
Reliability Analysis Reloaded:
How Will We Survive?

Robert Aitken Görschwin Fey Zbigniew T. Kalbarczyk
ARM Incorporation German Aerospace Center University of Illinois at Urbana-Champaign

San Jose, CA 95510, USA 28359 Bremen, Germany Urbana, IL 61801, USA
rob.aitken@arm.com goerschwin.fey@dlr.de kalbarcz@illinois.edu

Frank Reichenbach Matteo Sonza Reorda
ABB Corporate Research Politecnico di Torino
1375, Billingstad, Norway 10129 Torino, Italy

frank.reichenbach@no.abb.com matteo.sonzareorda@polito.it

Abstract—In safety related applications and in products with
long lifetimes reliability is a must. Moreover, facing future
technology nodes of integrated circuit device level reliability
may decrease, i.e., counter-measures have to be taken to ensure
product level reliability. But assessing the reliability of a large
system is not a trivial task. This paper revisits the state-of-the-art
in reliability evaluation starting from the physical device level,
to the software system level, all the way up to the product level.
Relevant standards and future trends are discussed.

I. INTRODUCTION

Concepts for reliability and in particular reliability analysis
of systems have been a hot topic in research and industry ever
since the introduction of highly integrated systems over 40
years ago. Now, reliability problems are expected to increase
rapidly for future technology nodes triggered by different
sources [1] and by the increased adoption of electronic sys-
tems in safety-critical applications. Process variations in the
production process may further exacerbate this issue.

While production processes become more accurate con-
sidering absolute measures, the relative inaccuracy compared
to the component’s size is increasing. One consequence are
transistors with a wide range of threshold levels in a single
circuit resulting in slightly faster or slower operating logic
circuitry [2]. This may result, e.g., in delay errors under certain
operating conditions of a device. Increasing sensitivity to the
omnipresent environmental radiation is another issue. In the
past some errors induced by radiation have been observed
infrequently while systems in space missions are specified to
be radiation resistant already. Shrinking feature sizes result
in sensitivity to radiation with lower energy causing more
radiation induced events like Single Event Upsets (SEUs) even
at sea level. These issues may manifest as transient faults
resulting in soft errors or as permanent faults resulting in a
change of the functionality of the system. Relatively simple

978-3-9815370-0-0/DATE13/©2013 EDAA

traditional fault models like, e.g., the stuck-at or gate-delay
fault model, may be insufficient to address all these issues.
But handling all types of physical faults individually will prove
infeasible in practice. Moreover, understanding the effects of
faults, and in particular identifying those faults that could be
able to create serious consequences to the product mission
is a key point which may become very hard to face when
complex systems are considered. Regulations and standards
already started addressing these issues and industry is facing
growing interest in how to deal with them in practice. The
sheer complexity of today’s and future’s “more Moore” and
“more than Moore” systems as well as the huge universe of
potential faults requires reliability analysis to be revisited from
this new perspective.

Design margins are a traditional way to handle reliability
issues at one level of abstraction, so they can be ignored at a
higher level. But margins are only acceptable up to a certain
cost level. Otherwise, failures have to be handled at higher
levels in the system. Thus, reliability evaluation has to take
the whole system stack into account.

This paper covers reliability analysis at the different levels
of abstraction. Section II views at the above issues at the
lowest layer from an industrial perspective, i.e., how we can
find models for device level reliability that may be used for
determining the reliability of a system. Section III reviews
state-of-the-art techniques to evaluate the reliability of an
operating system. Finally, the dependencies between safety
standards and the reliability evaluation of the final product
are addressed in Section IV. Section V draws conclusions.

II. RELIABILITY EVALUATION AT THE DEVICE LEVEL AND

ITS IMPACT ON DESIGN

When determining the reliability of a system, knowing the
respective parameters of the underlying devices is mandatory.
An accurate device-level evaluation requires a deep under-



standing of the fault mechanisms including aging, stress,
process variation etc. The underlying devices of integrated
systems are the gates, the transistors, and the physical connec-
tions. We will focus on techniques to evaluate the device-level
reliability of a given production technology or product family
and discuss the typical flow used in practice to derive usable
figures.

Degradation at the device level can be broadly divided into
two groups: physical mechanisms, due to inherent defects
and/or progressive degradation, and electrical mechanisms,
which are transient in nature and do not permanently damage
the device. Both must be responded to in a highly reliable
system, but only the former needs a permanent workaround.

A. Physical Degradation Mechanisms at the Device Level

1) Dielectric Breakdown: This discussion is based on
Choudhury et al [3]. Current generation devices are prone to
Time-Dependent Dielectric Breakdown (TDDB), also known
as soft oxide breakdown, during their lifetime. A soft oxide
breakdown begins when interface “traps” begin to form in
the gate oxide. At first, the traps are non-overlapping and
thus do not conduct. As more traps are formed, they start
to overlap and this may result in a resistive conduction path
from gate to channel. Once the conduction channel is formed,
more traps appear due to thermal damage. These new traps
cause the conduction channel to become wider and hence more
current flows leading to even higher temperature. This thermal
runaway condition leads to a catastrophic failure known as
Hard Oxide Breakdown (HBD).

There are three phases of gate oxide wearout [4]. The traps
start to form at the end of the first phase, known as the time
to soft breakdown. During the second phase (SBD phase), the
traps move around and the leakage current fluctuates randomly.
In this phase, the device is still functional but drifts in energy
and delay. Once the conduction path is formed in the oxide,
the device enters the third phase (HBD phase). In the HBD
phase, the leakage current is exponentially higher and the fault
is termed catastrophic. The transition from the beginning of
soft oxide breakdown to hard breakdown is not abrupt, and
the gate leakage current starts to progressively increase long
before hard breakdown occurs. A variety of design approaches
exist to both monitor and mitigate TDDB [5], [6].

