
preserving the dominance structure of the considered
optimization problem as much as possible. In (Brock-
hoff and Zitzler, 2009) the reduction concept has been
studied for the multi-objective knapsack problem, for
DTLZ test functions (Deb et al., 2005) with up to
25 objectives and for a radar waveform problem with
nine objectives (Hughes, 2007). The hypervolume
based MOO has also been extended to many-objective
optimization. A method that approximates the hyper-
volume indicator is presented in (Bader and Zitzler,
2011). In (Drechsler et al., 2001; di Pierro et al.,
2007; Li and Wong, 2009; Sülflow et al., 2007) re-
lations are presented that distinguish between solu-
tions that are incomparable if the Dominates rela-
tion is considered. An overview and a comparison of
these methods is given in (Corne and Knowles, 2007;
Ishibuchi et al., 2008).

Furthermore, approaches are presented that con-
sider user preferences in many-objective optimization
(Wickramasinghe and Li, 2009; Auger et al., 2009;
Wagner and Trautmann, 2012). In (Wickramasinghe
and Li, 2009) a user-defined distance metric is used to
guide the search on the basis of the Dominates rela-
tion. The incorporation of user preferences to the hy-
pervolume approach has been investigated in (Auger
et al., 2009; Wagner and Trautmann, 2012).

The approaches in (Drechsler et al., 2001;
Schmiedle et al., 2001; Sülflow et al., 2007) are based
on a relation called Preferred. Relation Preferred is
a refinement of relation Dominates, i.e. a ranking
of solution elements that are incomparable using the

Dominates relation is enabled. This results in a better
guided search if EAs are used. In (Drechsler et al.,
2001) the model has been applied to an optimization
problem from the area of computer-aided design of in-
tegrated circuits. There, five optimization objectives
have been considered in parallel. Experiments have
shown, that Preferred clearly outperforms the Domi-
nates Relation and an approach based on a weighted
sum. In (Schmiedle et al., 2001) Preferred is ex-
tended, such that it can also handle different levels
of priorities. The model is applied to an approach that
makes use of Genetic Programming (Koza, 1992) in
computer-aided designed of integrated circuits.

An extension of Preferred the so-called relation
ε-Preferred has been introduced in (Sülflow et al.,
2007). For this, Preferred is enriched by a parame-
ter ε, where ε defines a radius for each objective. If an
objective is outside this region, the corresponding el-
ements are “punished”. In these examinations exper-
iments are performed, where a complex scheduling
problem is considered, i.e. the Nurse Rostering Prob-
lem (NRP) is solved using an EA. The NRP is of high
practical relevance and consists of several constraints,
i.e. resource planning for employees in a hospital has
to be performed. In the experiments, an example from
a hospital that consists of 26 optimization objectives,
has been considered. It turns out, that two approaches
based on the Dominates relation and Nondominated
Sorting (NSGA-II) could be improved with respect to
quality significantly. Additionally, ε-Preferred out-
performs Preferred with respect to quality and robust-
ness.

In this article relation ε-Preferred is considered
and further extended, such that it can handle different
levels of priorities. Optimization problems like e.g.
the NRP consist of several objectives with problem
specific user preferences. For this, the new relation
model Prio-ε-Preferred is formally introduced. This
relation is used to guide the search of an EA, where
the parameter ε has to be set by the developer. It is
shown by experiments that the convergence behaviour
of the algorithm and the quality of the results depend
on the choice of ε. Thus, a new method is presented,
that allows to determine good choices of ε automati-
cally without user interaction. The resulting method
Adapted-ε-Preferred (AEP) automatically adapts pa-
rameter ε such that the quality of the “hand-crafted”
results can be obtained without user interaction.

To demonstrate the efficiency of Prio-ε-Preferred
and AEP several experiments are performed. The
methods are used to guide the search of an EA for the
NRP, using benchmarks from (Benchmarks, 2012)1,

1In contrast to (Sülflow et al., 2007) benchmarks from



where the user preferences are given. Considering
these benchmarks, the number of optimization objec-
tives ranges from 9 to 17. In the experiments differ-
ent choices of ε are examined such the potential of
Prio-ε-Preferred is shown. A comparison to relation
Dominates (Goldberg, 1989) and method NSGA-II
(Deb, 2001) shows that Prio-ε-Preferred clearly out-
performs these approaches2. Then the influence of pa-
rameter ε is studied in detail. The new method AEP
is applied to the considered benchmarks. It is shown,
that the automatic method AEP is as good as Prio-
ε-Preferred, where parameter ε is adjusted manually.
Notice, that for AEP no user interaction is required.

