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Abstract—Test compaction is an important aspect in the post-
production test since it is able to reduce the test data and the
test costs, respectively. Current ATPG methods treat all faults
independently from each other which limits the test compaction
capability. This paper proposes a new optimization based SAT-
ATPG for compact test set generation. Robust solving algorithms
are leveraged to determine fault groups which can be detected by
the same test. The proposed technique can be used during initial
compact test generation as well as a post-process to increase the
compactness of existing test sets, e.g. generated by commercial
tools, in an iterative manner. Experimental results on industrial
circuits and academic benchmarks show that this technique is
able to significantly reduce the pattern count down to 40% for
the initial test generation and down to 30% for the iterative
reduction.

I. INTRODUCTION

The manufacturing test is an important step in the produc-
tion process of computer chips. A test set is applied to each
fabricated chip in order to detect defective devices. One im-
portant factor for the test costs is the test data volume and the
size of the test set. The growing complexity of today’s designs
leads to rapidly increasing test data and consequently to high
test costs. Therefore, much effort is spent to reduce the test
data. Two different techniques are generally used to reduce the
test data. Test compression [1] applies additional hardware to
compress test cubes and responses. Test compaction techniques
reduce the number of test patterns (ideally without reducing
the fault coverage) to save test data. This paper is concerned
with new test compaction techniques.

A core technique in this context is Automatic Test Pattern
Generation (ATPG). The task of ATPG is to generate a test
set which has a high fault coverage and, at the same time,
is as small as possible to avoid high test costs. Structural
ATPG algorithms such as FAN-based approaches are known
to be very fast in generating tests for easy-to-test faults, but
the number of faults for which these approaches abort due to
reasons of complexity is increasing. This can effect the fault
coverage significantly. On the other hand, SAT-based ATPG
approaches suffer from the higher run time for easy-to-test
faults, but are very robust for hard faults. Generally, SAT-based
ATPG algorithms are able to produce a higher fault coverage
for circuits with many hard-to-test faults [2].

Test compaction techniques can be classified into static and
dynamic techniques. Static techniques [3], [4] work on an ex-
isting test set and remove redundant tests as well as merge test
cubes. Dynamic test compaction techniques [5]–[9] influence
the test generation procedure itself. Typically, unspecified bits

of generated test sets are assigned to detect further faults. This
is computationally very intensive but yields a more compacted
test set than static compaction. The generation of new tests
to remove other tests, e.g. Two-by-One reduction, has been
proposed in [6]–[8].

Additionally, formal solving engines have been applied to
improve test compaction. Dynamic compaction for SAT-based
ATPG has been proposed in [10]. This technique relies on the
identification of necessary line assignments to group faults. A
QBF solving engine was applied in [11] in order to maximize
the number of unspecified bits in a test cube for a given sensi-
tized path. This can be used to merge test patterns or increase
the compression ability. The SAT-based ATPG approaches in
[12] and [13] use optimization procedures to produce a com-
pact test set. The technique in [12] explicitly targets a single
fault and encodes additional local fault detection conditions for
undetected faults into the SAT instance. The solver maximizes
these conditions to generate a test that is likely to detect
many other faults. However, this technique partly relies on an
runtime-intensive classical dynamic compaction scheme using
an additional target generator. The technique in [13] works as
a post-process. The necessary assignments of sensitized paths
are extracted from a pre-generated test set and an optimization
procedure is applied to generate tests which detects as many
of these paths as possible. However, since the detection paths
are fixed in this method, the flexibility is missing to detect a
previously detected fault through a different path.

All approaches described so far have in common that they
treat faults rather independently from each other. The work
proposed in [14] introduces a SAT-based ATPG formulation
which targets multiple faults at the same time (Multiple Target
Test Generation, MTTG). Given a set of faults F , the SAT-
based ATPG procedure will provide a test which detects all
faults in F if one exists. If only two faults f1 ∈ F and
f2 ∈ F exist which are not testable together due to conflicting
necessary assignments, no test can be generated. Consequently,
most run time is spent to identify a set of faults which can
be detected by the same test. This typically involves a large
number of time-consuming SAT solver calls.