2) NBTI/PBTI: Bias temperature instability occurs when
a negatively-biased gate is stressed (PFET case for NBTI;
for NFETs the effect happens with positive bias) at high
temperature. Several models have been proposed to explain the
precise mechanism [7]. Most of these involve the formation
of traps in the gate oxide due to diffusion of hydrogen and
subsequent increase in gate threshold voltage (Vt) leading to
reduced performance over time. Unlike other aging effects,
BTI can be partially offset by “healing” – when the device
is oppositely biased, some of the traps collapse. Designers

can thus mitigate the effects of BTI by balancing bias states.
This can be quite challenging, depending on the portion of the
design, but many efforts have been published [8], [9].

3) Hot Carrier Injection (HCI): HCI occurs when an ener-
getic (“hot”) carrier physically damages the drain of a device
due to its acceleration through the electric field of a gate.
Reduced operating voltages reduce the number of hot carriers,
and junction engineering can mitigate its effects [10] but in
general it is difficult for designers to influence HCI. Instead,
expected time to failure can be calculated using Arrhenius
equations and accounted for in reliability budgets.

4) Electrostatic discharge (ESD): ESD can be thought of as
an extreme form of dielectric breakdown. An excess of charge
enters the circuit (e.g. via a spark at a pin) and this charge
must be shunted safely into the ground network before it can
damage a device oxide. ESD protection is a field unto itself
and includes both direct shunting mechanisms (e.g. snapback
devices) as well as electrical design rules for safety (never
connect the gate of a transistor directly to a power or ground
rail). A good overview of ESD design practices can be found
in Voldman [11].

5) Electromigration (EM): EM is the physical movement
of metal in a carrier, particularly a narrow one, as a result of
high current density. Shrinking geometries have moved this
problem from one of mild interest around high drive buffers
to something that must be carefully checked throughout a
design. Careful design of power supply distribution networks,
especially the power buses within standard cells, is key to
successfully coping with EM.

B. Electrical Degradation Mechanisms at the Device Level

1) Soft Errors: Soft errors are radiation induced faults
which result from a particle strike, either by an alpha particle
from impurities in packaging material or a neutron from
cosmic rays. When particles strike the silicon substrate they
create hole-electron pairs which are then collected by PN
junctions via drift and diffusion mechanisms. This collected
charge creates a transient current pulse and, if it is large
enough, it can flip the value stored in one or more state saving
elements (bit cell, latch etc.) When particle strike happens
in combinational logic, the result is a glitch which can then
propagate to a latch where it could be captured. Embedded
SRAMs are especially vulnerable to SEUs due to the small
size of each bit cell and its small node capacitances. The soft
error rate per bit cell has stabilized in recent technologies,
but the rate per area increases [12]. Soft errors are mainly
mitigated through improved circuit design and the use of error
correcting codes.

2) Noise: Noise arises from several sources, including
power supply fluctuations (e.g. IR drop), clock jitter, and
crosstalk (capacitive coupling between nets). Physically, noise
is disruptive to circuit operation and can in the worst case lead



to erroneous behavior. In most cases, noise is dealt with at the
design level by adding margin.

3) Random Telegraph Noise (RTN): Recently, random tele-
graph noise (RTN) has emerged as a reliability issue [13].
Traps in device oxides are randomly filled and emptied,
leading to shifts in threshold voltage and drain current. These
are most important in small devices, but have the potential to
cause failures in designs with low margin.

4) Variability: Although variability is not strictly a degrada-
tion mechanism, it can lead to electrical failures both directly,
when device parameters exceed limits accounted for during
design, and indirectly, when a design is pushed close to its
margins and subsequent degradation from one of the other
mechanisms pushes it over. As a result, quantifying variability,
both deterministic and random, is key to successful design-for-
reliability.

C. Design Level Reliability Modeling

When designing at the transistor level, it is important
to be able to quantify the effects of the various reliability
mechanisms discussed in the previous section in order to be
able to successfully mitigate them. In many cases, this can
be accomplished through guardbanding. For example, if it is
determined that the collective worst-case effect of aging will
be a 10% upward shift in Vt, then standard cells and memories
can be characterized for that point and then used as part of
sign off. Similarly, an error correcting code together with a
known or estimated soft error rate can be used to predict (and
subsequently minimize) the failure rate of a system.

Other transient effects are more challenging because their
magnitude is difficult to predict. In-line noise can be modeled
(e.g. using CCS-noise in Liberty [14] and considered as part
of static timing analysis, but the sources of the noise (power
supply fluctuations, crosstalk, etc.) are notoriously difficult to
model accurately, so designers typically make conservative
estimates in order to ensure silicon functionality.

In this way, contributions to overall reliability can be
calculated and then summed together to give an overall margin
for the design in both performance and power consumption.
As a general rule, performance budgets require more detailed
accounting than power budgets, since a 1% slowdown could
cause a part to fail, whereas a 1% increase in the power budget
will most likely contribute only to a minor increase in oper-
ating temperature or decrease in battery life. In performance
budgeting, setup time changes are less critical than hold time
changes, since the former can be compensated for by slowing
down the clock rate.

As transistors are combined into standard cells, memory,
logic blocks, cores, and systems, reliability effects are by
necessity abstracted into higher level changes in behavior.
Multiple physical effects can be grouped into an aging model,
for example, and guardbands can be developed for variability

Table I
SPATIAL AND TEMPORAL CLASSIFICATION OF VARIATION

Static Slow-Changing Fast-Changing
Global Inter-die process

variations
Die-level VDD
variation

Clock jitter

IR drop
Aging (BTI,
TDDB, EM)

Ambient temper-
ature variation Ldi/dt

Local Random dopant
fluctuation

Temperature hot
spots

Coupling noise

Local clock jitter

and noise. These abstractions can only be as good as their
underlying data, so careful understanding and accounting
should take place.

