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Abstract—The continuous progress in engineering requires in-
creasingly powerful materials being utilized in complex construc-
tions. Commonly used methodologies are hardly capable to ex-
plore materials with improved properties, i.e., fulfilling a certain
performance profile. An alternative high throughput screening
approach exists which allows to process a high number of samples
while operating on micro scale. For structural materials, it is not
possible to project material properties from the micro to the
macro scale. Due to the complex nexuses between the process
parameters (applied for sample synthesis), the high-dimensional
space of the screening data and the uncertainties concerning
material properties while scaling, conventional algorithms are
not capable to cope with these data. Thus, this work proposes a
general data flow which orchestrates multi-objective optimization
approaches as well as formal techniques to handle this challenging
computational task. In the end, a framework is drawn that
determines the resulting material properties on a macro level by
using screening data of micro samples and compares them against
a performance profile. For the case that only a slight correlation
exists, the framework proposes a batch of alternate process
parameters which are, highly probable, leading to superior
structural material.

I. INTRODUCTION

Within the last decades, a major engineering progress was
achieved that influences all fields of our daily life. In particular,
a progress in fields such as safety, mobility, infrastructure
and avionics requires steadily improved high-performance
structural materials. In these domains, the materials have to
exhibit specific material properties, e.g., the elastic limit or
the elongation which are specified by a performance profile.
The investigated material can only be utilized in a complex
construction if a certain performance profile is fulfilled. The
exploration of such powerful materials is a challenging, time
consuming and highly expensive procedure. Due to this high
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consumption of resources, only a limited number of newly
synthesized materials can be investigated such that established
conventional search methods generally do not lead to break-
throughs but rather to slightly improved materials.

An alternative, more promising approach was proposed in [1]
that addresses the exploration of new structural materials by a
high throughput screening technique. This approach is applied
on micro samples that are made with a specific alloy and, sub-
sequently, treated in a certain way. In fact, this heat treatment
develops different microstructures leading to specific material
properties. The specification of the alloy and the treatment
are specified by the namely process parameters. The approach
of [1] is operating on a micro level, i.e., only micro samples are
considered which enables the high throughput character. The
screening data include various measurements, e.g., concerning
electrochemical characteristics, X-ray diffraction and novel
mechanics tests of the probes that are repeated multiple times
for each micro sample to be examined. Due to the high
throughput character, these multidimensional measurements
result in a huge data set that has to be analyzed to identify
promising process parameters which should finally lead to a
material candidate that fulfills the desired properties with a
high probability. Eventually, the identified parameters are used
to produce these improved materials on a macro level such that
they can be utilized for practical applications.

For this high throughput approach, four computational aspects
have to be considered:

1) No direct correlation between the data which are mea-
sured by the screening process and the resulting material
properties exist, hence, a method has to be developed
which allows to predict these material properties out of
the screening data.

2) The screening is applied on micro samples that enables
the high throughput character. In contrast to other materi-
als, e.g., functional materials [2], it is not possible to scale
the properties of a structural material from the micro level
to the macro level. Thus, a mechanism is required which978-1-5090-2541-1/16/$31.00 c© 2016 IEEE



allows to project the properties of the micro to the macro
level.

3) The actual objective is to find structural materials ful-
filling a certain performance profile. Consequently, the
methodology has to establish a multidimensional com-
parison between a material – that is currently under
investigation – against a given performance profile. Thus,
a global function is realized that indicates the match
between the given material properties and the one of the
performance profile.

4) In the case that the properties of the investigated micro
sample and the ones that are specified by the performance
profile are not well matching, an algorithm has to be im-
plemented which identifies process parameters leading to
a micro sample with a higher matching rate of the material
properties with respect to the performance profile.

The proposed approach addresses all these mentioned short-
comings by proposing a methodology that

• predicts resulting material properties from processed
screening data,

• derives knowledge between the measured data on micro
level and the resulting material properties on macro level,

• implements high-dimensional relational operators to com-
pare the screening data against each other by using Multi-
Objective Optimization (MOO) techniques,

• determines promising process parameters for improved
materials by invoking a formal optimization-based search
procedure,

• allows to specify a hypothesis system by using a newly
invented domain-specific language which allows to embed
expert knowledge and validates this by using the collected
experimental data.

The structure is as follows: Section II gives a brief introduction
to the high throughput screening approach. Followed by Sec-
tion III which provides an overview of the proposed data flow.
The main components namely the predictive function as well
as the search procedure are described in Section IV. Finally,
some conclusions are drawn in Section V.

II. HIGH THROUGHPUT APPROACH

Generally, high throughput techniques try to address the iden-
tification of nexuses in highly complex spheres with multiple
uncertainties. For instance, one established field of application
concerns the nanoparticle toxicology [3]. Accordingly, in the
domain of material exploration, the high throughput approach
comprises a high number of samples which are synthesized,
treated and, subsequently, applied to various measurements to
generate the screening data.

