
Constraint-based Platform Variants Specification
for Early System Verification

Andreas Burger1, Alexander Viehl1, Andreas Braun1, Finn Haedicke2,3, Daniel Große2

Oliver Bringmann1,4, Wolfgang Rosenstiel1,4

1FZI Research Center for Information Technology, Haid-und-Neu-Str 10-14, 76131 Karlsruhe, Germany
2solvertec GmbH, Anne-Conway-Str. 1, 28359 Bremen, Germany

3Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
4University of Tuebingen, Sand 13, 72076 Tuebingen, Germany

1[aburger,viehl,abraun]@fzi.de 2[grosse,haedicke]@solvertec.de
4[bringman,rosenstiel]@informatik.uni-tuebingen.de

To overcome the verification gap arising from signifi-
cantly increased external IP integration and reuse during
electronic platform design and composition, we present a
model-based approach to specify platform variants. The
variants specification is processed automatically by for-
malizing and solving the integrated constraint sets to de-
rive valid platforms. These constraint sets enable a pre-
cise specification of the required platform variants for
verification, exploration and test. Experimental results
demonstrate the applicability, versatility and scalability
of our novel model-based approach.

I. Introduction

The increase in complexity of distributed embedded sys-
tems and systems-on-chip (SoC) platforms over the last
decade in combination with the decrease in acceptable time-
to-market are issuing tremendous challenges for the platform
development. Besides the growing complexity, other prob-
lems are the increase in integration of external IPs and the
rising usage of reused logic in the platform design composi-
tion [1]. Due to these facts, the integration and parameteri-
zation of platform components and their configurations grow
significantly which causes huge platform variant and config-
uration spaces.
In [2] for example, an automatic gear shifting application
from Daimler Trucks is described which consists of 6.4 mil-
lion valid variants. Each of them can be integrated in trucks
and should be implemented, verified and tested. Another im-
portant example can be given by automotive networks like
FlexRay [3] or Media Oriented System Transport [4] (MOST).
A MOST network can integrate from 2 up to 64 communica-
tion devices as well as a set of different protocol parameters
for each of them. This leads to a space of more than 1021

valid MOST network variants.
Due to these facts and the given examples, the verification
of IP blocks in different platform variants and the verifica-
tion of the interaction between multiple IP block instances
is gaining importance. Further, the relevance of the veri-
fication of platform characteristics (e.g. network topology,
component instances) and different component variants (e.g.
software versions, component parameters) is growing. There-
fore the focus in early verification and test is moving away
from fixed virtual prototype platforms with variable test sce-

narios to virtual prototype platforms which are variable in
the number and kind of components considering complex in-
terdependencies, constraints and requirements.
Hence it is inevitable to devise methods which allow focus-
ing on the model-based description and generation of feasi-
ble platform variants. This could reduce the manual effort
in verification, exploration and test significantly and enables
verification of IPs within different platform variants.
Therefore we demonstrate our novel approach on vir-
tual prototyping but it can also be applied for real
tests (e.g. Hardware-in-the-loop (HIL), Software-in-the-loop
(SIL)). The structure of the platform variant specification is
defined by UML-based [5] templates, so-called Constrained-
Structural Templates (CST). The hierarchically structured
templates enable a high degree of structural flexibility. The
usage of constraints allows to specify requirements and to
realize complex interdependencies between different IPs and
platform components. Equally they enable to control the
huge platform variant and configuration space efficiently.
This allows generating required variants for verification, ex-
ploration or test. The constraints are specified by an ex-
tended subset of the Object Constraint Language (OCL) [6].
They are encoded as a SAT instance on bit-vector-level to
solve them by metaSMT [7]. The platform variant framework
is implemented parallel and multi-threaded to overcome the
overhead of generation and solving. In summary, the major
contributions are:

• Precise specification of valid and feasible platform vari-
ant space

• Complete generation of required variants for verification,
exploration and test

• High structural flexibility in the platform variants spec-
ification

• Fast reconfiguration capabilities of the specified platform
variants space

By experimental evaluations we demonstrate our approach
for verifying a MOST network using virtual prototyping. We
also adopted our approach for an exploration of a FlexRay-
based traffic sign recognition application. The examples
demonstrate the necessity to specify the required variants
for verification, exploration and test as well as the wide ap-
plication field of our novel methodology.