D. Workloads and Reliability

Many of the mechanisms discussed in the previous section
are activity dependent. BTI includes a “healing” component
when a transistor is not active. TDDB happens only when an
oxide is stressed. Neutron strikes will not cause soft errors
when a memory is powered down. This activity dependence
is very important when making reliability predictions for a
given product. A product in constant operation is much more
likely to suffer a reliability fail than one that is rarely used.
Similarly, some portions of a design are much more likely to
be stressed than others. In some cases, the stressed devices
are obvious (clock networks, for example), while others are
more subtle: in many designs (e.g. processors) memories tend
to contain more 0s than 1s throughout normal operation,
meaning that 2 of the 6 devices in each SRAM bit cell
undergo much more TDDB related stress than the others,
in the worst case leading to unbalanced bit cells and failing
read/write operations. Consideration of workloads can result
in substantial changes to product reliability [15].

E. Trends

Reliability effects can be thought of as lying along two
axes: geographical (local versus chip wide) and temporal (slow
changing versus fast changing), as shown in Table I. A system
must be robust enough to handle fast changing, local situations
such as soft errors or local clock jitter. Effects with longer
durations or larger area effects can also be handled adaptively,
i.e., the system can identify that a change has occurred and
adjust itself accordingly, by boosting voltage or lowering clock
frequency, for example.

Over the next few process generations, we expect to see
some of these effects get worse. Among these are virtually all
of the physical failure mechanisms described earlier, so it is
vital for designers to account for reliability in a complete and
correct fashion, accounting for expected usage profiles. Other
elements are more directly under designer control, including
noise, soft error, and ESD tolerance. Error detection and/or
correction can help. Finally, there are some effects that may
improve over time. Fully depleted devices, such as FinFETs,



for example, should have lower random variation than their
bulk predecessors.

Adaptive systems may be the best way forward, and while
they remain challenging to implement for a variety of reasons
that are beyond the scope of this paper, they are very likely to
be the most successful design-for-reliability approach in future
technologies.

But still handling all types of reliability issues at the device
level neither be feasible nor economically viable. Therefore the
careful assessment of device level reliability measures provides
the input required as a solid base for system level reliability
evaluation.

III. RELIABILITY EVALUATION AT THE SYSTEM LEVEL

The dependability of a computing system and consequently
the services it provides to the end user, depends to large
extent on the failure-resilience of the underlying Operating
System (OS). Understanding a system’s sensitivity to errors
and identifying error propagation patterns and single points of
failure are thus of primary importance in selecting a computing
platform and in assessing tradeoffs involving cost, reliability,
and performance.

In the recent years several approaches were proposed to
evaluate robustness of OSs, e.g., [16], [17], [18]. These studies
address robustness at the user visible interfaces and constitute
an important component in OS benchmarking. It is however,
critical to quantify the impact of a broad range of faults
that occur in the processor, memory, I/O, and the network
interfaces of the underlying hardware and the corresponding
system and application software. Sound fault/error injection
methods and tools are essential when quantifying these metrics
directly or indirectly (as we do by associating performance loss
and the severity of faults). While there are many outstanding
issues in terms of – how, where and when – faults/errors should
be injected so that OSs can be evaluated and compared, there is
strong evidence (as exemplified on evaluation of real systems)
that fault/error injection should be an integral part of system
benchmarking procedures.

A comprehensive benchmark requires evaluating different
approaches in assessing system dependability and using this
knowledge to define sound procedures, methods, and tools
to enable experimental OS benchmarking. While external
characteristics are satisfying and acceptable in performance
benchmarking, this is not the case for dependability bench-
marking. Rather a combination of a “black box” and a “white
box” approach has emerged.

The remaining of this section presents the use of software
implemented fault injection to conduct experimental studies
and to derive quantitative dependability measures. Doing so
we can stress a broad range of system components including
OS code, data and stack sections, and processor registers. The
systematic approach allows:

• Assessing fault severity, efficiency of detection, and re-
covery mechanisms under variable workloads (real or
synthetic applications), thus quantifying coverage and
ability of the system to recover.

• Measuring the detection latency, which is of particular
importance in characterizing chances of errors to: (i)
propagate between system components and (ii) escape be-
yond the containment boundaries defined by a computing
node, e.g., fail silence violations or silent data corruption.

• Exercising (with faults) critical execution paths within
a code to pinpoint the error sensitive system compo-
nents/locations. This, in turn, provides a feedback to the
developers on ways for integrating enhancements.

In order to demonstrate strength of the fault injection based
system evaluation we discuss experience and lessons learned
from assessing error sensitivity of the Linux Kernel executing
on PowerPC (G4) and Pentium 4 (P4) processors [19], [20].
The goal is to introduce methodology and illustrate the type of
results that can be obtained to enable: (i) comparing the Linux
kernel behavior under a broad range of errors on two target
processors and (ii) understanding how architectural character-
istics of the target processors impact the error sensitivity of
the OS. Two target Linux-2.4.22 systems are used: the Intel
Pentium 4 (P4) running RedHat Linux 9.0 and the Motorola
PowerPC (G4) running YellowDog Linux 3.0.

A. Evaluation of OS Dependability

Due to the size of the OS, it is impractical to target the entire
OS code for error injection. Instead, a more practical approach
is to focus on the most important (critical) subsystems and the
most frequently used functions. This information is obtained
by system profiling while running benchmark programs which
are used to ensure sufficient kernel activity to trigger injected
errors.