The paper is structured as follows: In Section 2
previous work is reviewed. Then, the considered ap-
plication, the NRP is explained in Section 3. The
new model Prio-ε-Preferred is described in Section 4.
Then in Section 5 experimental evaluations are per-
formed that demonstrate the properties of the Prio-
ε-Preferred relation. In Section 6 the method AEP
is introduced and experimental results are discussed.
A summary of the proposed relation and methods is
given in Section 7.

2 PRELIMINARIES

To make the article self-contained, we briefly give an
overview on basic techniques in evolutionary multi-
objective optimization and relations proposed in this
field for comparison.

2.1 Multi-Objective Optimization

In general, many optimization problems consist of
several mutually dependent and conflicting subprob-
lems, i.e. usually the improvement in one objective
leads to the deterioration of another objective.

A multi-objective optimization problem is defined
as follows: Given a search space Ω, an evaluation
function f : Ω→ Rm is defined to calculate the fit-
ness vector F(A) : ∀A ∈Ω of size m. Then we have to
minimize (or maximize) the elements of F(A). In the
following we assume, without loss of generality, that
F has to be minimized for all objectives. According
to (Goldberg, 1989) it holds:

(Benchmarks, 2012) are taken. This makes the results com-
parable to other approaches.

2A comparison to a many-objective approach with user
preferences like e.g. performed in (Auger et al., 2009) can
not be directly given, because different modellings of user
preferences are used. But indeed, the modelling of user
preferences as presented here in combination with the hy-
pervolume indicator is an interesting task for future work.

Definition 1. Let A,B ∈Ω.
A≺dominates B :⇔
∃ j : Fj(A)< Fj(B)∧Fi(A)6 Fi(B),1 6 i 6 m.

Based on this, we can describe the Pareto set χ

as
∀p ∈ χ : @q ∈Ω : q≺dominates p.

As can be seen from the definition above, if two
elements A,B ∈ Ω are compared with the Dominates
relation, then A dominates B only if it is less or equal
to B in all objectives and if it is better in at least one
objective. All elements A ∈ Ω in the Pareto-set are
equal or not comparable. Usually, all points in this
set are of interest for the decision maker or designer.

2.2 Relation Preferred

To perform a refinement of the Dominates relation
Preferred is defined. Using the Preferred relation a
set of solutions can be classified into so-called Satisfi-
ability Classes (SC) (Drechsler et al., 2001). Relation
Preferred respects the number of objectives in which
A differs from B:

Definition 2. Let A,B ∈Ω. A≺pre f erred B :⇔
|{i : Fi(A) < Fi(B),1 6 i 6 m}| > |{ j : Fj(B) <
Fj(A),1 6 j 6 m}|.

Using Definition 2 we are able to compare ele-
ments A,B ∈ Ω pairwise more precisely. A is pre-
ferred to B (A ≺pre f erred B) iff i (i ≤ n) components
of A are smaller than the corresponding components
of B and only j ( j < i) components of B are smaller
than the corresponding components of A. We use a
graph representation for the relation, where each ele-
ment is a node and “preferences” are given by edges.
Relation Preferred is not a partial order, because it is
not transitive, i.e. the relation graph can have cycles.
Solutions that are included in a cycle are denoted as
incomparable. They are computed by a linear time
graph algorithm (Drechsler et al., 2001).

2.3 Relation ε-Preferred

To improve the robustness of relation Preferred in
many-objective optimization ε-Preferred has been in-
troduced (Sülflow et al., 2007). Hence, the idea is to
define fitness limits εi,1≤ i≤m, for each dimension.