Beside the pure data generation, a general flow has to be
developed which processes the data and controls the high
throughput system. Figure 1 presents this flow consisting of
the following components:

1) Step A demonstrates the synthesis, the treatment as well
as the screening of micro samples enabling a highspeed
processing that leads to high throughput screening.

2) As depicted, correlated experiments on the micro and the
macro level exist which are used as the training data

Fig. 1: High throughput screening

set (shown at the very top) and, hence, construct the
predictive function. On demand, selected materials are
processed on macro scale which is very time as well
as resource consuming and, therefore, should be only
done for promising candidates or to address remaining
uncertainties in the predictive function.

3) The main iterative loop starts at the determined screening
data of specific micro sample [cf. 1)] that is investigated.

4) The predictive function is applied on these screening data
to determine the resulting material on macro scale with
the highest probability.

5) Multiple relational operators are utilized to compare the
material properties against a given performance profile.

6) Based on this qualitative evaluation, several experimental
designs are generated which control the micro sample
generation. As intended, this feedback will potentially
produce micro samples for next iterations [cf. 1) to 6)]
which are better matching against the performance profile.

7) If a certain quality threshold is reached, a macro sample
is generated to, finally, validate the exploration of a
new structural material fulfilling the specific performance
profile. This generation is shown in step B and contains,
in general, the same process steps as the micro sample
generation.

III. DATA FLOW

This section describes the proposed data flow for the frame-
work which allows to determine promising process parameters
of improved structural materials, fulfilling a challenging and
application-specific performance profile that is defined by the
user with respect to its later application.

The set of screening data builds up the experimental database
and can contain multiple types of measurements, e.g., the
current setting allows eleven different types. Consequently,
these measurements have to be projected to various resulting
material properties. For the investigated materials with respect
to required performance profiles, six different material proper-
ties are currently considered. Hereby, a type of measurement
does not necessarily affect each material property. For instance,
a dilatometry measurement may not be used to infer properties
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Fig. 2: Possible types of screening data & material properties

regarding the hardness. A possible connection between these
data are shown in Figure 2.

The data flow is presented in Figure 3 and includes Steps A
to E as described in the following paragraphs.

A: Given are a desired performance profile, which should
be fulfilled by the material on macro scale, and an initially
constructed predictive function Ψ which projects screening
data to resulting material properties.

B: Different micro samples have been produced by specific
alloys and have been treated as defined by the process pa-
rameters. Subsequently, these micro samples are applied to
the screening process. All measurements are executed multiple
times such that possible process variations can be compensated
and, finally, the screening data are stored in the experimental
database.

C: The predictive function Ψ receives the performance profile
as well as the experimental database and projects the measured
screening data of a micro sample to the resulting material
property of this material on macro scale.

D: An optimization-based search process is invoked which
aims to determine a good candidate, i.e., a set of screening
data. Subsequently, Ψ is applied on this candidate, i.e., a
promising set of screening data, to predict the resulting mate-
rial properties that coincide with the performance profile. The
optimization finds the best candidate with respect to certain

search limits, thus, the quality of a single candidate is evalu-
ated. For this evaluation different, newly developed relational
operators are utilized. In fact, the comparison for each material
property is implemented by an individual operator.

E: Due to the high dimension of screening data and the
material property, the possible search space is tremendous.
Consequently, a domain-specific language will be developed
which allows experts to formulate so-called hypotheses, e.g.,
assertions and assumptions about the screening data or material
properties, respectively. The concept of a domain-specific
language is frequently used to address complex scenarios
necessitating user interactions, e.g., as demonstrated in [4],
[5]. The user-defined hypotheses are condensed into a sys-
tem of hypothesis conducting the search procedure by expert
knowledge towards a promising candidate.

Listing 1 gives some exemplary hypotheses (as described in
step E). The variables Di refer to the screening data – namely
descriptors – for screening type i and the variables Mj refer
to a certain material property j, respectively. This example
shows the declaration of two assumptions and three assertions
concerning material properties as well as a descriptor. Further-
more, it demonstrates a few supported operations concerning
the peak calculation and an expected linear correlations be-
tween a descriptor D1 and a material property M5.

Listing 1: Expert knowledge encoded in hypotheses
ASSUME: D1 > 15
ASSUME: M5 > 30

ASSERT: linear_correlation( D1, M5 )
ASSERT: max( M3, M4, M5 )
ASSERT: min( M1, M2, M3 )

Eventually, if a screening data set is identified that matches
best against a certain performance profile, it is possible to
derive the process parameters for producing a material leading
to such screening data. For compensating possible process
variations and handling the existing uncertainties, this method
determines instead of a single set of process parameters, a
batch of candidates. These candidates are calculated by using
well-known approaches related to the statistical experimen-
tal design.