1) Methodology: An approach for sound experimental as-
sessment (benchmarking) of OSs includes:

• methods to stress the system, i.e., to generate runtime
errors;

• procedures to specify a set of measurements in terms of
error types, error frequency, and workloads;

• metrics to quantify dependability attributes of the OS;
and

• tools to set up and carry on experiments, collect and
analyze the measurement data, and calculate the depend-
ability metrics.

2) Error Injection Environment: Software-implemented er-
ror injection is a common method employed for experimental
assessment of computing system dependability. NFTAPE [21],
a software framework for conducting fault/error injection
experiments, is used to conduct the tests in the presented
example study.



Figure 1. Error injection environment

Single-bit errors are injected into kernel stacks, kernel
code sections, kernel data structures, and CPU system reg-
isters while running benchmark programs. The NFTAPE error
injection environment, shown in Figure 1, consists of (i)
kernel-embedded components (injectors, crash handlers, and
data deposit module) for different architectures, (ii) a user-
level NFTAPE control host, which prepares the target ad-
dresses/registers (to be injected), starts the workload program,
and logs injection data for analysis, (iii) a hardware monitor
(e.g., a watchdog card) to detect system hangs/crashes in order
to provide auto reboot if needed, and (iv) a remote crash data
collector that resides on the control host computer to receive
data on system crashes and on detection latency.

a) Error Model: The error model assumed is not contin-
gent upon the error origin, i.e., an error could have occurred
anywhere in the system – the disk, network, bus, memory, or
CPU. Single-bit errors are injected into the instructions of the
target kernel functions, the stack of the corresponding kernel
process, the kernel data structures, and the corresponding
CPU’s system registers. Previous research on microprocessors
[22] has shown that most (90-99%) of device-level transients
can be modeled as logic-level, single-bit errors. Data on
operational errors also show that many errors in the field are
single-bit errors [23].

While in a well-designed system multiple mechanisms for
protecting against errors may be available (e.g., parity, Error
Correcting Code (ECC), or memory scrubbing), errors still
exist. Errors could, for example, be timing issues due to hard-
ware/software problems, to a noise source such as undershoot
or overshoot, or to noise on the address bus that results in
the wrong data being written to/read from the memory. In the
latter case, the data may be unaltered due to the address bus
noise, but the wrong location is accessed. Memory errors and

As indicated by manufactures, logic failure rates may erode the efficacy of
ECC in designs. Hardened logic libraries or schemes to mask logic sensitivity
(redundancy on critical paths, spatial and/or temporal) may be needed to
account for this deficiency.

Table II
OUTCOME CATEGORIES

Outcome Category Description
Activated The corrupted instruction/data is

executed/used.
Not Manifested The fault is activated but it does not cause a

visible abnormal impact on the system.
Fail Silence Violation Either OS or application allows incorrect

data/response to propagate out.
Crash Operating system stops working, e.g., bad trap

or system panic.
Hang System resources are exhausted, resulting in a

non-operational system, e.g., deadlock.

system register errors are used to emulate the diverse origins
and impact of actual errors.

Four attributes characterize each error injected: (i) trigger,
i.e., when an error is injected, (ii) location, i.e., where an error
is injected, e.g., memory or CPU registers, (iii) type, i.e., what
to corrupt, e.g., a single bit in a data item, and (iv) duration,
i.e., how long the injected fault/error persists, e.g., a bit is
flipped in the target to emulate the impact of a transient event.

b) Outcome Categories: Outcomes from error injection
experiments are classified according to the categories given in
Table II.

3) Sample Results: Analysis of the obtained data indicates
significant differences between the two platforms in how errors
manifest and how they are detected in the hardware and the
OS.

a) Fault/Error Manifestation: The error activation rates
are generally similar for both processors; however, the man-
ifestation rates for the Pentium 4 are about twice as high as
compared with the G4 platform. The fault injection based
approach allows quantifying the observed differences and
similarities. For instance, for stack errors, the manifestation
rates are 56% for P4 versus 21% for G4. A similar trend is
observed in the case of an error in the kernel data (66% for the
P4 versus 21% for the G4). The observed difference between
the two platforms can be explained by the disparity in the way
they use memory. The G4 processor always operates on 32-bit
wide data items, while the P4 allows 8-bit, 16-bit, and 32-bit
data transfers. As a result, the sparseness of the data can mask
errors. For example, the larger presence of unused bits in data
items means altering any unused bit is inconsequential, even
if the corrupted data instruction is used. The more optimized
access patterns on P4 increase the chances that accessing a
corrupted memory location will lead to problems. Though
less compact, fixed 32-bit data and stack access make the G4
platform less sensitive to errors.

b) Crash Latency: An interesting observation can be
made in term of crash latency. Crash Latency (Cycles-to-
Crash) is defined as the number of CPU cycles between error
activation and the actual crash. Typically, latency includes
three stages, as shown in Figure 2.



Figure 2. Definition of Cycles-to-Crash

Figure 3. Crash Latency Distribution for Stack Injection

Figure 3 depicts the crash latency distribution for errors
injected into the stack on the two target platforms (i.e., P4
and G4 processors). The data show that the majority (80%) of
stack errors on the G4 platform are short-lived (less than 3,000
cycles). On the P4 platform, the majority (80%) of stack errors
result in longer crash latency (3,000 to 100,000 cycles). The
primary reason for this disparity is the way the two platforms
handle exceptions. For example, the kernel on the G4 platform
provides quick detection of stack overflow errors, while the
kernel on the P4 architecture converts stack overflow events
into other types of exceptions (e.g., Bad Paging), resulting in
inherently slower detection.