II. Related Work

For variant and alternative modeling several approaches
have been proposed (e.g. [8–12]). In [8] the Common Vari-
ability Language (CVL), a generic language for modeling vari-
ability in different domain models is presented. In [9] fea-
ture models are introduced for modeling software product
line variants.
Feature models are also used in [10] to describe variants.
They are combined with an XML-based language (XVCL)
to add much more flexibility to the feature models. The ap-
proach presented in [11] allows to model variants of industrial
automation systems within a product line. Another approach
for variant handling is described in AUTOSAR 4.0 [12, 13].
In [14] the authors give a good overview on the current state
of the art in platform-based product design and development
which contain product variant management approaches.
The main weaknesses of these approaches are that they are
mostly used for software or product design and have no capa-
bility to specify platforms and especially their variants. Fur-
thermore the generation of variants is not supported and they
even provide very limited methods to specify complex inter-
dependencies between different components and variants.
In the area of stimuli generation for test and simulation of
platforms via SMT/SAT solving, several approaches have
been proposed. For instance, in [15] the SystemC Verifica-
tion (SCV) [16] library has been extended for stimulus gener-
ation based on SMT. The authors in [17] present a sampling
algorithm combining concepts from the Metropolis-Hastings
algorithm, Gibbs sampling and WalkSAT to generate solu-
tions with an approximately uniform distribution. In both
approaches the generated solutions for the constraints are
stimuli parameter that can be classified on a lower system
level in comparison to our approach.
In the verification and validation of large design compo-
nents constraint-based random simulation remains an inte-
gral part. In [18] entropy metrics to define coverage targets
of internal signals is combined with a framework which uses
small randomized XOR constraints to generate stimuli for
inadequately stimulated circuit regions. The authors in [19]
present a methodology to analyze contradictory constraints
that occur in constraint-based random simulation. Actually
all of the approaches in constraint-based random simulation
are used to generate test and stimuli for fixed platforms. In
contradiction to our novel methodology which lifted up ver-
ification, exploration and test to variable virtual prototype
platforms.
The authors in [20] describe how OCL constraints and UML
models can be encoded in a SAT instance. In compari-
son, we support the encoding of more OCL features (e.g.
if-expressions, allInstances() operation, extended OCL op-
erators). In summary, to the best of our knowledge, no
model- and constraint-based generation of platform variants
has been considered so far.

III. Platform Variants Specification
and Generation

This section introduces our platform variants specifica-
tion approach based on constraints and structural tem-
plates. Before we describe our approach in detail we give an
overview. The elaborated framework, presented in Fig. 1, is
divided in three parts: the template-based platform variants
specification, the automated encoding of template-attached

Fig. 1. Overview of the platform variants generation

constraints including the SMT/SAT-solving process and the
virtual prototype simulation. The platform variants specifi-
cation contains the platform templates based on UML, see
Subsection A, as well as the attached constraint sets. The
UML platform templates are structured to three libraries.
Within these libraries the templates are structured hierar-
chically by composition structure diagrams. Hence a hierar-
chical structure for every component of the libraries can be
built. So every component can be abstracted as complex or
detailed as required.
The user-defined constraint sets are attached at the different
hierarchical template layers to describe the variability, the
dependencies and the configuration capabilities of different
platform variants. Currently we attach these constraints by
using UML standard constraints [21]. The constraint sets
in combination with the structural templates allow a precise
specification of complex dependencies among platform tem-
plates. For example more restrictive constraint sets enable
an effective reduction of the huge variant space to the rele-
vant platforms for verification.
We encode the constraint sets to a SAT instance using meta-
SMT. The constraint solutions are derived for generating
valid and feasible platform variants. These platform variants
are described as XML. This enables to link the established
tools for platform modeling with our platform variant ap-
proach to specify, generate and simulate platform variants.
We pass the XML to our platform execution tool which regis-
ters instantiates and links the modules of the platform variant
automatically [22].

