
Recent Advances in SAT-based ATPG:
Non-Standard Fault Models, Multi Constraints and

Optimization
Bernd Becker∗ Rolf Drechsler†‡ Stephan Eggersglüß†‡ Matthias Sauer∗

∗Department of Computer Science (IIF), Faculty of Engineering, University of Freiburg, Germany
{becker, sauerm}@informatik.uni-freiburg.de

†Group for Computer Architecture, Institute of Computer Science, University of Bremen, Germany
{segg,drechsle}@informatik.uni-bremen.de

‡DFKI GmbH, Cyber-Physical Systems, Bremen, Germany

Abstract—It is well-known that in principle automatic test
pattern generation (ATPG) can be solved by transforming the
circuit and the fault considered into a Boolean satisfiability (SAT)
instance and then calling a so-called SAT solver to compute
a test. More recently, the potential of SAT-based ATPG has
been significantly extended. In this paper, we first provide
introductory knowledge on SAT-based ATPG and then report
on latest developments enabling applications far beyond classical
ATPG.

I. INTRODUCTION

Testing the correct functionality of nanoelectronic devices is
an essential step in the production process as typical yield rates
(i.e. the fraction of devices that perform properly) may reach
numbers in the 50% range. Current processes have reached
a point, where many classical pass/fail testing methods are
enhanced by defect based fault models and/or grading-based
techniques, assessing the quality of a circuit with regards to,
e.g., circuit timing or power consumption.

An essential step for the whole test process is the generation
of test patterns. They are generated by tools called Automatic
Test Pattern Generators (ATPG).

Traditional ATPG algorithms, like the D-Algorithm [1] and
successors [2], [3], work directly on the circuit structure,
possibly in conjunction with additional data structures such
as implication graphs [4] or advanced techniques to prune
the solution space [5], [6]. The key idea of structural ATPG
algorithms is to propagate a fault effect, using assignments to
circuit lines, from the fault location to an observable circuit
output. If this is possible without conflicting assignments, a
justification phase tries to assign values to all supporting lines
to find a consistent (i.e. conflict-free) assignment for each
relevant line in the circuit. If a conflicting assignment has
been identified, these assignments are reverted until either a
consistent assignment has been found, or the complete search
space has been covered. As we will see later, the advantage
of structural methods, namely to directly work on the circuit
structure, is also their weakness at least in the case of hard-

to-detect or redundant faults. Nevertheless, state-of-the-art test
generators are able to handle large industrial multi-million-gate
designs.

It has long been known that an ATPG problem can be
reduced to a Boolean satisfiability (SAT) instance and solved
using a SAT solver [7]–[9]. However, this approach was not
widely adopted as the structural approaches tended to exhibit
better performance. More recently, significant improvements
of the underlying SAT solvers in conjunction with extended
solving capabilities specifically developed and tailored to
ATPG changed this situation and led to an increased interest
in such techniques.

SAT-based ATPG [10]–[13] has been shown to provide a
high fault coverage for large industrial circuits. In particular,
the powerful learning and implication techniques of modern
SAT solvers are well suited to generate tests for hard-to-
detect faults or determine the redundancy of faults. Classical
structural ATPG approaches typically have problems to cope
with these kind of faults as shown in [11].

The ability to handle redundant faults is becoming more
important for two reasons. First, defects in nanoscale manufac-
turing technologies may not be described adequately by stuck-
at faults [14]. Non-standard fault models such as resistive
bridging faults [15], [16] or interconnect opens [17], [18] as
well as robust delay test generation [19]–[21] may impose very
specific conditions on the lines in the circuit, which are, in
many cases, impossible to satisfy, so the fault is undetectable.
Second, redundant structures are being increasingly used to
enhance circuit reliability and yield [22], [23]. A significant
fraction of faults in these structures are not detectable. To
accurately estimate the defect coverage, the proof that the fault
in question is undetectable (rather than aborted) is essential.

In this paper, we will first provide introductory knowledge
on SAT-based ATPG with a particular emphasis on the tech-
niques that led to SAT-based ATPG tools being competitive or
even superior to classical structural ATPG solvers.

The main focus of the paper however will be on recent

advances and corresponding applications. In this context, the
following observations are crucial: on the one hand, SAT
solvers allow the convenient integration and flexible handling
of multi constraints and their optimization; on the other hand,
the capabilities of SAT solvers can be extended e.g., by using
Pseudo Boolean SAT solvers or SAT modulo Theory (SMT)
solvers. Exemplary applications will be sketched to provide
insight and demonstrate the achievements.

The remainder of this paper is structured as follows: The
next section briefly reviews basics on SAT-based ATPG. In
Section III, we introduce complex static fault models and
their modeling and utilization in SAT-based ATPG. Timing
models and their analysis, e.g. sensitizable path computation
and small delay fault detection is the topic of Section IV. In
Section V, we demonstrate that optimization constraints can
be integrated to allow the efficient computation of minimal
test cubes and highly compacted test sets. We shortly review
further extensions and current trends in Section VI and then
conclude the paper.

II. ATPG TECHNIQUES

A. Boolean Satisfiability

This section briefly reviews the basics on the applied
solving engines as well as on SAT-based ATPG. Solvers
for Boolean satisfiability (SAT) and extensions thereof, like
Pseudo-Boolean Constraints (PBC), MaxSAT and Pseudo-
Boolean Optimization (PBO), are powerful formal proof en-
gines which are frequently applied to solve complex problems
in the field of circuit design. The underlying problems are
defined as follows:

Definition 1 (SAT, PBC):

• Solvers for the SAT problem determine an assignment to
the variables of a Boolean function Φ : {0, 1}n → {0, 1}
such that Φ evaluates to 1 or prove that no such assign-
ment exists. The function Φ is thereby given in Con-
junctive Normal Form (CNF). A CNF Φ is a conjunction
of clauses. A clause ω is a disjunction of literals and
a literal x is a Boolean variable in its positive (x) or
negative form (x).

• Solvers for the PBC problem determine assignments
to fulfill a conjunction of constraints defined by∑n

i=1 ciẋi ≥ cn, where c1 . . . , cn ∈ Z and ẋi either is a
positive or a negative literal, or they prove that that no
such assignment exists.

MaxSAT and PBO define optimization versions of SAT and
PBC, respectively. For the purpose of this paper, we restrict
to the following definitions:

Definition 2 (MaxSAT, PBO):]
• In MaxSAT, a CNF formula is separated in soft and

hard clauses. The optimization objective is to find an
assignment that satisfies all hard clauses (as in SAT) and
simultaneously maximizes the number of satisfied soft
clauses.