This shortcoming is addressed in this paper. The problem
of MTTG is formulated as a Boolean optimization problem.
The task of determining a compatible fault set is integrated into
the problem formulation itself. By this, the powerful solving
techniques of modern SAT solvers can be leveraged. Given a
set of faults F , the problem formulation is such that a test
will be generated which detects the highest possible number
of faults out of F . This prevents the costly explicit search for



a set of faults which can be detected together. The selection of
the faults is implicitly integrated into an optimization function
and is therefore tightly integrated into the solving process.
Due to the robust underlying solving engine, solvers are highly
suited to solve complex problems such as multiple-target test
generation.

The proposed technique can be applied in two different
ways. It can be used to generate a compact initial test set as
well as to improve the compactness of an existing test set. This
is especially of practical relevance since test sets generated by
commercial ATPG tools can be improved afterwards if the test
engineer is not satisfied with the produced test set. The exper-
imental results on industrial circuits show that the proposed
approach is able to reduce the pattern count significantly if
the technique is applied in an iterative manner.

This paper is structured as follows. Section II briefly in-
troduces SAT-based ATPG and optimization-based algorithms.
Section III describes the SAT formulation for optimization-
based MTTG. The integration into the ATPG flow during initial
test generation and as a post-process is shown in Section IV.
Experimental results are given in Section V. Finally, conclu-
sions are drawn in Section VI.

II. PRELIMINARIES

On key aspect of the robustness of SAT-based algorithms is
the problem formulation as a Boolean formula in Conjunctive
Normal Form (CNF) [15]. A CNF Φ is a conjunction of m
clauses. A clause ω is a disjunction of n literals. A literal λ
is a Boolean variable in its positive (λ) or negative (λ) form.
The problem formulated in CNF is solved by a SAT solver
which generates a solution to show that the CNF is satisfiable
(SAT) or proves that no such solution exists, i.e. the formula
is unsatisfiable (UNSAT). SAT solving algorithms have a high
ability to solve hard problems in reasonable run time. The
homogeneous structure of the CNF allows for the application
of fast implication techniques and powerful conflict-based
learning schemes. It is shown in [2] that SAT-based ATPG is
able to produce higher fault coverage than classical structural
ATPG techniques.

In the following, the problem formulation in CNF is briefly
described. More detailed information can be found in [16].
First, the relevant circuit part Cf with gates G and signal lines
S for detecting the fault f is identified. A Boolean variable x is
assigned to each signal line sx ∈ S in this part representing its
logical value. Then, each gate g ∈ G is transformed into a set
of clauses Φg using the respective input and output variables.
The circuit CNF ΦCf

is obtained by a conjunction of the gates’
CNFs: ΦCf

=
∏l

i=1 Φgi . This formula is then augmented with
the CNF for the faulty part of the circuit and fault detection
constraints, e.g. D-chains, described by ΦF . The final SAT
instance processed by a SAT solver is given by Φtest

f = ΦCf
·

ΦF .

Recently, optimization SAT solvers have been applied in
the field of test generation, e.g. [12], [13]. The application is
related to classical SAT-based ATPG. The underlying problem
is formulated in CNF. But instead of settling for an arbitrary
solution for the problem as SAT solvers do, optimization SAT
solvers are able to process an optimization function which
determines the quality of the solution. Depending on the
implementation, these kind of solvers generate new solutions

in an iterative manner until the best solution is found. This
process is heavily guided by learned information and, thus, is
very powerful. A common form of the optimization function
F is to connect constant values ci to Boolean literals xi:

F = c1 · x1 + . . .+ ck · xk
By this, all constants, whose associated literals evaluate to
true, are accumulated. The optimization solver returns the
assignment which satisfies the CNF and, at the same time,
optimizes F , i.e. minimize or maximize. The run time of the
solving process is strongly influenced by the size of F .

III. OPTIMIZATION-BASED MULTIPLE TARGET TEST
GENERATION

This section describes the Optimization-based MTTG
(OTG). This includes the SAT formulation of the OTG problem
including the construction of the necessary optimization func-
tion. The integration of the OTG approach into the initial test
set generation as well as the application as a post-process to
improve the test compactness will be described in Section IV.

Classical compaction methods compute an assignment for
the detection of one fault first. This assignment is then used as
a constraint during the detection of other faults.1 The detection
of other faults depends on the chosen assignment, i.e. the
generated test cube. Since each fault is treated independently,
this assignment might prevent faults being detected by the
same test, although it would be possible if a different test
would have been generated.