A. UML Platform Templates

Within this section we present the UML-based structural
platform templates and a small tailored UML platform pro-
file. This profile and the platform templates form the basis
for the structural specification of different variants of virtual
prototype platforms (e.g. SystemC platforms). The UML
platform profile consists of four relevant stereotypes:

1. <platform module> is a virtual prototype module de-
scribed by an instance of a class definition.

2. <platform template> is a component which abstracts a
part of a system for simplicity, variability or structural
reasons.

3. <platform or template> is a component which contains
more than one not related platform templates or mod-
ules to realize possible alternatives.

4. <platform constraint> marks a template/module at-
tached constraint.

Beside this UML profile, the UML standard profile for Prim-
itive Types [5] is used for data types (String, Float, etc.).

(a) Platform module definition of a MOST
DeviceMaster with timer attributes.

(b) Platform variant specification describing all relevant variants for the MOST Ring Break
Diagnosis (RBD) process.

Fig. 2. Platform module DeviceMaster specifing a MOST master node and its timer parameters as well as the used and required interfaces.
Platform variant specification defines different MOST ring variants for the verification of the Ring Break Diagnosis (RBD).

As mentioned before, the templates and modules of the plat-
form variants specification are structured to three libraries.
This well-established library approach provides clarity, sup-
ports reusability as well as reintegration of specified platform
templates/modules in new platform variants specifications.
The first library contains the platform modules representing
virtual prototype modules (e.g. SystemC modules). Every
virtual prototype module is described by a platform module
definition, see Fig. 2a. Within this definition the module
parameters are specified. Every parameter must have a data
type and has to be marked with public (+), private (-) or
protected (#). In the platform variants specification only pa-
rameters which are specified as public (+), are allowed to be
configured. Optionally a composition structure diagram is
associated with the platform module to define a hierarchical
structure.
The second element type of the first library is the platform
template (<platform template>). A platform template ab-
stracts a part of a system for simplicity, variability or struc-
tural reasons. It consists of several platform modules and
templates which are described in a composition structure di-
agram, see Fig. 2b. The last type of platform elements is the
or-template (<platform or template>). They are integrated
in the platform variants specification representing alterna-
tives for specific platform components. The or-templates
consist of two or more not related platform templates or mod-
ules. A valid platform variant contains always one element
of them.
In the second library, interfaces are defined to guarantee a
correct linking between templates and modules. Fig. 2a
demonstrates the annotation of interfaces to a module defi-
nition. The linking requirements will be explained in detail
in Section C. The last library contains enumerations which
enable the specification of user-defined data types.

B. Platform OCL Constraints

This section introduces the constraint sets which are used
to define variability, configuration capabilities and dependen-
cies among platform elements. The constraint sets are at-
tached to the corresponding platform modules/templates and
are specified in OCL. Commonly OCL is used to define con-
straints at the M1 layer of the Meta Object Facility (MOF)
Standard [23]. Hence concrete instances, respectively distinc-
tive data (M0), of the M1 models can be verified by these con-
straints. Table I presents the deviation of our Platform Meta
Layers to the standard MOF layers. The M3 layer is repre-
sented by the UML 2.4.1 Meta model. The elements and con-
cepts of the UML-Meta Model are derived to build the plat-

TABLE I
MOF Layers

Standard MOF Layers Platform Meta Layers

M3 Meta Meta Model UML-Meta Model
M2 UML-Meta Model Platform Templates/Profile
M1 User-defined Platform