One can also observe that the crash latency distribution has
a long tail and there are a non-negligible percentage of cases
when the crash latency exceeds hundreds of millions of CPU
cycles. In other words, the processor can execute millions
(or even billions) of instructions in presence of an active
error before it finally crashes. During this time errors can
propagate causing the system to produce bad data or making
incorrect decisions. To cope with such problems one needs to
integrate low-latency error detection mechanisms at the system
and/or application level [24], [25], [26]. It is worth noting
that the crash latency can only be measured in the controlled
experiments such as the one described here.

c) Crash Severity: Another interesting result comes from
analyzing the OS crash severity in terms of potential downtime
due to the failure. The severity of the crash failures resulting
from the injected errors can be categorized into three levels:
(1) most severe – rebooting the system after an error injection
requires a complete reformatting of the file system on the disk
and the process of bringing up the system can take nearly

an hour; (2) severe – rebooting the system requires the user
(interactively) to run fsck facility/tool to recover the partially
corrupted file system, the process can take more than five
minutes and requires user intervention; and (3) normal – the
system automatically reboots, and the rebooting usually takes
less than four minutes depending on the type of machine and
the configuration of Linux.

While relatively few crash cases in the severe level category
were observed, several cases required reformatting the file
system. The availability impact of the most severe crashes
is clearly of concern. For example, to achieve 5 nines of
availability (5 min/year downtime) one can only afford about
one failure classified most severe in 10 years, no more than
one severe crash in two years, and a “normal” crash no more
than once a year.

B. Trends

Lessons learned extend beyond the examples of studies
presented in this section. The most generic observations can
be grouped into two categories: (i) What is the unique value
in employing fault/error injection to benchmark computing
systems? (ii) What is expected from benchmarking tools?

1) Value in Employing Fault Injection:
a) Characterization of Crash Severity: It is a common

assumption that crashes are benign and that there is a mecha-
nism in a system that ensures that when the program encoun-
ters an error, the application will crash instantaneously. While
many crashes are benign, severe system failures often result
from latent errors that cause undetected error propagation
resulting in file corruption (e.g., corruption of the OS image
on the disk), remote process failures, or checkpoint corruption.

b) Measurement of detection latency and validation of
crash-failure semantic: Assumption of crash failure semantic
for a program or a system behavior is not good, if one
cannot provide efficient mechanisms for rapid error detection
to ensure that this assumption holds in practice. Measurement
of detection latency must be an integral component of the
benchmarking procedure. For example, we demonstrated that
crash latency can be as large as hundreds of millions or billions
of cycles.

c) Characterization of Recovery Latency: Measurement
of recovery time is crucial to assess system downtime and
hence, to quantify availability. Benchmarking must enable
validation of system behavior in the case when multiple
detection mechanisms are triggered due to same or propagated
error.

2) Toolset and Benchmark Procedures:
a) Complexity: Benchmarking of fault tolerance requires

complex procedures and tools (the process is far more complex
than in the case of performance benchmarking). Often deploy-
ing the toolset is more time consuming than conducting the
measurements.



b) Multiple Platforms (Hardware, OS): Using different
tools one runs the risk that the benchmark measures the
effectiveness of the tools rather than the dependability of the
target system. A key to a wide acceptance of a benchmarking
toolset is its portability across computing platforms.

c) Multiple Fault Models: Evaluation of complex sys-
tems benefits from injecting a wide variety of faults such as
communication faults, bit-flip faults to memory and registers,
and high-level faults specific to an application. The more
diverse the fault set, the more can be learned about the target
system.

While there is still a long way to go before we define
the dependability benchmark for OSs, the approach discussed
in this section shows a way towards this goal. The data
gathered by these techniques is one example for evaluating
the reliability of individual components in a full product.

IV. ON EVALUATING THE RELIABILITY OF INDUSTRIAL

PRODUCTS AND THE IMPACT OF SAFETY STANDARDS IN

AUTOMATION INDUSTRY

Both, high reliability and high availability (uptime) of in-
dustrial products are an absolute necessity in order to engineer
sophisticated control systems in process and factory automa-
tion. Harsh environments with, e.g., Electro-Magnetic (EMC)
disturbance, vibrations or dust put even more requirements
on industrial devices and operational lifespans of up to 20
to 30 years are by far no exception in automation industry.
This makes reliability analysis crucial in order to succeed
on the market. In particular, the need for safety systems has
been increasingly rising since the awareness for protecting
people and environment is becoming eminent. Companies
understood that prevention is more economical than reaction
on accidents (like in the “Deepwater Horizon” case). European
Union (EU) directives set strict requirements for the minimum
level of health and safety. Reliability must be involved in both
engineering of safety systems, but more than ever also in the
development of safety products. For example, a typical safety
system as the steam-boiler is comprised of pressure sensors
(capable of detecting overpressure), a logical element like
a Programmable Logic Controller (PLC - comparing sensor
values with an upper threshold) and a valve (can be opened
by the PLC to release steam) to avoid the steam-boiler’s
explosion. Sufficient safety must be given on engineering
(system) level, which can be realized by using redundant
architectures (e.g., 2 pressure sensors, 2 PLCs, 2 valves). There
has been an ongoing trend that customers want to use safety
certified products instead of redundancy on engineering level,
because safety devices can be used in a single channel manner.
This reduces hardware costs and overall maintenance costs
while keeping the freedom to use safety devices from various
vendors in one safety system. Such a solution assumes product
certification and therefore a comprehensive reliability analysis

at component level called Component Failure Mode and Effect
Analysis (CFMEA) is required. This section will approach the
handling of reliability for the development of safety devices,
rather than for the engineering of safety systems.