• In PBO a PBC problem is extended by an objec-
tive function F , which at the same time is to be

TABLE I
PBC AND CNF REPRESENTATION FOR AN AND GATE a · b = c

PBC CNF
(c+ (1− a) + (1− b) ≥ 1)· (c+ a+ b)·

(a+ (1− c) ≥ 1)· (a+ c)·
(b+ (1− c) ≥ 1) (b+ c)

minimized. The objective function F is defined by
F(x1, . . . , xn) =

∑n
i=1 miẋi with m1, . . . ,mn ∈ Z.

Example 1: Let Φ = (x1 + x2 + x3)(x1 + x3)(x2 + x3).
Then, x1 = 1, x2 = 1, and x3 = 1 is a satisfying assignment
solving the SAT problem.

Accordingly, let Ψ = (2x1 + 3x2 + x3 ≥ 3)(2x1 + x2 ≥ 2)
and F = x1 +x2 +x3. Then, x1 = 1, x2 = 1, and x3 = 1 is a
solution to the PBC problem given by the first two constraints,
but obviously does not minimize F . On the contrary, it follows
easily that x1 = 1, x2 = 0, and x3 = 0 is a solution to the
PBC problem and, at the same time, minimizes F .

SAT, PBC, MaxSAT and PBO are well investigated prob-
lems. In the past, efficient solving algorithms (so called SAT
solvers or PBC, MaxSAT, PBO solvers, respectively) have been
proposed (see e.g. [24]–[26]).

The effectiveness of these algorithms relies on several
techniques. The most important techniques are efficient im-
plication methods and powerful learning schemes. Conflict-
based learning is performed during the solving process after
a conflict, i.e. a conflicting assignment, occurred. Instead
of simply backtracking as ATPG algorithms typically do,
a conflict clause is recorded which prevents the solver to
enter the same non-solution search space again. These conflict
clauses enable the SAT solver to prune large parts of the search
space as well as to understand complex relations between
variables.

In the following, we apply these techniques as black boxes
delivering the solution for the proposed problem formulations.

B. SAT-based ATPG

The application of the powerful SAT solving techniques to
a circuit problem requires a transformation of the problem
description into a Boolean formula in CNF as defined above.
In order to create the SAT instance, the circuit C = (S,G)
with S as the set of signals and G the set of gates has to be
transformed into CNF first.

For this purpose, each connection s ∈ S of a circuit is
assigned a Boolean variable xs which represents the logical
value of s, i.e. 0 or 1. Then, the functionality of each gate g ∈
G is transformed into a set of clauses Φg using the Boolean
variables associated with the input and output connections of
g. The CNF can be easily derived for each gate type using
truth tables or algebraic conversions. Table I shows an example
formulation for an AND gate in PBC and CNF. The CNF ΦC

for the complete circuit C is then constructed by a conjunction
of the CNF of each single gate of C, i.e.

ΦC = Φg1 · . . . · Φgk .

Output ConeTransitive Fanin Cone

Fault Site

Fig. 1. Illustration of the SAT-based ATPG formulation (taken from [27]).

After the circuit CNF has been created, the SAT instance has
to be augmented by the fault modeling. That is, given a fault f ,
e.g. a stuck-at-0 or stuck-at-1 fault, additional constraints Φf

F

for fault excitation and fault propagation with respect to the
specific fault f have to be formulated. The CNF Φf

F typically
includes the complete output cone of the fault site, the faulty
gate itself, and D-chain constraints to propagate the fault
to an observation point [9]. Eventually, the following CNF
formulation results as problem representation:

Φf
Test = ΦC · Φf

F

This is illustrated in Figure 1. The solution space of Φf
Test

includes all possible tests which detect f . Given to a SAT
solver, the solver proves that Φf

Test is satisfiable by computing
a satisfying assignment, which can be transformed into a test.
If the fault f is untestable, the SAT solver proves that the
solution space is empty, i.e. no satisfying assignment exists.

C. Multi Constraints and Optimization Techniques

Typically, the solution space for an ATPG problem for fault
f includes more than one solution or even a large number
of solutions. Each solution represents one test for f . As
stated above, the importance of other issues for fault detection
increases. Often, the detection of the pure fault is insufficient,
e.g. sensitization constraints (see Sec. IV) have to be modeled
for detecting small delay defects. However, the ATPG engine
typically returns the first test found. This may not be the best
test with respect to its ability to detect the fault. Therefore,
guiding the ATPG towards finding not an arbitrary test but a
test satisfying certain conditions is desirable.

As indicated above, this can be done by defining additional
constraints (see also Sec. III), which sometimes have even
to be handled by using an optimization solver, e.g. when
computing test patterns with a minimal number of specified
input bits, so-called minimal test cubes or when computing
minimal test sets (see Sec. V).

III. COMPLEX STATIC FAULT MODELS

It is well-known, that complex defect mechanisms are not
adequately covered by traditional fault models such as the
stuck-at or transition delay fault model. As a consequence,
non-standard fault models have been developed and specific
ATPG-tools for individual fault models have been devised in
the past.

As a more generic approach, in the following we present
the conditional multiple-stuck-at fault model (CMS@) defined
in [13], and an extension thereof the enhanced conditional
multiple-stuck-at fault model (ECMS@) [28]. As a further
application demonstrating the potential of SAT-based ATPG,
we consider ATPG for interconnect open faults.

A. CMS@ and ECMS@ Fault Model

A CMS@ fault is given by r condition lines a1, . . . , ar,
r ≥ 0, each one of them associated to a condition ci; and
by s victim lines, s ≥ 1, each one of them associated to a
logical value bj . The following types of condition lines are
supported: 0 – line is set to 0; 1 – line is set to 1; F (fault-
affected) – fault effect must be propagated through that line;
NF (non-fault-affected) – fault effect must not be propagated
through that line. A circuit under a CMS@ fault exhibits faulty
behaviour under any input vector that satisfies all conditions;
in this case, every victim line vj behaves as stuck-at-bj .

It directly follows that a single-stuck-at-fault is represented
by a CMS@ fault with an empty condition list and a victim
list consisting of one entry. CMS@ allows the convenient in-
tegration of further fault models. As an example, we illustrate
the mapping of the resistive bridging fault model on CMS@.

Bridging faults with non-zero bridge resistance may impact
the behavior of a digital circuit in a non-trivial way [15],
[29]. In general, a short defect with a non-zero resistance
Rsh between interconnects a and b imposes intermediate
voltages Va and Vb between 0 and VDD on the affected
interconnects. These voltages are interpreted as logic values
by the gates driven by a and b, depending on the logic
thresholds of the gates. To detect a resistive short defect with
a given resistance, specific values (detection conditions) on
the gates driving the shorted interconnects may be required,
and the fault effect may be visible on one or multiple gates
driven by the shorted interconnects. These detection conditions
may differ for short defects which involve the same pair of
interconnects but have different resistances Rsh. It has been
shown in [30], [31] that for every pair of interconnects a and
b there is a finite number of representative resistances Rsh

such that a test set, which detects all short defects with these
resistances, covers all possible short defects between a and b. It
is possible to formulate CMS@faults, in fact these are specific
multiple stuck-at faults, which correspond to short defects
with representative resistances. The details of the mapping are
discussed in [31].