UML-/Object-models Variants Specification
M0 Distinctive Data Platform Variant Space

form templates and the platform profile. These two platform
concepts build the M2 layer in our approach. The M1 layer is
formed by the platform variants specification itself with the
attached OCL constraints. The OCL constraints combined
with the platform variants specification span the M0 layer
which consists of the valid platform variant space. We deploy
a subset of OCL to specify the platform constraints. We build
this particular subset by adding new operators to define plat-
form constraints more accurately. In the following the subset
will be called Platform-OCL (P-OCL). P-OCL supports sev-
eral OCL standard types and their operators like: Collection-
Related Types (Sequence, Bag), Collection-Related Opera-
tors/Operations (.,->, includes, size, ...), Primitive Types
(Integer, Real, Boolean) or Object Model Types (Class, At-
tribute).
At first we present an OCL extension which supports prob-
ability distributions for the OCL Collection-Type Sequence.
We implemented the gaussian and the invGaussian prob-
ability operator because these distributions are often used
in validation and test. Definition 1 introduces the gaussian
probability distribution for Sequences.

Definition 1 (P-OCL Gaussian Sequence-Operator
(gaussian())). Let S = Sequence{min..max}, O =
S.gaussian()-> includes(Class|Attribute) the OCL Expres-
sion and R is the result set of O then follows: ∀ Xi ∈ R
and Xi are continuous random variables with |R| = 0 ≤ i <
(max−min) because duplicates are removed from R. These
random variables correspond a gaussian probability distribu-

tion with the density function f(x) = 1
σ
√

2π
e−

1
2 (x−µσ)2 with

µ = max−min
2 and σ = µ+min

3 . Thereby µ defines the mean
and σ represents the standard deviation.

Additionally to the gaussian probability distribution oper-
ator an inverse gaussian probability distribution operator is
added.

Definition 2 (P-OCL Inverse-Gaussian Sequence-Operator
(invGaussian())). Let S = Sequence{min..max}, O =
S.invGaussian()-> includes(Class|Attribute) the OCL Ex-
pression and R is the result set of O then follows: ∀ Xi

∈ R and Xi are continuous random variables with |R| =
0 ≤ i < (max −min) because duplicates are removed from

R. These random variables correspond an inverse-gaussian
probability distribution with the density function f(x) ={

(λ
2πx3)

1
2 e
−λ(x−µ)

2

2µ2x x > 0

0 x ≤ 0
with µ = max−min

2 and λ > 0.

Thereby µ defines the mean and λ represents the shape pa-
rameter.

Both operators enable to specify critical boundary condi-
tions of attribute value configurations or critical numbers of
platform templates/modules. Likewise they can be used to
reduce the feasible number of valid variants.
The next extension, the active operator, supports the con-
straining of or-templates.

Definition 3 (P-OCL active-Operator (active())). Let
Ri = Class|Component with i = 0, ..., n and n ∈ N,
OT = or − template, Ri ∈ OT and O = R1.active() a P-
OCL expression. Then follows for the resulting variants V :
R1 is integrated in all variants V .

The active operator defines which template or module of
an or-template should be integrated in the generated plat-
form variants. This enables to define constraint sets which
integrate different platform templates/modules in valid solu-
tions.
The following rules show the formalization of different types
of P-OCL constraints in SMT/SAT expressions. Rule 1 for-
malizes a P-OCL Sequence expression. This expression op-
tionally allows to define a step size, e.g. to reduce huge pa-
rameter ranges. Therefore the step size functionality, which
is not contained in OCL Collection-Types standardly, is pro-
vided semantically by an iterator definition. This itera-
tor definition is specified by the OCL operation select. In
the formalization process integer values are represented as
metaSMT bit-vectors. Subsequently bit-vectors are repre-

sented in rules as vectors (e.g. ~b). In the following a natural
number is converted to a bit-vector and vice versa by conv
and conv−1.

Rule 1. Let rmin, rmax, stepsize ∈ N, then fol-

lows ~a ≡ conv−1(rmin), ~b ≡ conv−1(rmax) and ~s ≡
conv−1(stepsize). The current bitwidth is defined by bw
∈ N. The OCL Attribute/Class Reference is mapped to y.
Then a formalization of a P-OCL Sequence definition is de-
fined as follows: Sequence{rmin..rmax}->select(e : Integer |
e / stepsize = 0)->includes(Attribute/Class),

is mapped to: y ≥ ~a & y ≤ ~b & (y - ~a) % ~s == ~0

The first step of the formalization is to represent the
Attribute/Class-Reference by a variable, here y. This
reference-to-variable mapping has to be unique to allocate
the different Sequences distinctly. In metaSMT, bit-vectors
are represented by function bv uint()[bw] with bit-width bw.
Rule 2 demonstrates the formalization of a list definition.

