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ABSTRACT
Due to the increasing complexity of today’s circuits a high degree
of automation in the design process is mandatory. The detection
of faults and design errors is supported quite well using simula-
tion or formal verification. But locating the fault site is typically a
time consuming manual task. Techniques to automate debugging
and diagnosis have been proposed. Approaches based on Boolean
Satisfiability (SAT) have been demonstrated to be very effective.

In this work debugging on the gate level is considered. Unsatisfi-
able cores contained in a SAT instance for debugging are used (1) to
determine all suspects, and (2) to speed-up the debugging process.
In comparison to standard SAT-based debugging, the experimental
results show a significant speed-up for debugging multiple faults.

Categories and Subject Descriptors
B.6.3 [Hardware]: LOGIC DESIGN—Design Aids

General Terms
Design, Verification

Keywords
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1. INTRODUCTION
Circuit design happens under an enormous time-to-market pres-

sure while the complexity of the designs increases rapidly. Tool
automation in the design process is mandatory. Verification is one
of the bottlenecks of today’s design flows, even though the detec-
tion of faulty behavior is automated by the use of simulation, for-
mal methods, or a combination of both. Up to now the subsequent
debugging step lacks tool support.

Several automatic approaches to aid debugging have been pro-
posed. Some of them rely on simulation [19] or structural prop-
erties of the debugging problem [9], others use strong reasoning
engines [5]. Due to the drastic improvements in deciding Boolean
Satisfiability (SAT) using powerful algorithms [10, 11, 2], SAT-
based debugging is quite efficient. The first approach [16] has been
further improved to exploit the hierarchy of a design [3], to debug
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formal properties [18] and to provide corrections [1]. Recently, per-
formance improvements have been reported by using an engine that
finds all maximal subsets of satisfiable clauses [17]. This work is
related to our approach, but only single faults have been considered
in [17].

In principle all SAT-based approaches rely on the same under-
lying model. Initially, a number of failure traces and an expected
correct output response for each trace are given. Then, the circuit is
transformed into a SAT instance, the primary inputs are constrained
to the values given by a failure trace and the outputs are restricted
to the correct output value. Obviously, this SAT instance is un-
satisfiable because the failure trace implies incorrect output values.
Therefore, additional injection logic is added to change the values
of internal signals and by this to correct the output response.

Another approach [13] proposes to use conflicting sets, i.e. sets
of assumptions that cannot be true simultaneously. A fault candi-
date contains at least one assumption of each conflicting set. Given
an initial conflicting set, Reiter’s approach proceeds by enumerat-
ing all assumptions in the conflicting set and extending them to a
fault candidate. Whereas Reiter’s approach calls the proof engine
for each assumption in the conflicting set, our approach has the de-
cisive advantage of only requiring as many calls to the SAT solver
as there are components in the fault candidate (plus one call for
every further fault candidate).

In this work debugging on the gate level is considered. We start
from the initial unsatisfiable SAT instance: the circuit is restricted
to the failure trace and to correct output values [13]. A SAT solver
is applied to extract an unsatisfiable core, i.e., a part of the SAT
problem that is already unsatisfiable [4, 21, 14]. Then, the injection
logic is activated within the unsatisfiable core to determine fault
candidates or a next unsatisfiable core. Using an iterative proce-
dure, multiple faults are handled. The solution space of our method
is identical to the standard approach for SAT-based debugging: all
fault candidates of minimal cardinality are returned. Moreover, the
experimental results show that multiple faults can be handled very
efficiently which is difficult for previous approaches.

The paper is structured as follows: Preliminaries on SAT and
SAT-based debugging are revisited in the next section. Then, the
basic idea of using unsatisfiable cores is introduced in Section 3,
optimizations are presented and the solution space is analyzed. Our
framework that implements the debugging procedure is explained
in Section 4. Experimental results are reported in Section 5. Fi-
nally, conclusions are presented.