The aim of the MTTG technique is to handle the test
generation of multiple faults in one step. Given a set of faults2

F = {f1, . . . , fn}, an MTTG approach is able to generate
a test for all faults f ∈ F if one exists. This leads to the
advantage that potentially more faults can be detected by one
test and hence less test patterns are necessary. However, if no
such test for all faults exists, i.e. at least two faults fi, fj ∈ F
are conflicting, no test will be generated. The problem is,
therefore, the identification of a fault set in which all faults
are non-conflicting. Typically, many inconclusive ATPG calls
are necessary for test generation which limits the application
possibilities and the effectiveness.

We propose to formulate the MTTG problem as an op-
timization problem that formal solving algorithms can be
applied. Given a set of faults F = {f1, . . . , fn}, the goal
is to generate one test which detects the maximum possible
number of faults out of F . By this, the identification of a
non-conflicting fault set is inherently done by the solving
algorithm itself. The advantage of the application lies in the
integrated powerful learning techniques. Formal (SAT-based)
optimization solvers such as clasp [17] are able to learn
correlations between signal assignments very effectively. By
this, conflicts between faults can be internally identified and
used by the internal solving algorithm to guide the search
towards a non-conflicting fault set.

The formal problem description for test generation for
the fault set F given to an optimization solver consists of a
SAT instance ΦF and the optimization function FF . First, the
construction of the SAT instance is described.

1Or in other words, the remaining X values are specified to detect further
faults.

2This approach is applied to single stuck-at and transition faults.



1) A structural analysis is applied to identify the relevant
circuit part CF . The relevant circuit part contains
all signals and gates which can structurally influence
the fault activation or propagation. This part is trans-
formed into the CNF ΦC

F .
2) The faulty output cone of each fault (including the

fault site) f1, . . . , fn ∈ F is identified and trans-
formed into CNF: Φf1 · . . . · Φfn

3) Fault detection constraints, i.e. D-chains [18], are
generated for each fault: ΦD

f1
· . . . · ΦD

fn
. These con-

straints are used to establish a D-chain from the fault
site to an observation point. This is done by assigning
a D-variable to each line l in the faulty output
cone. The D-variables have the following meaning:
If Dl = 1 holds, then there is a difference in the
correct and faulty circuit on line l and there is a path
from l to an observation point where all D-variables
are assigned with 1. On the other hand, if Dl = 0
holds, no implication is performed.

In contrast to previous methods, the D-chains are not
explicitly triggered, i.e. they are inactive. This is necessary
for the application of the optimization algorithm. By this, the
solving process is able to dynamically activate and deactivate
the detection of certain faults in order to find the maximum
set of non-conflicting faults.

In summary, the underlying SAT instance ΦF is given by:

ΦF = ΦC
F · Φf1 · . . . · Φfn · ΦD

f1 · . . . · Φ
D
fn

Under the assumption that there is no contradiction in the
circuit logic itself, the SAT instance ΦF is always satisfiable as
it is necessary. Next, the construction of the optimization func-
tion F is described. As mentioned above, the fault detection
for fault f on line lf can be triggered by setting Dfl = 1. By
this, a D-chain from the fault site to an observation point will
be established if possible. Since the goal is to establish as many
D-chains as possible, the optimization function is formulated
over the D-variables of the fault sites of F .

Pseudo-Boolean optimization solvers typically process the
optimization function in the following form: F = c1 ·λ1+. . .+
cm ·λm with constant ci ∈ Z and with λi as a Boolean literal.
The formula is interpreted in an arithmetic way. The result is
the accumulation of all constants for which the corresponding
Boolean literal evaluates to true. Typically, the optimal solution
is the minimum result.