The CMS@ fault model can be further extended to al-
low the integration and optimization of further so-called soft
conditions. We omit further details on the resulting fault
model, called extended CMS@ (ECMS@) and its integration

in SAT-based ATPG. (For more details on optimization see
also the following sections.) Rather we point out applications
supported by ECMS@. As an example, a set of lines can
be chosen and the number of 1s or 0s on these lines can
be maximized or minimized, as well as the number of those
lines that propagate a fault effect. In combination with time-
frame expansion, this feature can also be used to generate
test sequences needed for precisely controlling local switching
activity during test-pair application, which is useful e.g. for
noise-aware and low-power testing.

CMS@ and ECMS@ have been integrated in the SAT-
based ATPG-tool TIGUAN. Besides testing of resistive bridges
[13], applications include ATPG power-droop testing [32],
minimization/maximization of fault affected outputs for stuck-
at faults, and switching activity minimization for transition
faults [28].

B. Interconnect Open Faults

CMS@ and ECMS@, are generic fault models working
directly on the Boolean level. Depending on the defect class
this may not be an adequate modeling level, even if static
fault models are considered. Interconnect opens turn out to be
such a case. Nevertheless, an extension to PBC solving allows
efficient handling [33].

Interconnect opens are known to be one of the predominant
defects within nanoscale technologies [34], [35]. An intercon-
nect affected by an open defect is divided into two parts: a
stable part connected to the driver and a disconnected floating
part whose value is dominated by coupling capacitances be-
tween neighboring interconnects (aggressors) [36]. Different
fault models exist describing the behaviour of open defects
on the basis of an underlying electric modeling and layout
information, among them the Robust Enhanced Aggressor
Victim (REAV) model [37], an extension of Sato’s Agressor
Victim model [34].

Fig. 2. Example of an interconnect represented as a tree of RC-elements
with all possible open faults (taken from [33]).

An interconnect consists of one source, several segments
and one or multiple sinks as shown in Figure 2. There are
one source G1, two sinks G2 and G3 and five so-called RC-
elements. In total five open faults F1, . . . , F5 are possible.
Regarding Figure 2, Fault F4 only affects G2 and has no
influencing capacitances at all, while Fault F5 only affects
G3, but being victim of the aggressors VDD and VSS with the
coupling capacitances CCV DD and CCV SS .

In general, the value of the coupling capacitance (CCi)
determines the influence of the aggressor i on the floating

part. (VDD and VSS can occur as aggressors, but in contrast
to normal signals their logic value cannot be changed by
a test pattern.) C0 (C1) represents the cumulative coupling
capacitance of all aggressors showing logic 0 (1). The voltage
of the floating part (Vf) is assumed to be Vf = C1

C0+C1
VDD.

In the REAV model for each gate type G, two thresholds
VthL(G) and VthH(G) are given. The voltage Vf of the
floating part is interpreted as logic 0 (1), iff Vf < VthL(G)
(Vf > VthH(G). A voltage between VthL(G) and VthH(G)
may be interpreted as either logic 0 or logic 1 but the actually
interpreted value is unknown X).

An ATPG method using the REAV model described above
requires (a) a Boolean encoding of the circuit and (b) Pseudo
Boolean Constraints describing the behaviour of the open
fault. In [33] this is done utilizing the SAT Modulo Theory
(SMT) solver iSAT3 [38], [39] based on Interval Constraint
Propagation (ICP) for modeling the faulty behaviour. We are
able to represent coupling capacitances precisely by large
integers as they are generated by layout parameter extraction
(PEX) tools. In principle, such constraints could also be
translated into a pure propositional formula being examined by
a SAT solver. However, this would require to map the integers
to rather small values and therefore would lead to a loss of
accuracy. Furthermore, a high number of aggressors leads to
very large encodings of the constraints, rendering a SAT-based
approach even less feasible.

The resulting ATPG tool provides the first approach which
• supports the Robust Enhanced Aggressor Victim model

without making any propagation restrictions and therefore
considers unknown values at the inputs of an affected gate
if necessary,

• allows to explicitly generate static test patterns, i.e. test
patterns showing no oscillating behaviour and being ro-
bust against process variations,

• is able to model thousands of aggressors within a single
fault instance,

• is scalable to larger circuits with over 500k of non
equivalent faults,

• includes an accurate simulator for open faults to allow
accurate consideration of unknown values.

IV. TIMING MODELS

The timing of a synchronous digital circuit is based on the
notion of paths through which signal transitions travel from
input to output. While so-called structural (longest) paths can
be efficiently computed using graph algorithms, many tasks
in particular with respect to timing analysis and delay test
generation require knowledge on sensitizable paths and their
length. Unfortunately, the identification of sensitizable paths
turns out to be much harder than the determination of structural
paths.

In contrast to previously known techniques that work on
the circuit structure and separate path identification from sen-
sitization checks [40], SAT-based computation of sensitizable
paths offers the possibility to determine sensitizable paths of
desired lengths (and other user-defined properties) together

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Unit-Delay Distribution for ITC99 b22 Gate SI_23

Robust Hazard-Free Robust

Strong Non-Robust Restricted Functionally-Sensitizable

Structural Path

Path length in gates

N
um

be
r

of
 p

at
hs

Fig. 3. Path delay histograms for input “SI 23” of circuit “b22” assuming
different sensitization rules.

with primary input combinations executing the paths solving
one monolithic encoding. We shortly present review three
approaches going into different directions but all of them based
on the above idea: PHAETON [41], an approach based on
PBO [42], and WaveSAT [43]. realize this concept .

A. PHAETON

PHAETON1 supports different delay models (unit delay,
gate delay, pin-to-pin delay) and path-sensitization conditions
(hazard-free robust, robust, strongly non-robust, restricted
functional). The timing information is efficiently encoded di-
rectly into the SAT formula using an application-specific unary
representation of integer numbers which supports operations
required for controlling the length of found paths. Thanks
to the monolithic formal encoding of the path generation
instance as a SAT formula, PHAETON offers flexibility that
by far exceeds that of structural procedures: a large number
of requirements can be easily formulated, and application-
specific functionality can be incorporated into the SAT formula
generation.

Given the set of requirements, the PHAETON framework
constructs a monolithic SAT instance Φ which is satisfiable
if and only if at least one path which obeys the requirements
exists. Among other optimizations, PHAETON maintains a
knowledge storage which includes information learned during
search; this storage is updated both when a solution has been
found or not. It is possible to repeat the same request multiple
times; in this case, PHAETON will search for different paths
meeting the requirement by adding a conflict clause to prevent
the previously found paths from being generated again.