2. PRELIMINARIES
2.1 Unsatisfiable Cores

A Boolean formula in Conjunctive Normal Form (CNF) is a set
of clauses, each clause is a set of literals and a literal is a variable
or its negation. A given CNF is satisfied under an assignment, if
each clause is satisfied; a clause is satisfied if at least one of its
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Figure 1: SAT instance

literals is satisfied; a literal is satisfied if it evaluates to 1 under the
current variable assignment. A SAT solver proves that a given CNF
is unsatisfiable or provides a satisfying assignment.

If a CNF is unsatisfiable, the formula is contradictory. Any sub-
set of the clauses that is still unsatisfiable is called an unsatisfiable
core, also called unsat core or simply core in the following. For
example, the CNF formula {{a}, {a}, {a, b}} is unsatisfiable; the
subset {{a}, {a}} is an unsat core. A given CNF may contain mul-
tiple unsat cores. An unsat core is minimal if the removal of one
more clause yields a satisfiable CNF. Determining a minimal unsat
core is possible [12, 6, 8], but time consuming. For our purpose
minimality is not necessary. A SAT solver can produce such an
unsat core on the fly with a moderate overhead [14].

An unsat core may become satisfiable by modifying its clauses.
We refer to this removal of the contradiction as breaking the unsat
core.

2.2 SAT-based Debugging
In the following, G denotes a circuit and X denotes a set of fail-

ure traces with corresponding correct output responses. This is the
input to create a SAT instance for the debugging problem [16]. Fig-
ure 1 shows the structure of the SAT instance. The circuit is repli-
cated for each failure trace; the inputs are restricted to the values
provided by the failure trace x1 . . . , xm; the outputs are restricted
to the correct values. Additional logic is used to change values of
internal signals: the Boolean function g of a gate is replaced by
ag → g, i.e., if ag = 0, the gate works as usual; if ag = 1, the out-
put value of the gate is unrestricted. Therefore, if ag = 1 and the
gate is faulty, the SAT solver can choose the correct output for the
gate. The variables ag are called abnormal predicates and alla de-
notes the set of all abnormal predicates. As shown in Figure 1, the
same abnormal predicate is used for a gate with respect to all fail-
ure traces. We limit to k the total number of abnormal predicates
set to 1. Each satisfying assignment to this SAT instance yields a
fault candidate containing k gates. All gates with ag set to 1 are
contained in the fault candidate.

Typically the algorithm runs in a loop that starts with k = 1 to
identify single gates as fault candidates. If no solution is found, k
is incremented until the first candidate is determined. By inserting
a blocking clause for a candidate, all candidates of size k are calcu-
lated [16]. In the following we refer to this procedure as standard
SAT-based debugging.

The extension to the sequential problem is straightforward: the
circuit is unrolled and the same abnormal predicate is used for a
gate in all time steps [16]. Similarly, instead of gates more complex
components like modules or RT level expressions can be consid-
ered, by using a single abnormal predicate for all gates belonging
to the same component [3, 18]. In the following our extensions to
the basic algorithm are explained on the gate level for the combi-
national case – the extension to hierarchical sequential problems is
straightforward. Experimental results include the sequential case
as well.
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Figure 2: Fault diagnosis

3. USING UNSATISFIABLE CORES
This section explains the basic procedure of using unsat cores for

SAT based debugging:

1. Create the debugging instance and force all abnormal predi-
cates to 0.

(a) Calculate an unsat core.
(b) Break the core by activating the abnormal predicates of

gates in the core.
(c) If the problem is still unsatisfiable, go to (a), else go to

2.

2. Do standard SAT-based debugging.

3.1 Single Faults
The idea behind the procedure is the following. First consider

the case of a single fault. As explained earlier, the SAT instance for
debugging is unsatisfiable when all abnormal predicates are set to
0 – the failure trace implies erroneous values at outputs, therefore
constraining the outputs to correct values yields a contradiction.
This contradiction is due to the fault that is present in the circuit: if
the fault is corrected, the correct output values are implied by the
failure trace.