Rule 2. Let be Class/Attribute-Reference x and n ∈ N, then:
Bag{b0, ..., bn}->includes(Attribute/Class) is mapped to x
< ~m, with ~m ≡ conv−1(n+ 1).

A list definition in P-OCL can contain values of different
Primitive Types. These lists are specified by the OCL stan-
dard type Bags. In order to represent a list definition in
metaSMT, the list index values are formalized as bit-vectors
to assign each list entry a unique index. Regarding to Rule
2 it is obvious that the variable, respectively the Class/At-
tribute reference, has to be smaller than the highest index

number plus one. This rule is also adopted for floating point
value sequences. Due to the standard definition of Sequences
in OCL it is necessary to define floating point Sequences with
explicit values. These results from the fact that a floating
point Sequence interval specification is be determined infi-
nite. One last example for the SMT/SAT formalization is
given in Rule 3. It shows the formalization of an if-expression.
The if-expression, subsequently described by if-condition (c),
then-branch (t) and else-branch (e), is defined semantically
equivalent to the Boolean formula: (c implies t) and (not
c implies e).
Rule 3. Let c, t and e be P-OCL constraints and the func-
tion form is defined by form(λ) ∈ Boolean expression, with λ
∈ P-OCL. Then the formalization of a P-OCL if-expression is
defined by: if c then t else e is mapped to logic ite(form(c),
form(t), form(e))

C. Template Linking

This structural Section demonstrates the versatility in
defining different system topologies, e.g. ring-, bus- or mesh-
topologies, with CST, linking requirements and port cardi-
nalities. The Template Linking takes place, once a solution is
determined by the SMT/SAT solving process. Then the num-
ber of newly generated platform module/template instances
has to be derived from the solution. Afterwards they are
connected due to specific linking requirements. The linking
requirements are based on templates, port cardinalities, in-
terfaces and connectors.

1. Every newly generated platform module/template in-
stance can be linked to their target platform mod-
ules/templates as long as target port instances are left.
The number of possible port instances is defined by car-
dinality tags annotated to the port definitions, see Fig.
2b or 3.

2. If no target port instance is left the newly generated
platform module/template instance will be connected to
the previously generated instance of the same type, see
the ring topology example in Fig. 3.

3. Platform modules/templates which are specified vari-
ably by constraints are only allowed to connect to non-
variable platform modules/templates.

4. If two platform modules/templates are connected to
each other and both are specified variably by constraints
it is necessary to abstract them by a CST.

Fig. 3 demonstrates the linking process for two examples re-
garding to the above defined linking requirements. In both
cases template T1 has to be integrated three times in the
final platform variant. This can be enforced by the con-
straint Sequence{1..3}->includes(self.allInstances()->size())
whereby self refers to T1. S and S1 are the target platform
modules/templates to which T1 is connected to. In the ring
topology example has the target port instance of connector
C2 the cardinality of [1]. Therefore every newly generated in-
stance of T1 has to be connected to the next newly generated
one. The bus topology is generated because the cardinality
of the target port at S of C1 is unlimited [1..*]. Hence every
newly generated instance of T1 can be connected to S. The
given examples in this section are synthetic and should only
demonstrate the definition of different system topologies by
using CSTs, linking requirements and port cardinalities. Due

Fig. 3. Linking process for two platform variants specifications
regarding to defined linking requirements.

to the limited space in this paper the example is visualized
in an abstract way.

IV. Experimental Results

This section discusses our experimental results from plat-
form variants specification for the verification of an indus-
trial MOST application and for the exploration of a FlexRay
traffic sign recognition example. All experiments have been
carried out on an Intel Core 2 Quad 2.50 GHz with 4 GB of
RAM using Ubuntu 12.04 64bit.