Let F = f1, . . . , fn be the target fault set and let fur-
thermore dfi be the corresponding D-variable for each fault
fi ∈ F which triggers the fault detection. Then, the optimiza-
tion (minimization) function is formulated over df1 , . . . , dfn :

FF = 1 · df1 + . . .+ 1 · dfn

The SAT instance ΦF and the corresponding function FF

is eventually given to an optimization solver to compute a
test which is then directly stored in the final test set. In spite
of the robustness of the underlying solving engine, it might
sometimes happen that the approach is not able to prove that
the found solution is optimal. However, the search process
works in an iterative manner, i.e. whenever a better solution is
found, it will be enumerated. Because of this, a good and in
most cases near-optimal, solution is found nonetheless.
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Fig. 1. Dynamic Compaction Flow

IV. COMPACTION AND RETARGET STAGE

The previous section introduced the OTG formulation for a
given set of faults F . This section discusses how this method
can be integrated into the test generation flow. In particular, it
is shown how the fault set F is constructed. Additionally, two
different applications are shown:

1) A dynamic compaction method is proposed in which
OTG is used to generate an initial test set.

2) An initial test set T exists and the proposed OTG
formulation is used to improve the compactness of T
by constant or improved fault coverage.

A. Initial Test Set Generation

A common dynamic compaction procedure for generating
a compacted test set is shown in Figure 1(a). First, a primary
fault fp is selected and a test cube is generated. This test cube
is then extended by a loop over a list of secondary faults.
Typically, fault lists are structurally ordered. e.g. based on
fanout-free regions. Primary faults and secondary faults are
then processed according to the ordering.

If a secondary fault fs can be additionally detected by
specifying X-bits, the test is updated and the loop is continued
with the extended test until all secondary tests have been
processed. This procedure is then continued by selecting other
yet undetected primary faults until all faults are classified.

In contrast, the proposed procedure for the application of
OTG is shown in Figure 1(b). Instead of choosing primary and
secondary faults, a set of n yet undetected faults is selected and
given to the OTG as targets. The selection of the faults is based
on the fault list ordering. The effort of determining which faults
are non-conflicting and consequently can be detected by one
test is completely passed to the reasoning engine. A test will be
generated detecting the maximum number of non-conflicting
faults. This test is fault simulated and all faults detected by
this test will be dropped from the fault list. Next, a set of
n undetected faults is selected again and given to the OTG.
Since this set is based on the fault list ordering as well, all



these faults not detected by the test from the previous OTG
call, are also included in the fault set.

Untestable faults can also be identified by the OTG ap-
proach. Since all testable faults are dropped from the fault list
during the procedure, there are only untestable faults left at
the end. If no fault from a given set of faults F is testable, the
procedure returns the maximum of 0 detected faults. Then, it
can be concluded that all faults f ∈ F are untestable. However,
it turned out that less run time is needed if the detection of
one selected fault f is encoded directly into the SAT instance.
When the SAT instance is unsatisfiable, fault f is untestable.
If not, a test will be generated detecting f and the maximum
number of additional faults. A negative impact on the pattern
count could not be observed.

This approach is able to produce a compact test set and, at
the same time, uses the advantage of robust formal reasoning
engines to produce a high test coverage.

B. Improving Existing Test Sets

An additional application of the OTG procedure is the
improvement of existing test sets. Typically, ATPG tools gen-
erate an initial test set, but do not provide many possibilities
to improve this test set afterwards if the test engineer is
not satisfied with the compactness. A common method is to
truncate the test set if the test set is to large for the tester and,
by this, loose fault coverage. A method to improve the test set
without loosing fault coverage is presented in this section.

The techniques proposed in [6], [7] try to remove one or
more tests at a time using a greedy search. The algorithm tries
to find a test set for all essential faults of N tests resulting in
N − 1 tests, i.e. Two-by-One reduction. An essential fault is a
fault that is detected by exactly one test in T . If a test t ∈ T
does not have any essential faults, it becomes redundant and
can be removed. However, the approach is computationally to
intensive for N > 2 as reported in [8] and, thus, limited in its
applicability.

The approach in [8] proposed a more global view and
presented a technique to improve the pattern count by the
distribution of all essential faults of one test t to other tests.
In order to distribute essential faults, one essential fault fe is
selected first. Then, the approach iterates over each test in the
test set and tries to generate a test detecting all faults which
were previously detected plus fe. Once all essential faults of
a test t have been distributed to other tests, the test t can be
removed. However, the combination of every essential fault
with every test pattern is a huge overhead for today’s circuits
with a large number of faults as well as patterns.