This argumentation applies to the CNF level as well: The initial
SAT instance contains an unsat core. Clauses derived from the ac-
tual fault site must be part of this unsat core. Therefore only those
gates that share clauses with the unsat core have to be considered
during debugging. Only abnormal predicates of such gates are ac-
tivated, i.e., allowed to take the value 1 – by this the core is broken.
This reduces the search space for the SAT engine as only a small
subset of the abnormal predicates is active. In the following we
refer to the set of activated abnormal predicates as the suspects S.
These are considered in the second unsat core debugging step (see
above) during standard SAT-based debugging. This step finds all
fault candidates within S.

EXAMPLE 1. Consider the circuit shown in Figure 2(a). Under
the input assignment (1, 0, 1) the output takes the value 1 while
a 0 would be the correct value. The dashed shape encloses an
unsat core. Therefore the suspects for SAT-based debugging are
S = {B, D}, and C is not a candidate. Allowing one suspect
to behave “abnormal” makes the problem satisfiable; gate D is a
fault candidate. In contrast, gate B is not a candidate.

Note that multiple unsat cores may be present even in case of a
single fault, a single failure trace and a single output that is con-
sidered. Calculating all of these cores and intersecting them would
help to further reduce the suspects [13]. On the other hand, all of
these cores are broken if the abnormal predicate of the fault site is
set to 1. Thus, determining a single core per fault is sufficient to
apply standard SAT-based debugging. Calculating multiple unsat
cores may be expensive.

The first unsat core can be derived very efficiently. The SAT
solver only performs implications (using Boolean constraint prop-
agation [10]) which yields the contradiction. Thus, no decisions are
necessary to retrieve the core.
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Figure 3: Double fault – alternative cores

3.2 Multiple Faults
Now, consider multiple faults. Even after determining the first

unsat core and activating abnormal predicates, the SAT instance
may remain unsatisfiable due to another fault. Thus, the next unsat
core is calculated and the abnormal predicates of the corresponding
gates are activated, i.e., the set of suspects S is extended. This
process is iterated until no unsat cores remain.

EXAMPLE 2. Consider the circuit shown in Figure 2(b). The
circuit is similar to the one used in the previous example, but it
has one more output, which is also incorrect. With respect to the
first output, the same unsat core is extracted as previously, i.e.,
S = {B, D}. After allowing up to one suspect to behave abnor-
mally, the formula is still unsatisfiable: the new output cannot be
corrected. The unsat core of this call is {C} and the new set of
suspects is S = {B, C, D}. Now, we allow two of these subjects to
behave abnormally. This time, all unsat cores can be broken. The
pairs {D, C} and {B, C} are fault candidates.

This leads to the generalization of the constraints to limit the
abnormal predicates. Assume that altogether k cores were itera-
tively determined. The set corei contains all abnormal predicates
of gates in core i, i.e., there are k such sets {core1, . . . , corek}.
Formally, the suspects are given by S = ∪k

i=1corei. The following
constraints are embedded in the debugging instance:

1. At least one abnormal predicate within each unsat core must
be 1 in order to break the core:

|{a ∈ corei | a = 1}| ≥ 1, for 1 ≤ i ≤ k (1)

2. The total number of abnormal predicates with value 1 must
equal the number of cores k to retrieve the fault candidate of
smallest cardinality:

|{a ∈ S | a = 1}| = k (2)

3.3 Optimizations
The search space grows exponentially in presence of multiple

faults [13, 19]. But using unsat cores helps to analyze the depen-
dencies between the faults and as a consequence to prune the search
space.