A. Ring Break Diagnosis Application (RBD)

We demonstrate the flexibility, changeability and necessity
of our methodology for the verification of virtual prototypes
variants by means of a MOST Ring Break Diagnosis [24] ver-
ification example. Ring Break Diagnosis is classified within
ISO-OSI Data Link Layer of the MOST network interface
section (NetInterface). It serves the purpose of localizing a
fatal error in the network. The RBD process can be started
by various triggers, which must be chosen and implemented
by the System Integrator [24]. In our MOST model we im-
plemented all different MOST layers as well as the entire
functionality of RBD regarding to the state chart description
of the algorithm given by the MOST specification.
In order to verify the RBD algorithm reasonably it is neces-
sary to specify a feasible subspace of the 54∗1021 valid MOST
platform variants. In [22] six different verification scenarios
turned out to be suggestive: error free, ring break, excessive
attenuation, multi master, all slave and combination. Ev-
ery scenario is specified by a different number of templates
and constraints. Table II summarizes the generated variants,
used templates and specified constraints for each scenario.

The number of constraints and templates remained fairly
TABLE II

Generated variants for RBD
Scenario Variants Templates Constraints
error free 25133 8 38
ring break 24478 8 37

excessive attenuation 24564 8 37
multi master 25231 8 37

all slave 25117 7 29
combination 24756 8 38

constant because often one constraint or template limits the
boundary to another scenario. This fast reconfiguration ca-
pability is demonstrated by changing the multi master to the
all slave scenario. Therefore it is just necessary to remove

the MasterTemplate from the variant specification and to re-
link the remaining SlaveTemplates.
In Fig. 2b the top level description of the ring break variant
specification scenario is displayed. For the ring break sce-
nario we use 8 templates and 37 constraints. Four of the 8
templates are displayed in the top level description. Each of
these four templates contain one or-template and one MOST
Device node. Each of the four top level templates contain
a minimum of 8 constraints to specify the different timer of
MOST masters or slaves as well as to trigger which channel
should be used. Listing 1 shows some of these constraints.
The if-constraint in line 11 to 18 take care that only one ring

1 −− These Sequence Const ra int s are attached
2 −− at MasterTemplate and s laveTemplate1 .
3 Sequence{1..63}−> includes (s e l f) ;
4 Sequence{1..63}−> includes (s e l f) ;
5 s laveTemplate . allInstances ()−>s ize () +
6 s laveTemplate0 . allInstances ()−>s ize () +
7 MasterTemplate . allInstances ()−>s ize () <= 63
8 −− Const ra int s de f ined with in MasterTemplate
9 Sequence {2000 . . 2500} . invGaussian ()−>

10 includes (s e l f . t Con f i g)
11 i f s e l f . deviceChannelRB . a c t i v e ()
12 then SlaveTemplate . allInstances−>
13 f o r A l l (e | ! e . deviceChannel . a c t i v e ())
14 else i f s laveTemplate0 . deviceChannel . a c t i v e ()
15 then se l f . allInstances
16 −>f o r A l l (m | !m. deviceChannel . a c t i v e ())
17 endif
18 endif

Listing 1 Small subset of ring break scenario constraints

break is injected in a final platform variant. This is neces-
sary because the RBD algorithm is designed to detect and
identify the position of one ring break. For every scenario we
generate approximately 25000 variant instances.
Altogether we generated for the six scenarios over 150000
variants. Thereby the solving and generation process has
been done in about 2 hours. In order to ensure a suggestive
verification regarding to RBD, we configured the maximum
simulation time to 3500 msec. The parallelized implementa-
tion of our platform variants specification framework enables
to process simulations parallel. Therefore the entire solving,
generation and simulation process can be done in a few hours
in case of sufficient resources. Owing to our limited resources
the simulation process needs up to 5 days.