Definition 3. Let A,B ∈Ω and εi, 1 6 i 6 m

A≺ε−exceed B⇔
|{i : Fi(A)< Fi(B)∧|Fi(A)−Fi(B)|> εi}|>
|{ j : Fj(A)> Fj(B)∧|Fj(A)−Fj(B)|> ε j}|.
ε-exceed additionally takes the distance of the so-

lutions components into account. Using ε-exceed the
extension ε-Preferred is defined as follows:



Definition 4. Given two solutions A,B ∈Ω.
A≺ε−pre f erred B⇔
A≺ε−exceed B∨ (B⊀ε−exceed A∧A≺pre f erred B)

First it is counted how often a solution exceeds the
ε-limits and the better solution is determined. If both
solutions are in the given range Preferred is used for
comparison.
Example 1. Consider some solution vectors fromR3,
i.e. the results of three objective functions:
(7,0,9) (8,7,1) (1,9,6)

Additionally, let εi = 5,1 ≤ i ≤ 3. (7,0,9)
≺ε−pre f erred (8,7,1), because for the second objective
it holds |0− 7| > ε2, where solution (7,0,9) “wins”,
and for the third it holds |9− 1| > ε3, where so-
lution (8,7,1) “wins”. Since each solution has an
ε-exceeding objective, Preferred is used for com-
parison. The same argumentation holds for (8,7,1)
≺ε−pre f erred (1,9,6) and (1,9,6) ≺ε−pre f erred (7,0,9).

3 THE APPLICATION:
UTILIZATION PLANNING
PROBLEM

The problem of utilization planning, i.e. the nurse
rostering problem (NRP) (Burke et al., 2004; Burke
et al., 2012), is very complex and cannot fully be de-
scribed with all details. For this, we briefly highlight
the main aspects to give an idea of the underlying op-
timization problem.

The problem is to determine a schedule for em-
ployees at a hospital. In our examinations schedules
for up to 16 persons for a planning period of 30 days
are computed. The computation of the fitness can be
roughly categorized in three main areas:
1. Rules resulting from ergonomics, e.g. having reg-

ular shifts

2. Restrictions by law, e.g. maximal hours of work
per day or maximal working days per month

3. Rules of the nurse station, e.g. sufficient nurses
per shift

Some of these constraints are “hard” in the sense
that they have to be fulfilled, while others are “soft”,
i.e. they improve the fitness, but also without them
valid schedules result. All together up to 30 optimiza-
tion objectives are influencing the fitness function.
Each one might have a different influence, e.g. some
are linear while others are exponential regarding their
influence.

In our application we make use of benchmarks
for the nurse rostering problem that are reported in
(Burke et al., 2012). The benchmarks are available

Name/Day 1 2 3 4 5 6 7 8 9 ... 30

C. Meyer S S D D V V V - N ... N

J. Smith D D - - N N N - - ... V

J. Doe - - D D D D - - - ... D

J. Blow F F - L L L - - F ... -

J. Bloggs S V V - - N N N - ... -

...

Figure 1: Example nurse rostering schedule

from (Benchmarks, 2012). There, the rules of the
nurse station are modeled as hard constraints. The
remaining optimization objectives are considered as
soft constraints, where a weight for each rule is given
in the benchmark. Thus, a weighted sum can be
constructed in such a way that a single fitness value
is calculated for each employee and schedule. Fol-
lowing this, we get one fitness value for each em-
ployee that has to be optimized in parallel. The fitness
values are stored in an m-dimensional vector, where
m = #employees+1. One dimension gives the objec-
tive function for the hard constraint and the remaining
dimensions the soft constraints for each employee.

Example 2. To give a better understanding of the ap-
proach in Figure 1 a sketch of a schedule is given. De-
pending on the grade of training the optimization al-
gorithm assigns exactly one shift to a person per day.
In this example all given shifts are marked with a let-
ter. These letters have the following meaning: Day
shift (D), Night shift (N), Late shift (L), Vacation (V),
Free shift (F) and Stand-by shift (S). For more details
see (Burke et al., 2004; Burke et al., 2012; Bench-
marks, 2012).

4 RELATION Prio-ε-Preferred

Most often in real world applications the objectives
have different priorities, i.e. one objective is more im-
portant than another objective. For this it is of high
relevance to model the priorities during the optimiza-
tion process. For the NRP the user preferences have
been pointed out in the previous section. In the fol-
lowing we propose a new model that combines multi-
ple optimization criteria with user preferences.

4.1 Definition

To model priorities of optimization objectives in this
approach a new relation Prio-ε-Preferred is defined.
In (Schmiedle et al., 2001) relation Priority Preferred



has been defined that combines relation Preferred
with priorities. Following this, the model proposed
in this approach combines relation ε-Preferred with a
lexicographic ordering of the objectives.