A. Reliability and Safety

Safety certification of products has been becoming a market
differentiator, even though safety does not necessarily increase
the uptime of the entire system, which is sometimes forgotten
or also misunderstood by the customers. However, in order
to certify the product, the vendor is obliged to handle the
product’s reliability in a proper manner. It has to be proven
that the product achieves a certain Probability of Failure
on Demand (PFD) and a certain Probability of Failure per
Hour (PFH), which depends on the demand of the safety
related function. In a typical automation system there are
some significant differences between reliability and safety.
Firstly, a reliable device should carry out its functionality for
a given period of time, but the safety aspect considers also
the consequence of failures. Secondly, reliability would be
measured by detecting the first failure after start of operation,
but a safety system could be subject to failures. However, only
if the failure is dangerous and leads to a severe consequence
it would be taken into account. For example, a soft error
(transient error) could flip a bit in the memory, but the ECC
detects and recovers the memory, triggers a warning, and the
system proceeds without further effects.

In the following we explain how reliability evaluation driven
by standards is performed.

1) Standards: The new EN ISO 13849-1:2009 (“Safety of
machinery – Safety-related parts of control systems”) [27] fol-
lows a probabilistic approach by quantifying the components
reliability in a safety system. This has been creating hurdles
in industry, since the previous standard EN 954-1 was based
on architectural decisions without complex reliability calcula-
tions. EN 954-1 was more deterministic and in a way more
straight forward. However, the approach gives the machinery
builders more freedom on how they can design their products.
Device builders end up quickly in the IEC 61508 Ed. 2. This is
a generic standard for functional safety of electric, electronic
and programmable safety related equipment (E/E/PE), IEC
61508 Ed. 2 [28]. The standard aims at specifying a set of
methods, measures and procedures that device builders must
conform to for claiming a certain Safety Integrity Level (SIL).
SIL is generic in the sense that it can be used as a standalone
standard, in addition to acting as basis for many applications.
This standard is a basis for many more domain specific
standards and will also be used in this section as a reference.
Most of ABB’s safety development work is following the IEC
61508 Ed. 2. Thus this section on automation industry will set
the main focus here.



2) Safety Integrity Level: According to the process that
is described in IEC 61508 Ed. 2 a first analysis must be
carried out to identify potential hazards originating from the
Equipment Under Control (EUC). A second analysis aims at
assessing the severity of the consequences and the expected
frequency of each hazard. This leads to corresponding risks. If
the risk is within tolerable limits, risk reduction is not required.
Risk reduction can be realized by physical protection (e.g.,
externally: simple barriers like fences that block access to
moving parts) or internal logic (e.g., safety functions added
to the EUC, like a simple watchdog timer). The level of
risk reduction is specified in the so called SIL followed by
a number indicating the order of quantitative and qualitative
magnitude.

3) Safe Failure Fraction: Each safety instrumented function
is comprised of subsystems, either type A, where the complete
failure behavior is known a priori, or type B (i.e., a complex
microcontroller). This affects the required Safe Failure Frac-
tion (SFF) at each SIL. A non-redundant architecture type
A subsystem (SIL 2), requires between 60% and 90% safe
failure fraction, where for a type B subsystem this would be
between 90% and 99%. In a Failure Mode and Effect Analysis
(FMEA) all components are investigated on the basis of their
failure modes – dangerous undetected failures and also safe
failures. Given the failure rates for each failure, λs denotes
the failure rate for a safe failure, λDD denotes the failure rate
for a Dangerous Detected (DD) failure, and λDU denotes the
failure rate for a Dangerours Undetected (DU) failure. This
analysis allows calculating a first SFF, even if no diagnostics
have been considered. The SFF can already be located within
the required limits and therefore no diagnostics are needed. In
general the SFF is defined as:

SFF = (
∑

λs +
∑

λDD)/(
∑

λs +
∑

λDD +
∑

λDU)

If the SFF is too low, it can be increased by adding
diagnostics being capable of detecting previously undetected
dangerous failures. That reduces the number of DU failures
and the likelihood of random failures decreases likewise.
Another important value is the Diagnostic Coverage (DC),
defined as:

DC =
∑

λDD/
∑

λDtotal,

where
∑

λDtotal =
∑

λDD +
∑

λDU,

which gives the ratio between all dangerous detected failures
and all dangerous failures.

4) Quality of Diagnostics and Fault Reactions: The di-
agnostic coverage and its effectiveness are two quality pa-
rameters to quantify the degree of risk reduction. In addition
Mean Time to Failure (MTTF) is determined by the failure

rate λ(t) of a component. MTTF defines the safe execution of
a component until the first failure occurs. If λ(t) is constant
then the Mean Time between Failures (MTBF) is defined as
1/λ and the Mean Time to Repair (MTTR) is defined as the
average time between two losses with:

MTTR = MTBF − MTTF.

The fault reaction can be defined differently with respect to
the domain the system is used in. In avionics, for example,
the safe state is not to de-energize the EUC, but to keep
the flight control system up as long as possible so that the
plane can land safely. In industry the safe state is often
realized by disconnecting power to a mechanical device, so
that moving parts cannot unintentionally lead to accidents.
When concepting the fault reaction one should also consider
the impact on the availability (uptime) of the system.

B. Safety Related Reliability Analysis for Industrial Products

Reliability is handled covering the entire lifecycle whereas
in each phase of the product lifecycle reliability is considered
properly. A detailed description of parts of this process can
be found in [29]. This section will summarize the proposal of
[29] and list only the reliability related tasks:

1) Idea phase: Failure Mode and Effect Analysis; bench-
marking, service life needs, reliability goals

2) Evaluation phase: Design assessment, reliability testing,
Test-Analyze-and-Fix

3) Development phase: Design maturity testing, Testing of
beta product, root-cause failure analysis and correcting,
validation

4) Transition phase: Product screening, highly accelerated
stress test, environmental stress screening, many others
as thermal cycling, shock stabilization etc.

5) Production phase: Reliability monitoring, highly accel-
erated stress screening, environmental stress screening,
many others as thermal cycling, shock stabilization etc.