EXAMPLE 3. Again consider the circuit shown in Figure 2(b).
Two non-overlapping unsat cores are calculated leading to two sets
of abnormal predicates core1 and core2. The constraints as de-
fined in Equations (1) and (2) in principle yield

`|S|
2

´
possibilities

to choose the values of abnormal predicates. Knowing that the
cores are non-overlapping and that one abnormal predicate per
core must be 1, only |core1| · |core2|/2 of these possibilities have
to be considered. By additional constraints this information can
directly be encoded to guide the SAT solver. While irrelevant for
the example, this observation becomes important for large values
of the number of faults k and suspects |S|.
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Figure 4: Multiple fault debugging

Thus, multiple non-overlapping cores can be treated indepen-
dently. As a first refinement, Equations (1) and (2) are re-
placed by the following constraints for non-overlapping unsat cores
{core1, . . . , corek} — exactly one abnormal predicate per core
must be 1:

|{a ∈ corei|a = 1}| = 1, 1 ≤ i ≤ k (3)

For overlapping cores these constraints would be too tight and
prune candidates as the following example shows.

EXAMPLE 4. The same circuit is considered again, but differ-
ent unsat cores are used as shown in Figure 3. The first unsat core
contains a contradiction with respect to the expected value of the
upper output (see Figure 3(a)). Activating the abnormal predicates
in this core and allowing at most one of them to become 1 does
not yield a correction for both outputs: if gate D is changed, only
the upper output is corrected; if gate C is changed, only the lower
output is corrected. Thus, a next unsat core is returned as shown
in Figure 3(b). This core completely contains the first core due to
the following contradiction: Repairing the lower output requires
aC = 1 which implies aD = 0 (so far only one unsat core has
been found, therefore

P
a∈S a is restricted to be less or equal 1);

thus the upper output cannot be corrected due to the controlling
value 1 at D coming from B.

Obviously, the process depends on the order in which the unsat
cores are found, e.g., this determines how many abnormal pred-
icates have to be considered during the standard SAT based de-
bugging process. A heuristic could be used to guide this process.
But in practice, it is expensive to determine multiple unsat cores
while producing a first one is a side effect of the solving process.
Therefore, we use the first core determined during a run of the SAT
solver.

The previous example also shows that the knowledge about the
intersections of the unsat cores can be utilized to further prune the
search space in presence of multiple faults. Therfore Equation 3
can be generalized to handle overlapping cores as well.

One abnormal predicate per core must assume the value 1 to re-
solve the contradiction. If multiple cores intersect, both faults may
be contained in the intersection. Therefore more abnormal predi-
cates are allowed to take the value 1 in the intersections of cores.
This is illustrated in Figure 4. At first, core core1 is retrieved. The 1
in this set denotes that only one abnormal predicate in corei may be
1. Then, a next core is core2 is retrieved (see Figure 4(b)). At least
one gate per core must behave “abnormal” and both of these may be
contained in the intersection core1∩core2. Therefore the number of
abnormal predicates with value 1 is limited to 2 in core1∩core2 and
to 1 in the remainder of both cores. Additionally, an overall limit
as defined in Equation 2 is applied. The next unsat core core3 may
intersect with all previous cores. This leads to the limits indicated
in Figure 4(c). Thus, the limits can be tightened for all intersections
leading to a partitioning of S. Moreover, all of these limitations can
be calculated efficiently incrementally during the first stage of the
diagnosis procedure. On the other hand for k cores, the number of
sets in the partition may be 2k.



The different types of constraints have been implemented and
experimentally evaluated. Applying individual limitations for each
intersection did not yield a speed-up in general. Only for some in-
stances with large k, speed-ups were achieved. Results are reported
for the limitations provided in Equations (1), (2) and (3).

3.4 Solution Space
Another important question is the relation between the proposed

framework and standard SAT-based diagnosis with respect to the
solution space. Typically, fault candidates of minimal cardinality
are of interest, because they are a minimal set of gates that have
to be considered for correcting the circuit. Most of the previously
proposed automated debugging procedures including the standard
SAT-based procedure return such fault candidates.

THEOREM 1. Fault candidates of minimal cardinality are pro-
vided.

PROOF. Assuming that our framework creates a non-minimal
fault candidate leads to a contradiction.