We provide an example to demonstrate the potential of
PHAETON: Some applications, including gate-criticality es-
timation [44], require the complete delay distribution of paths
going through a specific gate. PHAETON is able to enumerate
such paths and generate a histogram of path delays. Five such

1PatH Analysis and Enumeration on top of Test generatiON

histograms are shown in Figure 3 for a specific circuit input
and unit-delay model: one based on purely structural analysis
and four assuming different path sensitization conditions.

PHAETON has been successfully employed for several
tasks, from criticality estimation of circuit components [44],
K longest path generation (KLPG) [45] to test generation for
post-silicon validation and characterization [46], and variation-
aware fault grading [47].

B. PBO-based Path Computation

In [42], a formal timing-aware ATPG approach relying on
pseudo-Boolean encoding is presented. Using a higher level of
encoding simplifies instance generation on the one hand, but
has to be done carefully not to compromise scalability. The
approach has been used to tackle Small Delay Faults (SDFs).

SDFs [48] extend the basic transition-delay fault by defining
the fault as an increase in the delay of a specific gate g by
a certain parametric value d. d is set to a rather small value,
such that this additional delay may lead to a fault effect on
some propagation path, but not on all. This results in a great
increase in the complexity of the test generation as, unlike in
the classical Transition Delay Fault (TDF), the detection of the
fault depends on the delay of the propagation path. This fault
model is related to the path delay fault model [49] where the
additional delay is not allocated at a specific gate, but along a
predefined path of the circuit. In order to accurately generate
tests for SDFs, the delay of each gate needs to be known.

Typically, ATPG algorithms tend to sensitize short paths due
to reasons of complexity. For a high-quality test, it is necessary
that faults are detected via long or the longest sensitized paths.
These paths have a smaller slack and are more likely to fail
in the presence of SDFs. Timing-aware (structural) ATPG
was proposed in [50]. Here, timing information is integrated
into the search as a heuristic. As a result, the generated test
typically sensitizes much longer paths than a test generated by
regular ATPG. However, the run times as well as the pattern
counts increase drastically as reported in [51].

SAT-based ATPG approaches to generate tests targeting
longest paths were proposed in [42], [45]. The robustness of
the underlying solving engines is leveraged to determine the
provably longest paths through a fault site (dependent on the
provided timing information).

An incremental search procedure is used to guide the test
generation. The basic steps for TDF f are as follows:

1) Create a regular SAT-based ATPG instance Φf
Test. The

solution space of this instance consists of all possible
tests detecting f .

2) Create an objective function Fl which determines the
length of a sensitized path of a test. This function
includes a lower bound initially set to 0 or a low value.

3) Start the search procedure and generate an initial solu-
tion tinit. Evaluate Fl(tinit) and use the result as a new
lower bound of the objective. The initial solution does
not necessarily sensitize a long path, although this is
beneficially for the run time behavior. Save and exclude

the solution found from the solution space, e.g. by
adding a conflict clause.

4) Continue the search while considering the new lower
bound. If a new solution with a longer sensitized paths is
found, update the lower bound and exclude the solution
from the solution space as well.

5) If no better solution can be found, the last solution
found, i.e. the optimal solution sensitizing the longest
path, is returned.

The steps 3 – 5 are typically integrated into the solving
engine and can be performed very efficiently.

The SAT-based timing-aware ATPG approach provides a
powerful method for high-quality test generation. Therefore,
the basic formulation is extended to target other hard problems.
The approach in [42] integrates static signals using the formu-
lation presented in [21]. This enables the generation of high-
quality robust tests. In contrast to non-robust tests, a robust
test guarantees the detection of a fault if other delay faults
are present. By this, detecting the fault through the longest
robustly testable paths is achieved.

C. WaveSAT

The detection of SDFs is traditionally performed by sensi-
tizing a path of sufficient length from an input to an output
of the circuit going through the fault site. While this approach
allows efficient test generation algorithms, it may result in
false positives and false negatives as well, i.e. undetected
faults are classified as detected and vice versa, detectable
faults are classified as undetectable. WaveSAT [43] is a SAT-
based ATPG that overcomes these deficiencies by modeling
waveforms on each relevant line of the circuit. The model
incorporates individual delays for each gate and filtering of
small glitches. It does not rely on the explicit notion of path
sensitization. Instead, it directly considers the relationships
between the possible waveforms on different lines of the
circuit.

For a given SDF, a set of consistent waveforms on all
circuit lines leading to detection is generated. The test pair
is derived from the waveforms on the inputs (which are only
allowed to switch once, at time 0). If no test pair is found,
this constitutes the formal proof of untestability within the
model assumptions. The waveforms are represented by series
of Boolean variables which contain logical values at discrete
points of time. Together with several optimizations in order to
achieve scalability we succeed in systematically quantifying
the inaccuracy obtained when using conventional path-oriented
SDF ATPG for different sensitization conditions.

An example SAT encoding is given in Figure 4. It can be
shown that no hazard-free-robustly sensitizable path through
the fault location g3 exists but the fault is nevertheless de-
tectable.

WaveSAT can also be used for further applications, e.g. the
detection of early-life failures [52].

V. MINIMAL TEST CUBES AND COMPACTION

A general shortcoming of SAT-based ATPG compared to
structural ATPG is the over-specification of the computed test
pattern. Typically, the SAT solver computes (in absence of
structural information) a complete non-conflicting assignment
of all Boolean variables in the SAT instance as satisfiability
proof. The test is extracted from the assignment of the inputs.
If done this way, the extracted values do not include any
unspecified bits (“don’t cares”,X). This does not necessarily
concern all inputs of the circuit, since only the relevant part
of the circuit is represented in the SAT instance. However, the
number of specified bits is typically higher than for structural
ATPG, which is disadvantageous e.g. for test compaction
or more sophisticated on-chip methods like “Embedded De-
terministic Test” [53]. Moreover, underspecified tests offer
great flexibility for controlling secondary test parameters like
test power consumption [54]–[56] using refilling techniques.
As the quality of these methods depends on the number of
unspecified values, test patterns with as many unspecified
inputs as possible are preferred.

Test relaxation techniques [57]–[59] tackle this problem.
Thereby, static and dynamic methods have to be distinguished.
Static methods require an initial test pattern and try to general-
ize input values by relaxation (replace specified by unspecified
values without compromising the fault detection capabilities).
Hence the quality of such methods depends on the initial
pattern. Dynamic methods work with the requirements that
the test imposes and try to find a test pattern with a high
number of unspecified bits, a so-called test cube directly. In
general, dynamic methods achieve better results, as they are
free to choose the defined part of the input pattern in a way
that improves the test cube. Only recently, the first method for
computing provably minimal test cubes has been proposed. In
the following subsection, we provide the key ideas of a SAT-
based test cube minimization and then turn to test compaction.