Let us assume that priorities 1,2, · · · ,k are as-
signed to the m objectives in an ascending ordering,
i.e. the lower the index i,1≤ i≤ k, the higher the pri-
ority.

Definition 5. Let p = (p1, · · · , pk) be a priority vec-
tor. pi determines the number of objectives that have
priority i. The priority of an objective is calculated by
the function pr : {1, . . . ,m} → {1, . . . ,k}. The sub-
vector of objectives c|i of priority i is defined as

c|i ∈ Rpi ,c|i = (cr, . . . ,cs)

where

r =
i−1

∑
j=1

p j +1∧ s =
i

∑
j=1

p j.

For A,B ∈ Ω the relation ≺ε−priopre f (Prio-ε-
Preferred) is defined by
A≺ε−priopre f B :⇔
∃ j ∈ {1, . . . ,k} : A| j ≺ε−pre f erred B| j ∧
(∀h < j : A|h ⊀ε−pre f erred B|h∧B|h ⊀ε−pre f erred A|h)

More informally, Prio-ε-Preferred considers the
objectives that have the same priority and then per-
forms comparisons using the ε-Preferred relation on
these objectives. The objectives are considered in de-
scending order of their priority. A solution A is better
than B with respect to relation Prio-ε-Preferred if the
objectives with highest priority of A are ε-Preferred to
B. If they are not comparable or equal, the objectives
with the next priority in descending ordering are con-
sidered and compared using the ε-Preferred relation.
This is done until the better solution, A or B, is found
or all priorities are considered. If no better solution
is found, A and B are denoted as incomparable. For a
deeper insight into the definition above an example is
given:

Example 3. Let us consider a problem with 5
objectives and 3 different priorities. Let c =
(c1,c2,c3,c4,c5) a solution vector and p = (1,3,1)
a priority vector, i.e. one objective has priority 1
(i.e. p1 = 1), three objectives have priority 2 (p2 = 3)
and one objective has priority 3 (p3 = 1).This leads to
the function pr with pr(1) = 1, pr(2) = 2, pr(3) = 2,
pr(4) = 2, and pr(5) = 3 what means that the first
objective has priority 1, the second objective prior-
ity 2, and so on. For priority 2 the projection is
c|2 ∈ R3,c|2 = (c2,c3,c4), since r = 1 + 1 = 2 and
s = 1+3 = 4.

Now, let us consider two solution vectors, A =
(2,7,0,9,15) and B = (2,1,9,6,5). Then it holds,
that B≺ε−priopre f A. For this, first the objectives with

priority 1 are compared. Since they are equal, next the
objectives with priority 2 are compared with relation
≺ε−pre f erred , i.e. (1,9,6) ≺ε−pre f erred (7,0,9) (see
Example 1) which leads to the statement B≺ε−priopre f
A. The last objective has not to be considered any-
more, because it has lowest priority and the deci-
sion, which solution is better with respect to relation
≺ε−priopre f , has already been made.

Then, after a pairwise comparison using Prio-
ε-Preferred analogously to (Sülflow et al., 2007) a
relation graph is constructed. Then the strongly-
connected components are computed to perform a fi-
nal ranking as described in (Sülflow et al., 2007).

4.2 Methods

To test and compare the methods proposed in this pa-
per, a framework of an Evolutionary Algorithm (EA)
that optimizes schedules of the NRP has been used.
Details of representation of the individuals and ge-
netic operators are left out due to page limitation. The
objective function measures the fitness of each indi-
vidual/schedule, i.e. the rules given by the bench-
marks are evaluated and the hard constraint for the
schedule and soft constraints for each employee are
calculated. These optimization rules are given in the
benchmarks. The first objective of the m-dimensional
fitness vector gives the hard constraint and the re-
maining objectives the soft constraints. The priorities
for the optimization objectives are set such that the
first objective, the hard constraint, is of highest prior-
ity 1 and the soft constraints for the employees have
priority 2. Using the notation from Definition 5, for
the two priorities we have p = (1,m− 1), pr(1) = 1
and pr(i) = 2,2≤ i≤ m.

5 EXPERIMENTAL RESULTS

In this section we give an insight into the behaviour
of the many-objective optimization methods for the
nurse rostering problem presented in this paper. For
the experiments, the algorithms are applied to bench-
marks that are taken from (Benchmarks, 2012).