The standard SAT-based debugging procedure returns fault can-
didates of minimal cardinality by iteratively incrementing the num-
ber of abnormal predicates with value 1. Now assume that this
procedure returns a fault candidate L = {a1, . . . , al} of cardi-
nality l and the algorithm introduced here generates k unsat cores
core1, . . . , corek where k > l until the instance becomes satisfiable
and a fault candidate of cardinality k is returned.

Note that L must share at least one element with every unsat core
contained in the debugging instance – otherwise the instance would
still be unsatisfiable.

Now, consider the first l cores core1, . . . , corel returned by the
algorithm. At least one of these cores does not share any abnormal
predicate with L – otherwise the problem would be satisfiable at
that point and the algorithm would stop. This is a contradiction to
L being a fault candidate. �

Additionally, the proposed framework should provide the same
fault candidates as determined by the standard SAT-based diagnosis
algorithm.

THEOREM 2. All fault candidates of minimal cardinality are
provided.

PROOF. Any fault candidate K = {a1, . . . , ak} of minimal
cardinality breaks all unsat cores, i.e., resolves all contradictions.
Therefore, each core derived during the run of the framework
must share at least one abnormal predicate with K. Since the
set of suspects S is extended until all unsatisfiable cores are
broken, K ⊆ S. Moreover, each ai ∈ K must be contained
in one core. Otherwise, two cores must be broken by the same
abnormal predicate and the algorithm would have stopped after
k − 1 iterations, returning a smaller fault candidate. Thus, the
limitations cannot block fault candidate K. �

In the next section the debugging framework is introduced in
more detail.

4. DEBUGGING FRAMEWORK
In the following, our implementation is presented without the op-

timizations of Section 3.3 for simplicity. The framework proceeds
in the two stages introduced in the previous section:

1. Reduce the suspects and determine their limitations by using
unsat cores (Figure 5).

2. Extract all candidate fault sites (Figure 6).

The first stage starts with the generation of the CNF formulation
of the debugging problem according to Section 2.2 (line 2). The

1 f u n c t i o n u n s a t C o r e P r o c e s s i n g (G , X ) {
2 ( cnf , alla ) = c r e a t e D e b u g I n s t a n c e (G , X )
3
4 k=0;
5 S = ∅ ;
6 c n f . addClause "∀a ∈ alla : a = 0 " ;
7 do {
8 r e s u l t = c n f . s o l v e ( ) ;
9 i f ( r e s u l t == s a t ) break ;

10
11 k++;
12 core = {a | a ∈ c n f . u n s a t C o r e ( ) and

a ∈ alla} ;
13 c n f . addClause " |{a ∈ core|a = 1}| >= 1 " ;
14
15 c n f . removeClause " |{a ∈ S|a = 1}| = k−1 " ;
16 c n f . removeClause "∀a ∈ (alla \ S) : a = 0 " ;
17
18 S = S ∪ core ;
19 c n f . addClause " |{a ∈ S|a = 1}| = k "
20 c n f . addClause "∀a ∈ (alla \ S) : a = 0 " ;
21 } whi le ( t rue )
22
23 re turn ( cnf , S ) ;
24 }

Figure 5: First stage

CNF formula cnf and the set of all abnormal predicates alla are
returned. The number of fault sites (k) and the suspects (S) are ini-
tialized (lines 4–5). Initially the number of abnormal predicates set
to 1 is forced to 0 (line 6). Therefore the instance is unsatisfiable.
Next, unsat cores are iteratively calculated (lines 7–21).

If the formula is satisfiable, the loop stops and the framework
proceeds to the second stage (lines 8–9). Otherwise, there is an-
other fault site and k is incremented (line 11).

The abnormal predicates in the current unsat core are extracted
and limited according to Equation (1) (lines 12–13). As explained
in Section 2.1 the core can be determined with an acceptable over-
head during the SAT run. Afterwards the new abnormal predicates
are added to S (line 18).