6) Operation phase: Warranty plan development, field fail-
ure tracking, customer feedback, failure analysis, lessons
learned etc.

7) End of life phase: Continuous improvement, highly
accelerated stress audit etc.

This section addresses reliability and safety processes likewise.
In the design phase a first FMEA at component level helps
to understand the gap between the actual failure rate, without
any hardware changes or software diagnostics and the targeted
SFF. The Component FMEA could use a worst case scenario
by handling every failure as dangerous, thus leading to a severe
consequence. A failure mode is the way in which a component
fails “functionally” at component level. In a second iteration
the effects of failures modes are assessed where some failures
might not be dangerous and therefore do not contribute to the



overall failure rate. A final iteration, usually corresponding to
the Failure Modes, Effects and Diagnostic Coverage Analysis
(FMEDA), should also include possible failure mitigations like
hardware or software diagnostics. With that, all failures that
are defined as “dangerous detected” can be subtracted from
the overall failure rate until the target SFF has been reached.
The next step would be to implement the stated diagnostics
and prove their diagnostic effectiveness and coverage by, e.g.,
fault injection tests. The key challenge is to define a good
combination of software and hardware diagnostics that helps
reaching the target, but also keeps the development costs to
a minimum, otherwise the price of the product would not be
competitive.

1) Failure Mode and Effect Analysis: The process of an
FMEA would typically include:

• Identification of all components that are relevant for the
safety functions and their failure rates

• Classification of the impact of failure modes into safe and
dangerous

• Identification of diagnostic functions that can detect dan-
gerous failures

• Final calculation of SFF and DC

For a logical element (e.g., a complex system with a micro-
controller) in a SIL 2 system typically 15% of the system’s
failure rate is allocated. The target rate for Failures in Time for
the logical element must be below 150 FIT, where 1 FIT= 1
failure per 109 hours. The 15% is widely accepted by industry
and certification bodies. A challenge in an FMEDA is to use
meaningful data, which can be only determined experimentally
for very new components. For known components there exist
various failure rate databases to use [30], [31], [32]. Mixing
FIT rates from various databases is forbidden in order not
to risk that only the “good” values are considered by the
manufacturer.

2) Saving Maintenance costs: Reliability data are often
selected based on worst case scenarios, if no real field data
exist, because in safety the worst case always defines the
upper bound. Usually, the reliability of components in a device
will persist over the entire lifetime. However, this is different
on engineering level where the reliability of devices can be
readjusted if real field data are collected over a long period
of time. In particular, today’s safety systems include rich
functionality sets for measuring various condition parameters
at run-time. A typical example is a safety device that is used on
an oil-rig where, at least some decades ago, the environmental
impact was rather unknown (e.g., how does vibration impact
the failure rate?). With modern wireless vibration sensors the
wear-out of devices can be readjusted, because the frequency
and the amplitude of vibrations are constantly measured. The
reason why customers are interested in avoiding the worst-case
scenario is because that leads to smaller prove test intervals.

Prove test intervals are defined for all field devices, which did
not set this interval to its lifetime. This maintenance process
leads to significant costs as a part of the overall maintenance.
We mentioned that products can have a lifetime of sometimes
more than 20 years and, if real field data are collected within
this time, the worst case calculation can be recalculated on
the basis of field data being collected. This reduces the prove
test interval iteratively and therefore also the maintenance
costs. Several research projects deal with lifecycle reliability
handling.

3) Increasing the Reliability of Industrial Devices: We have
already mentioned that there are ways to increase the reliability
of an industrial product:

1) All those components contributing with high failure
rates should be, if possible and economically feasible,
replaced by others with smaller failure rates.

2) Components with unacceptable failure rates can be repli-
cated so that if one component fails, the other can take
over. This is typical for the power supply.

3) The failure of components can be detected by diagnos-
tic measures in hardware (e.g., a watchdog timer) or
software (e.g., a memory test, that checks for stuck-at-
errors).

For the last item it has to be considered that hardware elements
lead to higher component costs and more software diagnostics
lead to higher development costs, so an optimum has to be
found. This is normally the most difficult task, since the
development and certification effort for software can be only
roughly estimated.

C. Future Challenges

While traditional safety architectures were often comprised
of simple hardware circuits and/or reasonably simple micro-
controllers, today several research projects explore the usage of
multicore processors, since they would provide some obvious
advantages:

• By partitioning and virtualization non-safe and safe soft-
ware could run on the same processor. This leads to

– hardware cost savings, because only one powerful
multicore processor has to be used,

– more flexibility, because configuration and software
upgrades can be done primarily in software,

– easier migration to other platforms, and
– a “one platform for all principle” for reduced soft-

ware maintenance costs.

• Increased hardware performance
• Higher flexibility, because a traditional two-

microcontroller solution is harder to update.

Despite all advantages, using multicores implies also many
unsolved problems. Proving sufficient diagnostic coverage and



effectiveness becomes increasingly difficult, since multicore
processors are very complex and their functionality grows with
every new version. Moreover, actual semiconductor manufac-
turing processes lead to critically small dimensions where soft-
errors (transient errors) become significantly dominant. The
main challenges for multicore systems are to prove sufficient
interference freeness between safe and non-safe functionality,
to handle the common cause failure effects, and to utilize the
processors performance properly.

In summary, design of reliable safety products is driven
by recent standards, modern hardware platforms, the impact
of systematic and random failures, and constantly growing
software size. We discussed techniques to evaluate and assess
the reliability and advised how to bridge the gap between
requirements in the safety standards as well as their practical
implementations in order to reduce development and certifica-
tion costs.