B. Traffic Sign Recognition Example

In our second example we demonstrate the versatility of
our novel constraint-based platform variants specification ap-
proach. We applied our approach for an exploration use case
within a heterogeneous system consisting of virtual prototype
modules and modules containing hardware target code. We
explored different camera modules for an automotive traffic
sign recognition (TSR) platform and different hardware par-
allelization options. The TSR platform is implemented by a
FlexRay bus system.
The top level of the variants specification of the system is
defined by four structural platform templates which encap-
sulate the functionality of the TSR. These four templates in-
clude: the camera, the circle detection application, the traffic
sign classification and the display. Each of these four tem-
plates abstracts up to 25 platform modules which provide
the functionality of the camera, the circle detection or the
classification. The camera exploration constraints in List-
ing 2 specify different camera types by display resolution,

grayscale- or colored-camera and scale factor. The second
constraint set in Listing 3 specifies the different hardware
parallelization options for the circle detection. The circle de-
tection is implemented in target code for a Tilera board to
explore these options on the board. The options enable to

1 Bag{320 ,480 ,576}−> includes (s e l f . r o iHe ight) ;
2 Bag{480 ,640 ,720}−> includes (s e l f . roiWidth) ;
3 Bag{1,3}−> includes (s e l f . unBytesPerPixel) ;
4 Bag{0 .3 , 0 . 6 , 0.1}−> includes (s e l f . s c a l e) ;

Listing 2 Camera exploration constraints

trigger a number of threads on the board which provides up
to 53 cores. Thereby the circle detection module is started

1 Sequence { 1 . . 5 3 } . includes (s e l f . noOfCores) ;
2 Sequence { 5 . . 1 0 } . includes (s e l f . minRadius) ;
3 Sequence { 7 5 . . 8 0} . includes (s e l f . maxRadius) ;

Listing 3 Exploration constraints for parallization

on a certain number of cores with a calculated sub range
corresponding to a given minRadius and maxRadius. Hence
different circle radii can be detecting parallel.
Due to the complete variants generation process of our ap-
proach, 71150 valid platform variants are generated. They
are evaluated with regard to the frame rate and the number
of recognized traffic signs. The evaluation video stream con-
tains 6 traffic signs.
The results showed that only one camera module recognized
all 6 traffic signs correctly and has no classification errors. It
is defined by the parameter set: (320, 640, 1, 0.5) (roiHeight,
roiWidth, unBytesPerPixel, scale). The best results for the
parallelization are: minRadius = 5, maxRadius = 80 and
noOfCores = 20. Within this example we highlighted the
versatile and the flexible usage of our variants specification
approach for heterogenous systems.

V. Conclusion

In this paper we proposed a novel constraint-based speci-
fication approach to enable variability for virtual prototype
platforms. Applying this methodology for verification, ex-
ploration and test of virtual prototype platforms enables to
specify and generate precisely, plausibly and comprehensibly
valid platform variants. The usability, applicability and flex-
ibility of our approach are demonstrated for the verification
of an industrial MOST application and the exploration of a
traffic sign recognition application on a FlexRay bus. Like-
wise the MOST variant space consists of more than 54 ∗ 1021

valid variants which points out the scalability regarding to
huge variant spaces. This huge variant space can be reduced
efficiently to feasible and required platform variants by ap-
plying our methodology. Next steps are a model-to-model
mapping to import IP-XACT descriptions and to integrate a
model-based design flow for reliability assessment of safety-
relevant automotive systems [25].

VI. Acknowledgements

This work has been funded by the German Federal Ministry of Education

and Research (BMBF) within project 16M3195E.

References

[1] W. R. Group. (2010) The 2010 Wilson Research Group Func-
tional Verification Study. Wilson Research Group. [Online]. Available:
http://goo.gl/rIyYu

[2] P. Montag and S. Altmeyer, “Precise WCET calculation in highly variant
real-time systems,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, march 2011, pp. 1 –6.