The technique proposed in this section also uses the notion
of essential faults. However, instead of distributing single
essential faults explicitly to other tests, the approach targets all
essential faults of a selected test subset T ′ ∈ T at once. By this,
an effective N -by-M with M < N is produced which is more
powerful than the previous proposed approaches. For this, we
extend the definition of essential faults to set-essential faults.
Set-essential faults are those faults which are only detected
by patterns of a test subset T ′ ∈ T . This includes all essential
faults as well as those faults which remain undetected when T ′
would be removed, i.e. those faults which are globally detected
more than once, but only from tests out of T ′.

The following procedure is used:

1) First, an essential fault identification for the complete
fault set F is performed. This is implicitly done by
counting the number of detections by the initial test
set T .

2) Next, a test subset T ′ is heuristically selected. Then,
all set-essential faults detected by T ′ are identified.
This fault set is described by Fe = fe1 , . . . , f

e
m.

3) The fault set Fe is retargeted by the OTG procedure
in an iterative manner until all faults are detected.
The resulting test set is given by T ∗.

4) If |T ∗| ≤ |T ′| holds, T ′ is replaced by T ∗. The
fault detection statistics are updated for the further
identification of set-essential faults.

5) This procedure continues until all tests ti ∈ T have
been processed.

This retargeting procedure can be repeatedly applied to
improve the compactness of the test set further.3 The powerful
underlying reasoning engine allows for a consideration of
several hundred faults at once. The improved compactness is
achieved without fault coverage loss. A significant advantage
of this technique is that it is able to process large pattern sets
(independently from the source of the test set) and that it can
be flexibly applied depending on the resources the test engineer
is able to spent and, by this, provides a powerful alternative
to test set truncation.

V. EXPERIMENTAL RESULTS

This sections presents the experimental results obtained
by the proposed approaches. Both algorithms were applied to
academic benchmark circuits as well as to industrial circuits
provided by NXP Semiconductors. The results are compared
to a state-of-the-art commercial ATPG tool as well as to
a previous SAT-based approach [12].4 The methods were
implemented in C++ and the experiments were conducted on
an Intel Xeon E3-1240 (GNU/Linux, 64bit, 32GByte RAM,
3.4 GHz) in single-threaded mode. The optimization solver
clasp [17] was used as reasoning engine.

Table I gives the results for stuck-at faults for the bench-
mark circuits.5 The results for transition faults (launch-on-
capture) are given in Table II. Column Commercial presents
the results for the commercial ATPG. The results for the SAT-
based approach [12] using an additional target generator are
shown in column SAT [12]. Column Initial OTG gives the
results for the initial test generation with 50 simultaneously
injected faults as well as 200 faults. The reduction results of the
Retarget stage are given in the columns It. with the respective
number of iterations. Here, the test subset is chosen such that
roughly 200 set-essential faults are targeted in one OTG call.
The run times are given in columns Rt [sec] and the produced
pattern count is shown in columns named Pat.

The results show that the commercial ATPG is very fast,
but produces a larger test set compared to the SAT-based

3It has to be ensured that the selected test subsets differ from the previous
iteration, e.g. by shuffling the test ordering.

4A fair comparison to the pattern counts of the approach in [13] is not
possible, since their method is only applied to combinational cores using
enhanced full scan (transition faults).

5Some results fall below the lower bound computed in [8]. A possible reason
is that the synthesized netlists may differ.



TABLE I. EXPERIMENTAL RESULTS – STUCK-AT

Commercial SAT [12] Proposed Approach
Initial OTG Retarget

#Faults=50 #Faults=200 It. 10 It. 50 It. 100
Circuit Rt [sec] Pat Rt [sec] Pat Rt [sec] Pat Rt [sec] Pat Pat Pat Pat
s5378 0.7 218 15.7 88 0.6 82 7.6 80 79 79 78
s9234 0.3 162 137.3 153 2.1 141 21.2 114 110 106 106
s13207 0.6 303 199.9 260 5.3 299 14.4 252 239 235 233
s15850 0.8 183 243.0 115 19.4 134 280.8 111 105 99 97
s35932 1.0 60 37.8 23 5.0 126 9.7 43 33 27 25
s38417 1.6 169 221.0 89 21.7 127 261.8 97 93 83 80
s38584 1.8 206 197.4 141 14.1 271 156.4 148 145 127 119

b04 0.3 91 6.8 66 0.4 60 3.4 59 57 57 57
b14 3.2 790 8656.74 728 63.6 732 98.5 663 621 602 596
b15 25.8 521 7810.0 489 55.8 459 158.4 404 363 342 338
b20 9.3 845 not avail. 264.2 725 766.5 648 632 600 596