V. CONCLUSIONS

Overall, reliability evaluation of a product has to consider
the different layers of abstraction. Firstly, this is necessary
to understand which failures may affect the functionality at
a higher level or which failures are safely handled already.
Secondly, such an approach provides meaningful data for
assumptions like failure rates of components that are required
when going from the physical level all the way up to assessing
product reliability. Appropriate analytic models and scalable
automation tools continue to be the challenges in assessing
reliability of future products.

REFERENCES

[1] ITRS Working Group, International Technology Roadmap for Semicon-
ductors 2011. ITRS, 2011, available at http://www.itrs.net.

[2] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[3] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, “Analytical
model for TDDB based performance degradation in combinational
logic,” in Design, Automation and Test in Europe, 2010, pp. 423–428.

[4] H. Wang, M. Miranda, F. Catthoor, and W. Dehaene, “Impact of random
soft oxide breakdown on SRAM energy/delay drift,” IEEE Trans. Device
and Materials Reliability, vol. 7, no. 4, pp. 581–591, 2007.

[5] J. McPherson, “Reliability challenges for 45nm and beyond,” in Design
Automation Conf., 2006, pp. 176–181.

[6] E. Maricau and G. Gielen, “Computer-aided analog circuit design
for reliability in nanometer CMOS,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 1, no. 1, pp. 50–58, 2011.

[7] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The
impact of NBTI effect on combinational circuit: Modeling, simulation,
and analysis,” IEEE Trans. VLSI Systems, vol. 18, no. 2, pp. 173–183,
2010.

[8] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of
PMOS NBTI effect for robust nanometer design,” in Design Automation
Conf., 2006, pp. 1047–1052.

[9] Z. Qi, J. Wang, A. Cabe, S. Wooters, T. Blalock, B. Calhoun, and
M. Stan, “SRAM-based NBTI/PBTI sensor system design,” in Design
Automation Conf., 2010, pp. 849–852.

[10] J. H. Stathis, M. Wang, and K. Zhao, “Reliability of advanced high-
k/metal-gate n-FET devices,” Microelectronics Reliability, vol. 50, no. 1,
pp. 1199–1202, 2010.

[11] S. H. Voldman, SD Basics: From Semiconductor Manufacturing to
Product Us. Wiley, 2012.

[12] S. Wen, R. Wong, M. Romain, and N. Tam, “Thermal neutron soft
error rate for SRAMs in the 90nm-45nm technology range,” in IEEE
International Reliability Physics Symposium, 2010, pp. 1036–1039.

[13] T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P.-
J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, “Switching oxide
traps as the missing link between negative bias temperature instability
and random telegraph noise,” in IEEE International Electron Devices
Meeting, 2009, pp. 1–4.

[14] Synopsys Inc., “CCS noise technical white paper, version 1.1,” 2005,
available on opensourceliberty.org.

[15] E. M. et al, “Workload dependent aging simulation and optimization
flow in sub-45nm industrial processor,” in Design, Automation and Test
in Europe, 2013.

[16] M. Auslander, D. Larkin, and A. Scherr, “The evolution of the MVS
operating system,” IBM Journal of Research Development, vol. 25, no. 5,
pp. 471–482, 1981.

[17] J. Duraes and H. Madeira, “Multidimensional characterization of the
impact of faulty drivers on the operating systems behavior,” IEICE
Transactions on Information and Systems, vol. E86-D, no. 12, pp. 2563–
2570, 2003.

[18] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Failure resilience for device drivers,” in Conference on Dependable
Systems and Networks, 2007, pp. 41–50.

[19] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, “Characterization
of linux kernel behavior under errors,” in Conference on Dependable
Systems and Networks, 2003, pp. 459–468.

[20] W. Gu, Z. Kalbarczyk, and R. Iyer, “Error sensitivity of the linux kernel
executing on powerpc g4 and pentium 4 processors,” in Conference on
Dependable Systems and Networks, 2004, pp. 887–896.

[21] D. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. Iyer, “NFTAPE:
A framework for assessing dependability in distributed systems with
lightweight fault injectors,” in Int’l Computer Performance and Depend-
ability Symposium, 2000, pp. 91–100.

[22] M. Rimen, J. Ohlsson, and J. Torin, “On microprocessor error behavior
modeling,” in International Symposium on Fault-Tolerant Computing,
1994, pp. 76–85.

[23] R. Iyer, D. Rossetti, and M.-C. Hsueh, “Measurement and modeling of
computer reliability as affected by system activity,” ACM Transactions
on Computer Systems, vol. 4, no. 3, pp. 214–237, 1986.

[24] M. Hiller, A. Jhumka, and N. Suri, “On the placement of software
mechanism for detection of data errors,” in Conference on Dependable
Systems and Networks, 2002, pp. 135–144.

[25] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Automated derivation of
application-aware error detectors using static analysis,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 8, no. 1, pp. 44–57,
2011.

[26] K. Pattabiraman, G. Saggese, D. Chen, Z. Kalbarczyk, and R. Iyer, “Au-
tomated derivation of application-specific error detectors using dynamic
analysis,” IEEE Transactions on Dependable and Secure Computing,
vol. 8, no. 5, pp. 640–655, 2011.

[27] EN ISO 13849-1, Safety of machinery, Safety-related parts of control
systems. International Organization for Standardization, 2008.

[28] IEC 61508, Functional safety of electrical/electronic/programmable
electronic safety-related systems. International Electrotechnical Com-
mission, 2010.

[29] D. Crowe and A. Feinberg, Design for Reliability, ser. Electronics
Handbook Series. CRC Press, 2001.

[30] US Military Handbook 217F, Military Handbook – Reliability Prediction
of Electronic Equipment (Mil-Hdbk-217F). US Department of Defense,
1991.

[31] W. M. Goble, Getting Failure Rate Data. exida.com LLC, 2002,
www.exida.com.

[32] SN 29500-1, Failue rates of components. Siemens AG, 2005.