[3] Altran GmbH. FlexRay Consortium. Altran GmbH. [Online]. Available:
http://www.flexray.com/

[4] M. Cooperation, MOST Specification, Most Cooperation Specification,
Rev. 3.0 E2, 07 2010. [Online]. Available: http://goo.gl/nRqj2

[5] OMG. (2011, August) Unified Modeling Language. Object Management
Group. [Online]. Available: http://www.uml.org/#UML2.0

[6] ——. (2012, January) Object Constraint Language (OCL). ISO Release.
[Online]. Available: http://www.omg.org/spec/OCL/ISO/19507/PDF

[7] F. Haedicke, S. Frehse, G. Fey, D. Große, and R. Drechsler, “metaSMT:
Focus On Your Application Not On Solver Integration,” in Program Pro-
ceedings of the 1st International Workshop on Desigen and Implementa-
tion of Formal Tools and Systems (Austin, TX/USA), M. K. Ganai and
A. Biere, Eds., 2011.

[8] OMG. (2009, March) Common Variability Language. Object Management
Group. [Online]. Available: http://goo.gl/yPW7j

[9] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature Oriented
Domain Analysis (FODA) Feasibility Study,” nov 1990.

[10] S. Jarzabek and H. Zhang, “XML-based method and tool for handling
variant requirements in domain models,” in Requirements Engineering,
2001. Proceedings. Fifth IEEE Int. Symposium on, 2001, pp. 166 –173.

[11] C. Maga and N. Jazdi, “An approach for modeling variants of indus-
trial automation systems,” in Automation Quality and Testing Robotics
(AQTR), 2010 IEEE Int. Conference on, vol. 1, may 2010, pp. 1 –6.

[12] AUTOSAR. (2012) About. AUTOSAR. [Online]. Available:
http://goo.gl/KO4cq

[13] ——. (2011, 10) Generic Structure Template. AUTOSAR. [Online].
Available: http://goo.gl/ccByb

[14] X. F. Zha and R. D. Sriram, “Platform-based product design and
development: A knowledge-intensive support approach,” Know.-Based
Syst., vol. 19, no. 7, pp. 524–543, Nov. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.knosys.2006.04.004

[15] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based stimuli
generation in the SystemC Verification library,” in Specification Design
Languages, 2009. FDL 2009. Forum on, sept. 2009, pp. 1 –6.

[16] IEEE, “IEEE Standard for Standard SystemC Language Reference Man-
ual,” IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), vol. 1, pp.
1 –638, 9 2012.

[17] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained
random simulation,” in Computer-Aided Design, 2007. ICCAD 2007.
IEEE/ACM Int. Conference on, nov. 2007, pp. 258 –265.

[18] S. Plaza, I. Markov, and V. Bertacco, “Random Stimulus Generation
using Entropy and XOR Constraints,” in Design, Automation and Test in
Europe, 2008. DATE ’08, march 2008, pp. 664 –669.

[19] D. Grosse, R. Wille, R. Siegmund, and R. Drechsler, “Contradiction
analysis for constraint-based random simulation,” in Specification, Verifi-
cation and Design Languages, 2008. FDL 2008. Forum on, sept. 2008,
pp. 130 –135.

[20] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler, “Ver-
ifying UML/OCL models using Boolean satisfiability,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2010, March, pp.
1341–1344.

[21] OMG, Constraints Package. OMG, August 2011,
vol. 2.4.1, ch. 9.6, pp. 40–43. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1/Infrastructure

[22] A. Braun, O. Bringmann, D. Lettnin, and W. Rosenstiel, “Simulation-
based verification of the most netinterface specification revision 3.0,” in De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2010,
march 2010, pp. 538 –543.

[23] OMG. OMG Meta Object Facility (MOF) Core Specification. OMG.
[Online]. Available: http://www.omg.org/spec/MOF/2.4.1/PDF/

[24] MOST, MOST Media Oriented Systems Transport Multimedia and
Control Networking Technology, MOST Cooperation Std., Rev. 3.0, 05
2008.

[25] S. Reiter, M. Pressler, A. Viehl, O. Bringmann, and W. Rosenstiel, “Re-
liability assessment of safety-relevant automotive systems in a model-based
design flow,” in Design Automation Conference (ASP-DAC), 2013 18th
Asia and South Pacific, 2013, pp. 417–422.