TABLE II. EXPERIMENTAL RESULTS – TRANSITION

Commercial SAT [12] Proposed Approach
Initial OTG Retarget

#Faults=50 #Faults=200 It. 10 It. 50 It. 100
Circuit Rt [sec] Pat Rt [sec] Pat Rt [sec] Pat Rt [sec] Pat Pat Pat Pat
s5378 0.9 364 56.0 156 2.0 104 14.6 93 91 83 82
s9234 3.6 492 455.0 339 8.0 230 35.0 192 191 185 176

s13207 2.3 577 414.4 312 10.9 315 43.7 254 238 226 218
s15850 3.9 312 324.8 149 18.4 134 137.4 116 111 105 102
s35932 3.0 110 52.1 38 14.3 115 56.7 43 38 35 33
s38417 4.4 341 823.0 160 117.2 175 641.3 165 162 142 138
s38584 6.3 588 887.3 401 44.9 370 481.4 257 257 246 232

b04 0.6 163 14.1 91 0.8 80 2.9 76 71 67 67
b14 1.0 1438 55788.0 1481 187.9 1118 453.3 1050 861 802 789
b15 79.7 1300 46342.3 1676 433.0 1345 1435.0 945 842 713 669
b20 55.9 1897 379999.1 3047 934.5 1656 3696.3 1116 885 781 756

approaches. On the other hand, the SAT-based approach [12]
requires a higher run time especially for the larger benchmarks
and for transition faults. This is caused by the applied ad-
ditional target loop. The proposed OTG approach is a fast
alternative to the SAT-based method when injecting a small
set of faults simultaneously, i.e. 50. Often, a pattern count
reduction can be already observed with this configuration,
especially for the transition faults. The full impact on the
pattern count can be seen by injecting more faults, i.e. 200.
While the reduction is mostly moderate or sometimes even
negative for the small s-circuits, the pattern counts of the larger
benchmarks with more patterns are tremendously reduced. For
example, the pattern count of b20 (transition faults) drops from
1897 (commercial) and 3047 (SAT) to 1116 patterns. This is
a reduction to 59% and 37%, respectively. Compared to the
SAT-based approach, only 1% of the run time is needed.

The results of the retarget stage shows that the low pattern
count can be further reduced significantly by the iterative
application of the proposed OTG technique. For example,
applying this technique 10x (50x,100x) to b20, the pattern
count can be reduced to only 47% (41%, 40%). It is noticeable
that especially the large test sets can be significantly reduced
by the proposed approach.

Next, the application to industrial circuits will be discussed.
The results are listed in Table III (initial test set) and Table IV
(retargeting). Since these circuits are more complex, the ATPG
was not able to generate tests for each fault. Therefore, the
number of aborted faults is added to the table. Two different
setups for the commercial ATPG tool are used. Since the
default configuration produced a very high number of aborted
faults, the tool is started with a very high backtrack limit to
allow for a fair comparison with the proposed approach. The
OTG approach is also started twice with 100 as well as 200
injected faults.

The newly proposed OTG approach generates smaller test
sets than the commercial tool for the majority of the bench-

marks. It is important to mention that due to its robustness,
the SAT-based ATPG obtains a reduced amount of aborted
ATPG calls, hence achieves higher fault coverage and therefore
generates additional tests. This effect appears especially for
circuit p77k where the commercial ATPG tool aborts more
than 16 thousand times and generates 552 test patterns. In
contrast to that, the proposed approach generates only 549
test patterns while aborting only once. In particular, this
example demonstrates how the robustness of modern SAT
engines is able to reduce the number of unclassified faults
and concurrently improves the compactness of the test set.

The new approach achieves test set reductions for the
majority of the industrial circuits. Please consider that the
tremendous run times consumed by the commercial ATPG
tool are caused by the very high backtrack limit, which was
chosen to achieve a comparable amount of aborted faults and
hence a meaningful comparison of the achieved number of test
patterns. However, the OTG approach does not deliver a more
compact initial test set than the commercial ATPG for a few
benchmarks, i.e. p77k and p81k.