To compare the results of the high dimensional op-
timization, we use a weighted sum approach to trans-
form the fitness vector back to one dimension. The
justification of the weights results from the experi-
ence of experts and they are given in the benchmarks.
To measure the influence of random seeds on the re-
sults, the random number generator has been initial-
ized with 10 different values. The results in the fol-
lowing give the average value for these 10 runs. The
average values of the results are used for comparison



of the methods in the following. In all experiments
the population size is set to 50 and the EA runs for
5000 generations.

First, the presented approaches PrioPref and
PrioεPref are compared to the well-known method
NSGA-II. The results are summarized in Table 1. The
epsilon value in PrioεPref is set to 5000. It can be
seen that both methods based on relation Preferred
outperform NSGA-II enormously in most cases. Only
for benchmark Millar-2Shift-DATA1 NSGA-II has a
better performance, but for the other cases it is im-
proved by more than 70%. In row Weighted Sum
additionally the results for the weighted sum ap-
proach, i.e. a single objective optimization approach,
are given. The results obtained by the weighted sum
are better than the results calculated by the multi-
objective optimization methods. This can be ex-
plained by the fact that the benchmarks are designed
such that the weights are directly given, which is an
advantage of the weighted sum approach.

For the experiments above a relatively high ep-
silon value has been used. In a next series of exper-
iments we briefly discuss the influence of alternative
choices, the results are summarized in Table 2. By
this, directions for improvements are pointed out (see
also Section 6).

As reference for the experiments we use the ep-
silon value of 5000 from the previous section. The
results are given in column PrioεPref-5000. In a
first run denoted in column PrioεPref-1000 the ep-
silon values of the optimization objectives were set
to 1000. Even by these first experiments, the quality
could be improved by more than 10% to nearly 30%.
The trend holds, if epsilon value 500 is considered.
Especially for benchmark Millar-2Shift-DATA13 im-
provements of more than 40% can be observed. If the
value of ε was too low, e.g. 10 as given in Table 2 in
column PrioεPref-10, the quality of the results is de-
creasing. For all considered benchmarks the average
value of the fitness function is worse than the quality
for epsilon values 1000 and 500, respectively. The ex-
periments also show that the best choice of the epsilon
value depends on the considered benchmark. For OR-
TEC01 the best average results are determined with
epsilon value 1000, while the best results for GPost,
Millar-2Shift-DATA1 and Valouxis-1 are get for ep-
silon value 500. Thus, there is a need for methods
to determine a good epsilon value for the benchmark
under consideration automatically.

In summary, based on relation Prio-ε-Preferred
the quality measured by the fitness value could be sig-
nificantly improved. Even for example Millar-2Shift-

3In Table 2 and Table 3 Millar-2Shift is the abbreviation
for benchmark Millar-2Shift-DATA1.

DATA1 better results could be calculated. But as can
be seen by the experiments, there is a need to deter-
mine good problem specific epsilon values. For this in
the next section an approach is presented that sets the
epsilon values automatically, i.e. no user interaction
is needed anymore.

6 ADAPTATION OF EPSILON
VALUES

In this section first a description of the automatic
adaptation of the epsilon values is given. Then ex-
perimental results are carried out to demonstrate the
efficiency of the approach.

6.1 The Idea

In the last section we gave insight into the influence
of the epsilon values during the optimization process.
Altogether, the choice of the epsilon values has a large
influence on the quality of the results. Now, the prob-
lem domain is to find a good epsilon value, such that
the algorithm has its best performance. For this, two
methods Separated ε-Preferred (SEP) and Adapted ε-
Preferred (AEP) have been developed that are intro-
duced in the following. Starting from an initial point,
both methods reduce the epsilon values used through-
out the algorithm automatically.

For method SEP for each objective one separated
epsilon value is provided. It is determined such that
for each objective the average fitness value over the
whole population is calculated:

ε j =
|P|

∑
i=1

Indi, j

|P|
,1≤ j ≤ m,

where m is the number of objectives, |P| is the size
of the population and Indi, j is the j-th objective of the
i-th individual in population P. The epsilon values
ε j,1≤ j ≤ m, are updated in each generation.