A. Minimal Test Cubes

SAT-based methods to generate provably minimal test cubes
are presented in [60].

The so-called 01X-logic can be used to represent unspecified
assignments in a circuit. 01X-logic consists of three values
{0, 1, X}, which represent three states: 001X (logic 0), 101X
(logic 1) and X01X (unknown, either logic 0 or logic 1).
01X-logic can be expressed by propositional formulas. We
encode the three-valued logic with two Boolean variables as
follows: 001X = (1, 0), 101X = (0, 1), X01X = (0, 0). The
combination (1, 1) is not allowed.

Figure 5 shows an example for the 01X-encoding of a
circuit where input x1 is unspecified. Here, t1 and t2 indicate
auxiliary variables which represent internal signals. In this
example, the unspecified value is propagated to the output y1,
but not to y0.

In Section II-B, we described how Φf
Test, the SAT instance

corresponding to all tests for a given fault f is constructed
when using Boolean logic. Analogously, we first create a SAT

a

b

g
1

g
2 g

5

g
6

 3

 1/4

 4

 1

 2
 3

I
1
I

1
I

1
S

1

0  +
I

1

I
a
S
a

0  +

I
1
S

1

3  +

S
a
S
a

I
a

S
a

0  +
S
a

W
1
W

2
I

2
S

2

3  +
W

3

I
b
S
b

0  +
I
3
S
3

4  +

I
4
S

4

8  + I
4
I

4
I

4
S

4

3  +
I

4
I

4
I

4

W
1
W

2
I

2
S

2

3  +
W

3
S

2
S

2
W
4
W

5
I

5
S

5

5  +
W

6
W

7
W

8

I
4
I

4
I

4
S

4

4  +
I

4
I

4

S
3
S
3

I
3

S
3

4  +
S
3
S
3

W
9
W

10
I

6
S

6

5  +
W

11
W

12

 0

 0

 5 8

g
4

 3

 3 6

t
obs

 = 7

 1 4 2 6 9

 5 8 10

g
3

Fig. 4. Example SAT encoding of a SDF (g3, 3) (taken from [43]).

= (0, 1) = 101X

= (0, 0) = X01X

= (0, 1) = 101X

= (0, 0) = X01X

= (0, 0) = X01X

= (0, 0) = X01X

= (0, 1) = 101X

t0

t1
x2

x1

x0

y0

y1

Fig. 5. 01X encoding for a certain input pattern (taken from [60]).

instance Φf
01x, Test modeling the set of all tests for fault f when

using 01X-logic.
For all primary inputs, additional trigger variables ti are

introduced in addition. If ti = 1, then the primary input Ii is
assigned to (0, 0) = X01X , i.e. Ii is unspecified. Computing
a minimal test cube can now be reduced to the following
MaxSAT instance: We introduce a unit soft clause ti and add
the above implication as a hard clause to Φf

01x, Test.
This method is 01X-optimal, it calculates the minimal test

cube for a 01X-encoded circuit. Note, that this result may not
be overall optimal in general, as is evidenced by the example
in Fig. 5: 01X-logic may incorrectly predict unspecified values
on path revonvergences. As an example, consider again Figure
5, in particular y1. With 01X-encoding the assignment of y1
is unspecified, although it will assume the value 1 regardless
of the X-assignment of x1: if x1 = 0, the top input of the
bottom OR is 1, therefore y1 = 1 holds; if x1 = 1 the bottom
input of the bottom OR is 1, and therefore y1 = 1 holds again.

As a second way to formulate and model unspecified
values, an exact formulation with Quantified Boolean Formula
(QBF) is introduced in [60]. Also the optimization problem
considered above and the corresponding solution method can
be extended to QBF and thus provably minimal test cubes can
be obtained. For a detailed comparison and a discussion of the
results obtainable, we refer to the original paper.

B. Local Fault Detection

However, not only the number of unspecified bits is impor-
tant for an effective test compaction result, but also that the
computed bits are compatible with other test cubes. It may
happen that unfortunate bit assignments prevent other faults
from being detected, e.g. blocked paths. The identification of
“good” assignments is a difficult task if each fault is treated
independently from other faults as structural ATPG approaches
typically do.

In general, SAT-based algorithms are more powerful than
structural ATPG algorithms. They are able to process more
constraints more effectively. The work in [61] leverages this
circumstance in order to improve the test compaction ability.
Instead of targeting one fault only, the SAT instance is
enhanced by local fault detection constraints. The main idea
is that the reasoning engine should be guided not only to
detect a primary fault f but also to satisfy as many local fault
detection constraints as possible. By this, assignments which
are potential useful for detecting other faults are made during
the ATPG run without explicitly targeting other faults.

The local fault detection constraints consist of two addi-
tional variables xs

f0 and xs
f1 assigned to each connection

s ∈ S of a circuit C. These variables are associated with the
corresponding stuck-at (transitions) faults f0, f1 of this line.
The value of xs

f0 and xs
f1 represents whether all local fault

detection conditions are satisfied. Additional constraints are
added in order to imply the value of xs

f0 and xs
f1 from the

circuit assignment. The following constraints are needed:

• The activation constraints ΦActivate check whether the
fault can be activated by the current circuit assignment,
i.e. the value of x is the inverse of the fault value.

• The gate constraints ΦGate check whether all side inputs
of the succeeding gate are non-blocking, i.e. assume the
non-controlling value.

• The path constraints ΦPath check whether a propagating
path exists, i.e. whether the local fault detection con-

straints of the successor are satisfied.
In order to compute a test with enhanced detection ability,

an objective function F is added. This function is created
including all fault detection variables whose corresponding
faults have not yet been detected. Given a set of yet undetected
faults F = f1, . . . , fm with xi being the connection of fault fi
(1 ≤ i ≤ m), the objective function F is formulated as
follows:

F = (−1) · x1
f1 + . . . + (−1) · xm

fm

The extended SAT instance Φf
Test · ΦActivate · ΦGate · ΦPath is

given to a PBO solver along with F . The solver yields the
assignment which detects f and, at the same time, maximizes
the satisfied local fault detection constraints. By this, the
computationally power of modern solving engines is used to
generate a test which potentially can be better compacted.

C. Multiple-Target Test Generation

The approach presented in [27] applies a different tech-
nique: Multiple-Target Test Generation (MTTG). Here, multi-
ple faults are simultaneously considered. Giving a set of faults
f1, . . . , fn, the ATPG problem is formulated that a test t is
generated which detects all faults f1, . . . , fn or prove that
no such test exists. Obviously, the application of MTTG is
advantageous for test compaction.