IV. ALGORITHMIC APPROACHES

This section describes the algorithmic approaches to predict
resulting material properties as well as the top-level procedure
which implements the actual search for improved materials.

A. Predictive Function

The predictive function Ψ is one of the main mechanisms
within the proposed data flow and determines the resulting
material properties on macro level by a given set of screening
data for a micro sample.

As assumed in step A, Ψ is initially constructed. For this
construction, a training data set is given which consists of
correlated experiments on micro as well as macro scale with
known material properties. Within this first construction phase,
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Fig. 3: General data flow

newly developed relational operators are utilized for the com-
parison between high dimensional material properties. These
relational operators are implemented by taking advantage of
MOO techniques, e.g., the ε-operator proposed in [6], and are
crucial for comparison as already stated in step D. Due to
the specific characteristics of different material properties, an
individual relational operator is developed for each of these
properties. After determining this set of relational operators,
MOO is also applied on this data set to, finally, generate a
parameterized operator. The parameterized operator considers
the implicitly given weight of the individual property, e.g., as
stated in work [7], and is directly utilized by the predictive
function. Figure 4 shows the initial construction procedure
as well as the later application of the predictive function
where it is applied on screening data to predict resulting
material properties.

Beside this, it is possible to utilize further expert knowledge
encoded within a system of hypothesis as described in step E.
For evaluation and validation of the system of hypotheses,
formal techniques are considered, e.g., Bounded Model Check-
ing [8], which have been frequently used for verification of
integrated circuits [9], [10] or for the automatic test pattern
generation as proposed in work [11].

After the first training phase of Ψ has finished, a further
training is possible to achieve a continuous improvement of
the prediction quality, thus, Ψ can be improved by processing
more correlated experiments.

B. Optimization-based Search Procedure

Beside the predictive function Ψ, one further important com-
ponent is the optimization-based search procedure. This pro-
cedure uses Ψ internally and models the actual iterative loop
within the data flow as shown in Figure 3 and, finally, leads
to the exploration of new materials with specific properties.

As depicted, Ψ is capable to determine the resulting material
properties for a material whose screening data are given. For
the exploration of new high-performance materials, a set of
screening data have to be identified which result in these
material properties – as predicted by Ψ and specified by the
performance profile.

The search process determines a new data set and evalu-
ates its quality, i.e., all resulting material properties of this
candidate are compared with the corresponding one of the
performance profile. For all considered material properties
(as shown by Figure 2), an individual relational operator is
used that implements a suitable comparator. Subsequently, a
formal optimization procedure starts which aims to maximize
the accumulated quality of the sample. The degree of free-
dom for this optimization is tremendous: Generally, various
types of screening data can be altered, leading to a high
dimensional search space. This hard computational task can
be addressed by powerful probabilistic approaches such as
evolutionary algorithms. Following this scheme of applying
a heuristic search procedure, e.g., an evolutionary algorithm,
for optimizing certain parameters as proposed in [12], the data

2016 Sixth International Symposium on Embedded Computing and System Design (ISED)



Fig. 4: Creation and application of predictive function

have to be interpreted as following: The overall search space is
spanned by the screening data and the search operation consists
of altering the measurements. Furthermore, the fitness function
is implemented by a distance operation between deviation
of the currently predicted material property and the ones
specified by the performance profile. As proposed in [13], it is
possible to prioritize single objectives for the optimization, i.e.,
some properties are more important than others. For instance,
while optimizing the promising parameters for synthesizing
an improved material, the resulting tensible strength could be
more important than the hardness of the resulting material.
Consequently, algorithms are required which support multiple-
objectives for the optimization [14], e.g., algorithms that have
been successfully applied in [15], [16].

This utilization of algorithmic approaches such as evolutionary
algorithms establishes a data flow which is able to cope with
the high dimensional screening data and, furthermore, optimize
them against an objective target, determined by the resulting
material properties and the ones of the performance profile.

V. CONCLUSIONS

This work addresses the challenging task of exploring new
high-performance structural materials by utilizing the high
throughput screening approach proposed in [1]. Following this
scheme, a framework is drawn which is capable to address
the hard computational task: On the one hand a huge set of
multidimensional screen data have to be processed and on the
other hand various uncertainties have to be considered.

The Collaborative Research Center SFB1232 aims to orches-
trate multi-objective optimization approaches effectively such
that a predictive function is implemented that predicts resulting
material properties on macro scale by processing screening
data of micro samples. Additionally, a set of relational opera-
tors is developed which are capable to compare certain material
properties. Beside this, formal techniques are combined with
these developed functions which leads to an optimization-
based search procedure. This functional composition deter-
mines a candidate of screening data best matching against a

specific performance profile. Eventually, experimental designs
will be derived by these identified screening data to, finally,
explore and produce high-performance structural materials.
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