In contrast, for method AEP one epsilon value for
all objectives is determined. Therefore, one individ-
ual out of the best Satisfiability class (SC) derived
by PrioεPref is randomly chosen. The new epsilon
value is determined by the average value of all objec-
tives of that individual:

ε =
m

∑
j=1

Indbest, j

m
,

where Indbest, j is the j-th objective of a randomly
chosen individual out of the best SC. The epsilon
value is updated in each generation. The idea behind



Table 1: Fitness for generation 5000

Benchmark #Objectives Method AV G Quality
NSGA-II 36993 0%

GPost 9 PrioPref 10512 71%
PrioεPref-5000 10485 72%
Weighted Sum 7159 80%
NSGA-II 2140 0%

Millar-2Shift-DATA1 9 PrioPref 2670 -24%
PrioεPref-5000 2720 -27%
Weighted Sum 1310 39%
NSGA-II 92022 0%

ORTEC01 17 PrioPref 12976 86%
PrioεPref-5000 15448 83%
Weighted Sum 9132 90%
NSGA-II 114604 0%

Valouxis-1 17 PrioPref 21048 82%
PrioεPref-5000 19872 83%
Weighted Sum 13986 88%

Table 2: Comparison of different epsilon values after 5000 generations

Benchmark PrioεPref-5000 PrioεPref-1000 PrioεPref-500 PrioεPref-10
AVG Quality AVG Quality AVG Quality AVG Quality

GPost 10485 0% 9014 14% 7925 24% 8502 19%
Millar-2Shift 2720 0% 1970 28% 1540 43% 2340 14%
ORTEC01 15448 0% 11181 28% 11275 27% 14496 6%
Valouxis-1 19872 0% 17508 12% 17018 14% 17954 10%

this method is that individuals can be distinguished
by relation Prio-ε-Preferred, if the difference of the
individuals exceeds the calculated average range.

6.2 Experimental Evaluation

The results of methods SEP and AEP are summa-
rized in Table 3. For comparison, the results that
are derived from NSGA-II and PrioεPref with ep-
silon values 1000 and 500 are shown in the table.
First, we take a closer look to column SEP where
the results of separated epsilon values are summa-
rized. The average is better than the average values
derived by NSGA-II, but worse than the results de-
rived by PrioεPref-500 and PrioεPref-1000. In
column AEP the method for automatic setting of ep-
silon values shows the same performance than the al-
gorithms that derives from setting the epsilon values
manually. If doing so, many experiments have to be
performed to find a good choice of epsilon. In con-
trast, if using AEP epsilon is set automatically and
no user interaction is necessary. Even in two cases
(GPost, Valouxis-1) the best average quality over all
considered epsilon values could be improved. For this
it is recommended to use method AEP.

7 CONCLUSIONS

Many-objective optimization is becoming more im-
portant in real-world applications. In this article an
industrial scheduling problem has been examined. It
consists of up to 17 optimization objectives that have
to be optimized in parallel. The objectives have differ-
ent levels of importance that are defined by the user.

A new relation model called Prio-ε-Preferred for
incorporating user preferences in many-objective op-
timization has been presented and experimentally
evaluated. It was shown, that high quality results
could be obtained, i.e. the standard method NSGA-II
was improved by more than 80%. For further investi-
gations of the proposed modelling of user preferences
it is focus of future work to find out an indicator that
makes the comparison of solutions with user prefer-
ences more convenient.

Furthermore, a new automatic technique for deter-
mining the parameters for relation Prio-ε-Preferred
automatically has been developed. In this context, the
epsilon values have been reduced dynamically during
the optimization run. Experiments turned out that best
quality results could be obtained while adjusting the
parameters automatically.



Table 3: Comparison of methods for adapted epsilon values after 5000 generations

Benchmark NSGA-II PrioεPref-1000 PrioεPref-500 SEP AEP
AVG Quality AVG Quality AVG Quality AVG Quality AVG Quality

GPost 36993 0% 9014 75% 7925 79% 15755 57% 7557 80%
Millar-2Shift 2140 0% 1970 8% 1540 28% 2400 -12% 1590 26%
ORTEC01 92022 0% 11181 88% 11275 88% 14058 85% 11672 87%
Valouxis-1 114604 0% 17508 85% 17018 85% 22594 80% 16692 85%

REFERENCES

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2009).
Articulating user preferences in many-objective prob-
lems by sampling the weighted hypervolume. In
Genetic and Evolutionary Computation Conference,
pages 555–562.

Bader, J. and Zitzler, E. (2011). HypE: An algorithm for
fast hypervolume-based many-objective optimization.
Evolutionary Computation, 19(1):45–76.