Early (structural) MTTG approaches [62], [63] were limited
by the underlying ATPG technique. Only a very small of faults
could be handled at the same time. The powerful modern SAT
solving engines are able to handle a larger number of faults,
since the conflict-driven learning techniques and heuristics are
well-suited for such a restricted search space. In order to use
SAT-based ATPG for MTTG for fault set F = {f1, . . . , fn},
the SAT instance has to be extended as follows.

ΦF
Test = ΦC · Φf1

F · . . . · Φ
fn
F

The fault detection constraints Φfi
F of each fault fi ∈ F have

to be added to the SAT instance. This includes in particular
the complete faulty output cone of the fault. The CNF ΦC

for the good circuit part can be shared for all faults. However,
sharing the constraints of the faulty output cone is not possible
since faults can be masked by this. A schematic illustration of
this formulation is given in Figure 6.

The size of the SAT instance grows with the number of
simultaneously considered faults. The MTTG formulation is a
powerful technique to assemble a compact test set. However, a
disadvantage is that a test can only be generated if all targeted
faults can be detected by one test. If at least two faults conflict
with each other, no test is generated. The search for a non-
conflicting test set is a runtime-intensive task.

The technique presented in [64] resolves this issue. The
proposed Optimization-based MTTG (OTG) technique wraps
the problem by an objective function F which maximizes the
number of detections. The optimization solver used generates
a test with the maximal number of detected faults from a set of
faults F . The SAT instance is modified such that faults can be
dynamically deactivated if some faults conflict with each other.

Φ

Φ

Φ

f1

f2

f3

faulty

faulty

faulty

Φ
f3
prop

Φ
f2
prop

Φ
f1
prop

Φ
f1
act

Φ
f2
act

Φ
f3
act

Shared Correct Circuit

Φ
C

f1,f2,f3

Fig. 6. Illustration of MTTG (taken from [27]).

TABLE II
TEST COMPACTION RESULTS

Circuit Commercial SAT
p35k 1523 624
p45k 2100 1780
p77k 552 549
p78k 82 78
p81k 379 556

p100k 2054 1690

The technique has been shown to produce a highly compacted
test set. Additionally, an iterative application of this technique
to a pre-generated compacted test set is able to further the
size of the test set. Table II shows a comparison between a
commercial (structural) ATPG tool and a SAT-based ATPG
tool in terms of test set size.

In this section, we presented SAT techniques and extensions
to be applied in the field of test compaction. Modern formal
solving engines are used to increase the effectiveness of ATPG
in terms of test compaction ability.

VI. FURTHER DEVELOPMENTS AND CURRENT TRENDS

There are several further developments enabled by SAT-
based methods that complement the applications described
until now. We just provide some pointers for further reading:

• The handling of unkowns (X) was shortly discussed
in Section V. ATPG as well as fault simulation in the
presence of unkowns is an interesting topic offering
significant potential for SAT-based methods (see e.g.
[65]–[67]).

• One of PHAETON’s design goals has been to simplify
the integration with applications making use of the ver-
satile requirement system and hence enable sensitizable
path-based concepts in novel areas beyond the classical
scenario of small-delay fault testing, e.g., the functional
detection of small delay faults through longest paths in
sequential circuits [68], [69]. Thereby, optimization and
compaction plays a role, as well as proving untestability
by transfering methods known from the formal verifica-
tion area [70] to the test area.

• A further step is to extend the above to a microprocessor
environment and automatically generate functional mi-

croprocessor test sequences, e.g., for small-delay faults,
based on Bounded Model Checking. A method is pro-
posed for constraining the input space for generating
functional test sequences (i.e., test programs) [71]. Also
in this case, the close interaction between formal verifi-
cation methods and ATPG knowhow is decisive for the
success of the approach. Generating test programs more
or less automatically for an on-line software-based self
test of microprocessors will be a challenge in the future.

• Optimization with MaxSAT and the combination with
so-called Bounded Model Checking (BMC) offers the
possibility to have a fresh look at circuit initialization
and even prove optimal results or disprove initializability
[72].

• Power-aware test generation [73] is used to generate a
test set which complies with the energy requirements of
the chip. Current structural approaches struggle with the
large number of additional constraints as well as with
the problem of test inflation. SAT-based algorithms are
a promising alternative in this field due to the presented
advantages. A first SAT-based approach to reduce capture
power was proposed in [74].

VII. CONCLUSIONS

We gave a brief description of basic SAT-based ATPG with
a particular emphasis on the techniques that led to SAT-based
ATPG tools being competitive or even superior to classical
structural ATPG solvers.

The main focus was on recent advances and corresponding
applications that go beyond classical ATPG. The successful
and convenient integration of sophisticated static and dynamic
fault models into SAT-based ATPG was demonstrated as well
as the potential of SAT extensions, e.g., by using Pseudo
Boolean SAT solvers or SAT modulo Theory (SMT) solvers
or optimizing solvers. In particular, the advantages of SAT-
based algorithms in the field of test cube minimization as well
as dynamic compaction were shown. We finished the paper
demonstrating the potential for future developments.

REFERENCES

[1] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM Journal of Research and Development, vol. 10, pp. 278–281, 1966.

[2] P. Goel, “An implicit enumeration algorithm to generate tests for
combinational logic,” IEEE Trans. on Computers, vol. 30, no. 3, pp.
215–222, 1981.

[3] H. Fujiwara and T. Shimono, “On the acceleration of test generation
algorithms,” IEEE Trans. on Computers, vol. 32, no. 12, pp. 1137–1144,
1983.

[4] P. Tafertshofer and A. Ganz, “SAT based ATPG Using Fast Justification
and Propagation in the Implication Graph,” in Int’l Conf. on Computer-
Aided Design, 1999, pp. 139–146.

[5] E. Gizdarski and H. Fujiwara, “SPIRIT: A Highly Robust Combinational
test Generation Algorithm,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 21, no. 12, pp. 1446–1458,
December 2002.

[6] C. Wang, S. M. Reddy, I. Pomeranz, X. Lin, and J. Rajski, “Conflict
driven techniques for improving deterministic test pattern generation,”
in Int’l Conf. on Computer-Aided Design, 2002.

[7] G. S. Tseitin, “On the Complexity of Derivations in Propositional
Calculus,” in Studies in Constructive Mathematics and Mathematical
Logics, A. Slisenko, Ed., 1968.

[8] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 11, no. 1, pp. 4–15, 1992.

[9] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Combi-
national test generation using satisfiability,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 9, pp.
1167–1176, 1996.

[10] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and J. Schlöffel,
“PASSAT: Efficient SAT-Based Test Pattern Generation for Industrial
Circuits,” in IEEE Int’l Symp. on VLSI, 2005, pp. 212–217.