During each iteration the abnormal predicates are limited accord-
ing to Equation (2). The limitation is removed after each iteration
(line 15) to be replaced by an updated one (line 19). Additionally,
the abnormal predicates not in S have to be forced to 0 (line 20)
and to be removed during each iteration (line 16). This prevents
the "faulty" behavior and can be implemented by using unit clauses,
too. By using groups of clauses, parts of the CNF are reused and
some learned information can be kept for subsequent runs [15, 20].

The loop starts again with new limitations on the fault site and
the next unsat core is calculated.

When the first satisfying solution is found (line 9), the second
stage starts. At this point the limits on the number of abnormal
predicates are contained in the CNF formula. Therefore all candi-
date fault sites can be determined as proposed in [16] (Figure 6).

5. EXPERIMENTAL RESULTS
This section reports experimental results for our framework. De-

bugging multiple faults is much harder than debugging single faults
due to the exponentially increasing search space [19]. For single
faults only minor improvements are expected, due to the extra over-
head of the unsat core extraction. Therefore we concentrate our
analysis on multiple faults.

All experiments were carried out on a Intel Core 2 Duo (2.33



1 f u n c t i o n g e t C a n d i a t e F a u l t S i t e s ( cnf , S ) {
2 /∗ Dete rmine a l l c a n d i d a t e s ∗ /
3 c a n d i d a t e s = ∅ ;
4 whi le ( r e s u l t == s a t ) {
5 newCandida te = {a | c n f . a s s i g n m e n t (a ) =

1 } ;
6 c n f . a d d B l o c k i n g C l a u s e ( newCandida te ) ;
7 c a n d i d a t e s = c a n d i d a t e s ∪ {

newCandida te } ;
8 r e s u l t = c n f . s o l v e ( ) ;
9 }

10 re turn c a n d i d a t e s ;
11 }

Figure 6: Second stage

GHz, MacOS 10.4, 2GB) within a run time limit of 5 hours and a
memory limit of 1GB. Combinational and sequential circuits from
the LGSynth93 and the ITC-99 benchmark sets were considered.

The debugging framework does not require any assumption on
the fault model. For the experiments gate replacement faults were
considered. Injecting n faults of this type guarantees that there
exists a fault candidate of cardinality n. Note that fault masking
may occur: n faults are present but a fault candidate containing
k < n gates is determined. This typically happens in other di-
agnosis frameworks as well because fault candidates of minimal
cardinality are of interest. The failure traces were created by check-
ing equivalence between the faulty circuit and the original, correct
circuit. Each faulty output was covered by at least one counterex-
ample to achieve a good resolution during debugging.

In the first two series of experiments we compare standard SAT-
based debugging [16] to our framework. In [16] improvements
were achieved by using structural dominators and incrementally
considering more and more counterexamples. We do not exploit
the presence of structural dominators. Furthermore, incrementally
using more and more counterexamples is not possible when there
are multiple faults: using only a few counterexamples to rule out
suspects from the consideration may prune fault candidates that can
only be detected by using all of the counterexamples. Therefore all
counterexamples were considered simultaneously for the standard
approach. Both algorithms are implemented within our framework.

The framework of Section 4 was extended by the optimization
with respect to pairwise non-overlapping unsat cores (Section 3.2,
Equation (3)). The additional optimization using intersections be-
tween cores is considered later. The framework was implemented
on the base of Zchaff [11], which also handles groups of clauses.
MiniSat [2] was not considered due to the lack of incremental SAT
processing and unsat core extraction in the downloadable version.
After the first stage, we have re-created the debug SAT instance
for the second stage that includes the abnormal predicates for the
given suspects only1. Afterwards, the limitations on the abnormal
predicates as determined during the first stage were added.

Table 1 and Table 2 report results for combinational and sequen-
tial circuits, respectively. The columns circuit, #g and #c give
the name of the circuit, number of gates and the number of coun-
terexamples simultaneously considered, respectively. Column k
shows the minimal number of abnormal predicates set to 1 needed
to correct the behavior of the circuit, regarding the given counterex-
amples. The number of fault candidates with cardinality k is re-
ported in column #s. The additional column l in Table 2 gives
the length of the counterexamples. The run time of the standard

1When abnormal predicates were inserted for all gates instead of
suspects only, the run time of the second stage increased by a factor
up to three.