Benchmarks (2012). Employee scheduling benchmark data
set: http://www.cs.nott.ac.uk/ tec/nrp/. Technical re-
port, ASAP, School of Computer Science, The Uni-
versity of Nottingham, UK.

Brockhoff, D. and Zitzler, E. (2009). Objective reduction in
evolutionary multiobjective optimization: Theorie and
applications. Evolutionary Computation, 17(2):135–
166.

Burke, E., Causmaecker, P. D., Berghe, G., and Landeghem,
H. (2004). The state of the art of nurse rostering. Jour-
nal of Scheduling, 7:441–499.

Burke, E., Curtois, T., Qu, R., and Vanden-Berghe, G.
(2012). Problem model for nurse rostering benchmark
instances. Technical report, ASAP, School of Com-
puter Science, University of Nottingham, UK.

Corne, D. and Knowles, J. (2007). Techniques for highly
multiobjective optimization: Theorie and applica-
tions. In Genetic and Evolutionary Computation Con-
ference, pages 773–780.

Deb, K. (2001). Multi-objective Optimization using Evolu-
tionary Algorithms. John Wiley and Sons, New York.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E.
(2005). Scalable test problems for evolutionary multi-
objective optimization. In In Evolutionary Multiob-
jective Optimization: Theoretical Advances and Ap-
plications, pages 105–145.

di Pierro, F., Khu, S., and Savic, D. (2007). An investi-
gation on preference order ranking scheme for multi-
objective optimization. IEEE Trans. on Evolutionary
Comp., 11(1):17–45.

Drechsler, N., Drechsler, R., and Becker, B. (2001). Multi-
objective optimisation based on relation favour. In
Int’l Conference on Evolutionary Multi-Criterion Op-
timization, pages 154–166.

Fleming, P., Purshouse, R., and Lygoe, R. (2005). Many-
objective optimization: An engineering design per-
spective. In International Conference on Evolutionary
Multi-Criterion Optimization, pages 14–32.

Fonseca, C. and Fleming, P. (1995). An overview of evo-
lutionary algorithms in multiobjective optimization.
Evolutionary Computation, 3(1):1–16.

Geiger, M. (2009). Multi-criteria curriculum-based course
timetabling - a comparison of a weighted sum and a
reference point based approach. In International Con-
ference on Evolutionary Multi-Criterion Optimiza-
tion, pages 290–304.

Goldberg, D. (1989). Genetic Algorithms in Search, Opti-
mization & Machine Learning. Addison-Wesley Pub-
lisher Company, Inc.

Hughes, E. (2007). Radar waveform optimization as a
many-objective application benchmark. In Interna-
tional Conference on Evolutionary Multi-Criterion
Optimization, pages 700–714.

Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2008). Evo-
lutionary many-objective optimization: A short re-
view. In IEEE Congress on Evolutionary Computa-
tion, pages 2424–2431.

Koza, J. (1992). Genetic Programming - On the Program-
ming of Computers by means of Natural Selection.
MIT Press.

Li, X. and Wong, H. (2009). Logic optimality for multi-
objective optimization. Applied Mathematics and
Computation, 215:3045–3056.

Pizzuti, C. (2012). A multiobjective genetic algorithm to
find communities in complex networks. IEEE Trans.
on Evolutionary Comp., 16(3):418–430.

Schmiedle, F., Drechsler, N., Große, D., and Drechsler, R.
(2001). Priorities in multi-objective optimization for
genetic programming. In Genetic and Evolutionary
Computation Conference, pages 129–136.

Sülflow, A., Drechsler, N., and Drechsler, R. (2007). Ro-
bust multi-objective optimization in high-dimensional
spaces. In International Conference on Evolutionary
Multi-Criterion Optimization, pages 715–726.

Wagner, T. and Trautmann, H. (2012). Integration of pref-
erences in hypervolume-based multiobjective evolu-
tionary algorithms by means of desirability functions.
IEEE Trans. on Evolutionary Comp., 14(5):688–701.

Wickramasinghe, U. and Li, X. (2009). A distance met-
ric for evolutionary many-objective optimization algo-
rithms using user-preferences. In 22nd Australasian
Joint Conference on Advances in Artificial Intelli-
gence (AI’09), pages 443–453.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolu-
tionary algorithms: A comparative case study and the
strength pareto approach. IEEE Trans. on Evolution-
ary Comp., 3(4):257–271.