[11] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel,
and D. Tille, “On Acceleration of SAT-based ATPG for Industrial
Designs,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 7, pp. 1329–1333, 2008.

[12] K. Yang, K.-T. Cheng, and L.-C. Wang, “TranGen: A SAT-Based ATPG
for Path-Oriented Transition Faults,” in ASP Design Automation Conf.,
2004, pp. 92–97.

[13] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. M. Reddy, and B. Becker,
“Thread-Parallel Integrated Test Pattern Generator Utilizing Satisfiability
Analysis,” International Journal of Parallel Programming, vol. 38, no.
3-4, pp. 185–202, June 2010.

[14] R. C. Aitken, “New defect behavior at 130nm and beyond,” in IEEE
European Test Symp., 2004, pp. 279–284.

[15] M. Renovell, F. Azaı̈s, and Y. Bertrand, “Detection of defects using fault
model oriented test sequences,” Journal of Electronic Testing: Theory
and Applications, vol. 14, pp. 13–22, 1999.

[16] P. Engelke, I. Polian, M. Renovell, and B. Becker, “Automatic Test
Pattern Generation for Resistive Bridging Faults,” Journal of Electronic
Testing: Theory and Applications, vol. 22, no. 1, pp. 61–69, February
2006.

[17] Y. Sato, I. Yamazaki, H. Yamanaka, T. Ikeda, and M. Takakura, “A
persistent diagnostic technique for unstable defects,” in Int’l Test Conf.,
2002, pp. 242–249.

[18] S. Hillebrecht, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-T.
Cheng, “Extraction, Simulation and Test Generation for Interconnect
Open Defects Based on Enhanced Aggressor-Victim Model,” in Int’l
Test Conf., 2008, pp. 1–10.

[19] C.-J. Lin and S. M. Reddy, “On delay fault testing in logic circuits,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 6, no. 5, pp. 694–703, 1987.

[20] C. Chen and S. K. Gupta, “A satisfiability-based test generator for path
delay faults in combinational circuits,” in Design Automation Conf.,
1996, pp. 209–214.

[21] S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and
R. Drechsler, “MONSOON: SAT-based ATPG for path delay faults
using multiple-valued logics,” Journal of Electronic Testing: Theory and
Applications, vol. 26, no. 3, pp. 307–322, 2010.

[22] D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems – Design
and Evaluation. Digital Press, 1992.

[23] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S.
Kim, N. R. Shanbhag, and S. J. Patel, “Sequential element design with
built-in soft error resilience,” IEEE Trans. on VLSI Systems, vol. 14,
no. 12, pp. 1368–1378, 2006.

[24] N. Eén and N. Sörensson, “An extensible SAT solver,” in Int’l Conf. on
Theory and Applications of Satisfiability Testing, ser. Lecture Notes in
Computer Science, vol. 2919, 2004, pp. 502–518.

[25] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in Int’l Joint Conf. on Artificial Intelligence, 2007,
pp. 386–392.

[26] T. Schubert, M. Lewis, and B. Becker, “antom — Solver Description,”
in SAT Race, 2010.

[27] S. Eggersglüß, R. Krenz-Bååth, A. Glowatz, F. Hapke, and R. Drechsler,
“A new SAT-based ATPG for generating highly compacted test sets,”
in IEEE Symp. on Design and Diagnosis of Electronic Circuits and
Systems, 2012, pp. 230–235.

[28] A. Czutro, M. Sauer, T. Schubert, I. Polian, and B. Becker, “SAT-
ATPG Using Preferences for Improved Detection of Complex Defect
Mechanisms,” in VLSI Test Symp., April 2012, pp. 170–175.

[29] P. Engelke, I. Polian, M. Renovell, and B. Becker, “Simulating resistive
bridging and stuck-at faults,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 10, pp. 2181–2192, October
2006.

[30] T. Shinogi, T. Kanbayashi, T. Yoshikawa, S. Tsuruoka, and T. Hayashi,

“Faulty resistance sectioning technique for resistive bridging fault ATPG
systems,” in IEEE Asian Test Symp., 2001, pp. 76–81.

[31] P. Engelke, B. Becker, M. Renovell, J. Schlöffel, B. Braitling, and
I. Polian, “SUPERB: Simulator Utilizing Parallel Evaluation of Resistive
Bridges,” ACM Trans. on Design Automation of Electronic Circuits,
vol. 14, no. 4, pp. 56:1–56:21, August 2009.

[32] A. Czutro, M. Sauer, I. Polian, and B. Becker, “Multi-Conditional SAT-
ATPG for Power-Droop Testing,” in IEEE European Test Symp., May
2012.

[33] D. Erb, K. Scheibler, M. Sauer, and B. Becker, “Efficient SMT-based
ATPG for Interconnect Open Defects,” in Design, Automation and Test
in Europe, march 2014.

[34] Y. Sato, L. Yamazaki, H. Yamanaka, T. Ikeda, and M. Takakura, “A
persistent diagnostic technique for unstable defects,” in Int’l Test Conf.,
2002.

[35] G. Chen, S. Reddy, I. Pomeranz, J. Rajski, P. Engelke, and B. Becker,
“A unified fault model and test generation procedure for interconnect
opens and bridges,” in IEEE European Test Symp., 2005.

[36] H. Konuk and F. Ferguson, “Oscillation and sequential behavior caused
by interconnect opens in digital CMOS circuits,” in Int’l Test Conf.,
1997, pp. 597–606.

[37] S. Hillebrecht, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-T.
Cheng, “Extraction, simulation and test generation for interconnect open
defects based on enhanced aggressor-victim model,” in Int’l Test Conf.,
2008, pp. 1–10.

[38] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
Boolean structure,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 1, pp. 209–236, 2007.

[39] K. Scheibler and B. Becker, “Implication graph compression inside the
SMT solver iSAT3,” in to appear in MBMV’14, 2014.

[40] W. Qiu and D. M. H. Walker, “An Efficient Algorithm for Finding the K
Longest Testable Paths Through Each Gate in a Combinational Circuit,”
in Int’l Test Conf., 2003, pp. 592–601.

[41] M. Sauer, A. Czutro, T. Schubert, S. Hillebrecht, I. Polian, and
B. Becker, “SAT-Based Analysis of Sensitisable Paths,” in IEEE Symp.
on Design and Diagnosis of Electronic Circuits and Systems, April 2011,
pp. 93–98, Best Paper Award in the Test Category.

[42] S. Eggersglüß, M. Yilmaz, and K. Chakrabarty, “Robust timing-aware
test generation using pseudo-boolean optimization,” in IEEE Asian Test
Symp., 2012, pp. 290–295.

[43] M. Sauer, A. Czutro, I. Polian, and B. Becker, “Small-Delay-Fault ATPG
with Waveform Accuracy,” in Int’l Conf. on Computer-Aided Design,
November 2012, pp. 30–36.