The results depicted in Table IV were achieved by the
newly proposed retargeting stage. As parameter, 50 set-
essential faults are picked for retargeting. The results achieved
for every evaluated benchmark are listed within an individual
set of columns, where every set contains the run time per
iteration step in seconds and the size of the resulting test
pattern set after each iteration. In almost all cases, the test
set can be reduced after each iteration, where the number
of additionally removed test patterns can also increase during
later iterations. The bottom row depicts the accumulated time
of all iterations and the resulting test pattern set after static
compaction. Especially the already highly compact test set
for p35k, which was roughly 40% smaller than the test set
generated by the commercial ATPG tool, was additionally
reduced down to almost 30% of the commercial ATPG test
set.



TABLE III. EXPERIMENTAL RESULTS - INDUSTRIAL CIRCUITS - STUCK-AT

Commercial, default Commercial, high backtrack limit OTG, #Faults=100 OTG, #Faults=200
Circuit Rt [sec] Pat Aborted Rt [sec] Pat Aborted Rt [sec] Pat Aborted Rt [sec] Pat Aborted
p35k 30.2 1543 1 267.3 1523 0 5092.1 634 0 14801.5 624 0
p45k 8.90 2103 41 75.8 2100 0 74.3 1853 0 169.4 1780 0
p77k 683.5 538 16064 162573.3 552 16360 59216.1 566 29 72949.8 549 1
p78k 6.8 82 7 17.8 82 0 306.4 78 0 1051.5 78 0
p81k 41.9 379 328 2536.2 379 9 1387.4 564 0 3868.2 556 0

p100k 62.8 2051 717 2788.0 2054 202 233.8 1753 0 510.2 1690 0

TABLE IV. EXPERIMENTAL RESULTS - INDUSTRIAL CIRCUITS -
STUCK-AT - RETARGET

Circuit → p35k p45k p81k p100k
Iteration ↓ Rt [sec] Pat Rt [sec] Pat Rt [sec] Pat Rt [sec] Pat

initial – 634 – 1853 – 564 – 1753
1 1871.6 589 483.3 1832 1153.3 563 1277.1 1728
2 1978.5 547 451.1 1828 1212.1 549 1234.0 1710
3 2057.2 519 447.6 1817 1309.9 525 1256.5 1701
4 1972.0 505 450.2 1813 1332.8 485 1251.9 1693
5 2116.3 494 445.7 1803 1354.7 456 1281.0 1689
6 2123.8 480 446.6 1801 1300.4 427 1262.4 1687
7 2072.2 468 443.3 1799 1797.2 399 1253.0 1683
8 2115.8 459 444.2 1794 1374.7 382 1259.0 1680
9 2418.5 449 440.7 1790 1737.3 366 1254.6 1680

10 2350.3 446 442.4 1789 1464.1 355 1264.5 1680
Total 26241.9 446 4672.9 1789 15551.5 347 13027.9 1680

Future work is the improvement of the run time. So far,
the complete test set has been evaluated during retargeting.
This procedure could be improved by heuristics to determine
subsets of patterns for which the compaction might be worth-
while. Another issue is the compatibility with test compression
logic for which a certain amount of don’t cares is necessary. In
future work, we will address OTG techniques which are able
to constrain the amount or distribution of don’t care bits.

VI. CONCLUSIONS

The size of the test set is an important cost factor in the
post-production test of digital circuits. The increasing size and
complexity of the circuits lead to increasing pattern counts and
increasing test costs. Therefore, new techniques to reduce the
pattern count and, at the same time, yield a high fault coverage
are of high importance.

In this paper, we have proposed a new optimization-based
test formulation which is able to target multiple faults in a
single step. Given a subset of faults, the approach is able to
generate a test which detects the maximum number of non-
conflicting faults in this subset. The underlying SAT-based
reasoning engine is powerful enough to target several hundred
faults at once. This OTG technique is integrated into a dynamic
compaction scheme to initially generate a compact test set
providing a high fault coverage.

Additionally, a new retarget stage has been proposed in
which the test set can be reduced in an iterative manner using
the new OTG technique. This method is a powerful alternative
to test set truncation with the ability to maintain a high fault
coverage. Experimental results on benchmark and industrial
circuits have shown that the test set can be significantly
reduced by the proposed technique.
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