[44] ——, “Estimation of Component Criticality in Early Design Steps,” in
IEEE Int’l On-Line Testing Symp., July 2011, pp. 104–110.

[45] M. Sauer, J. Jiang, A. Czutro, I. Polian, and B. Becker, “Efficient SAT-
based search for longest sensitisable paths,” in IEEE Asian Test Symp.,
2011, pp. 108–113.

[46] M. Sauer, A. Czutro, B. Becker, and I. Polian, “On the Quality of
Test Vectors for Post-Silicon Characterization,” in IEEE European Test
Symp., May 2012.

[47] A. Czutro, M. Imhof, J. Jiang, A. Mumtaz, M. Sauer, B. Becker,
I. Polian, and H.-J. Wunderlich, “Variation-Aware Fault Grading,” in
IEEE Asian Test Symp., November 2012, pp. 344–349.

[48] S. Goel and K. Chakrabarty, Testing for Small-Delay Defects in
Nanoscale CMOS Integrated Circuits, ser. Devices, Circuits, and Sys-
tems. Taylor & Francis, 2013.

[49] G. L. Smith, “Model for Delay Faults Based upon Paths,” in Int’l Test
Conf., 1985, pp. 342–349.

[50] X. Lin, K.-H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi,
R. Klingenberg, Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware
ATPG for high quality at-speed testing of small delay defects,” in IEEE
Asian Test Symp., 2006, pp. 139–146.

[51] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test pattern selection
for screening small-delay defects in very-deep submicron integrated
circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, no. 5, pp. 760–773, 2010.

[52] M. Sauer, Y. M. Kim, J. Seomun, H.-O. Kim, K.-T. Do, J. Y. Choi,

K. S. Kim, S. Mitra, and B. Becker, “Early-Life-Failure Detection using
SAT-based ATPG,” in Int’l Test Conf., 2013, pp. 1–10.

[53] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deter-
ministic test,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 5, pp. 776 – 792, may 2004.

[54] R. Sankaralingam, R. Oruganti, and N. Touba, “Static compaction
techniques to control scan vector power dissipation,” in VLSI Test Symp.,
2000, pp. 35 –40.

[55] X. Wen, Y. Yamashita, S. Morishima, S. Kajihara, L.-T. Wang, K. Saluja,
and K. Kinoshita, “Low-capture-power test generation for scan-based at-
speed testing,” in Int’l Test Conf., nov. 2005, pp. 10 pp. –1028.

[56] K. Miyase, K. Noda, H. Ito, K. Hatayama, T. Aikyo, Y. Yamato,
H. Furukawa, X. Wen, and S. Kajihara, “Effective IR-drop reduction
in at-speed scan testing using distribution-controlling X-identification,”
in Int’l Conf. on Computer-Aided Design, nov. 2008, pp. 52 –58.

[57] I. Pomeranz, “Computing two-pattern test cubes for transition path delay
faults,” IEEE Trans. on VLSI Systems, vol. PP, no. 99, pp. 1 –11, 2012.

[58] N. Alawadhi and O. Sinanoglu, “Revival of partial scan: Test cube
analysis driven conversion of flip-flops,” in VLSI Test Symp., may 2011,
pp. 260 –265.

[59] S. Neophytou and M. Michael, “On the relaxation of n-detect test sets,”
in VLSI Test Symp., 27 2008-may 1 2008, pp. 187 –192.

[60] M. Sauer, S. Reimer, I. Polian, T. Schubert, and B. Becker, “Provably
Optimal Test Cube Generation Using Quantified Boolean Formula
Solving,” in ASP Design Automation Conf., 2013, pp. 533–539, Best
Paper Award Candidate.

[61] S. Eggersglüß, R. Wille, and R. Drechsler, “Improved SAT-based ATPG:
More constraints, better compaction,” in Int’l Conf. on Computer-Aided
Design, 2013, pp. 85–90.

[62] G.-J. Tromp, “Minimal test sets for combinational circuits,” in Int’l Test
Conf., 1991, pp. 204–209.

[63] J.-S. Chang and C.-S. Lin, “Test set compaction for combinational
circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 14, no. 11, pp. 1370–1378, 1995.

[64] S. Eggersglüß, K. Schmitz, R. Krenz-Bååth, and R. Drechsler,
“Optimization-based multiple target test generation for highly compacted
test sets,” in IEEE European Test Symp., 2014.

[65] S. Hillebrecht, M. A. Kochte, H.-J. Wunderlich, and B. Becker, “Exact
stuck-at fault classification in presence of unknowns,” in IEEE European
Test Symp., 2012, pp. 1–6.

[66] S. Hillebrecht, M. A. Kochte, D. Erb, H.-J. Wunderlich, and B. Becker,
“Accurate QBF-based test pattern generation in presence of unknown
values,” in Design, Automation and Test in Europe, 2013, pp. 436–441.

[67] D. Erb, M. A. Kochte, M. Sauer, H.-J. Wunderlich, and B. Becker,
“Accurate multi-cycle ATPG in presence of x-values,” in IEEE Asian
Test Symp., 2013.

[68] M. Sauer, S. Kupferschmid, A. Czutro, S. M. Reddy, and B. Becker,
“Analysis of Reachable Sensitisable Paths in Sequential Circuits with
SAT and Craig Interpolation,” in Int’l Conf. on VLSI Design, January
2012, pp. 382–387.

[69] M. Sauer, S. Kupferschmid, A. Czutro, I. Polian, S. M. Reddy, and
B. Becker, “Functional Test of Small-Delay Faults using SAT and Craig
Interpolation,” in Int’l Test Conf., November 2012, pp. 1–8.

[70] S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker, “Incremental
preprocessing methods for use in bmc,” Formal Methods in System
Design, vol. 39, pp. 185–204, 2011.

[71] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. Sonza Reorda, and
B. Becker, “An Effective Approach to Automatic Functional Processor
Test Generation for Small-Delay Faults,” in Design, Automation and Test
in Europe, march 2014.

[72] S. Reimer, M. Sauer, T. Schubert, and B. Becker, “Using MaxBMC for
Pareto-Optimal Circuit Initialization,” in Design, Automation and Test
in Europe, march 2014.

[73] X. Wen, K. Enokimoto, K. Miyase, Y. Yamato, M. A. Kochte, S. Kaji-
hara, P. Girard, and M. Tehranipoor, “Power-aware test generation with
guaranteed launch safety for at-speed scan testing,” in VLSI Test Symp.,
2011, pp. 166–171.

[74] S. Eggersglüß, “Peak capture power reduction for compact test sets using
opt-justification-fill,” in IEEE Asian Test Symp., 2013, pp. 31–36.