Table 1: Combinational circuits
Std. Unsat. core diag.

Settings Dbg. proc sred. Dbg. Total
circuit #g #c k #s (sec.) (sec.) (%) (sec.) impr.

i7 993 3 2 11 3.73 0.98 96.72 0.44 2.63
i8 1932 3 3 395 157.31 3.11 97.19 27.54 5.13
i9 771 5 2 12 5.27 1.52 89.38 0.93 2.15
k2 630 18 1 2 12.68 5.45 99.11 1.41 1.85
misex3 6249 6 2 684 2195.24 13.61 64.56 795.94 2.71
pair 2848 9 5 4480 M.O. 10.81 95.60 1354.32 a> 5.28
rot 1133 2 2 30 5.23 0.74 97.71 0.73 3.56
t481 1631 1 1 15 2.47 0.33 98.85 0.21 4.57
table5 1229 11 3 291 200.85 6.36 69.42 76.72 2.42
too_large 2152 3 2 6 94.31 7.62 75.25 3.42 8.54
x1 725 2 2 273 25.36 0.82 93.94 4.98 4.37
x3 1974 5 4 480 525.84 4.08 95.49 48.02 10.09
x4 959 3 3 225 34.18 1.13 96.10 6.03 4.77

aThe memory out appeared approximately after two hours run time.

Table 2: Sequential circuits
Std. Unsat. core diag.

Settings Dbg. proc sred. Dbg. Total
circuit #g #c l k #s (sec.) (sec.) (%) (sec.) impr.

b03 195 3 9 2 564 54.30 0.82 20.71 48.94 1.09
b04 821 7 10 1 14 41.81 8.51 79.30 15.38 1.75
b09 197 1 18 1 60 5.12 0.48 48.48 3.38 1.33
b12 1297 4 2 1 15 8.02 1.49 97.23 1.49 2.69
phase-dec 1834 9 10 2 37 583.88 64.46 76.82 210.35 2.12
s1196 818 3 4 1 37 11.13 1.17 93.14 2.76 2.83
s1238 833 14 3 1 2 4.44 2.93 97.64 0.87 1.17

debugging approach [16] is given in column Standard Dbg. The
next three columns show the run time for our framework: the unsat
core processing (proc), the percentage of suspects removed from
the consideration (sred.), and the run time to determine all solu-
tions (Dbg.). The last column (Total impr.) shows the quotient
between the total run time to determine all fault candidates of size
k using standard debugging versus our framework.

For combinational circuits the number of suspects was reduced
by up to 99% (see Table 1). This led to a speed-up of up to 10
times. The extraction of unsat cores is quite efficient. For instance,
for misex3 the 2 cores were obtained by the SAT solver using
propagation only, in less than 1% of the run time of the standard
debugging method. The cores are disjoint, therefore small sets of
suspects with an exact limit of 1 are created. Debugging directly
starts with fewer suspects in separately constrained sets.

For small fault candidates (k ≤ 2) and circuits with less than
1000 abnormal predicates, the standard debugging approach often
needs less than one second. In such a case unsat core extraction
causes an overhead. In contrast, for the more interesting case of
multiple faults with k > 2, the run time is significantly reduced
by using our framework. For instance, for x3 all fault sites were
extracted within one minute, whereas the standard debugging ap-
proach needs more than eight minutes.

The results in Table 2 show that the sequential circuits were cor-
rected quite easily; k ranges between 1 and 2 only. Often, modify-
ing a few gates is sufficient to control the faulty outputs. In most
sequential cases, the SAT solver finds the suspects by using fast
propagation only. For instance, it takes around 1 second for the cir-
cuit s1196 to reduce the number of suspects to less than 7%. Due
to this reduction speed-ups of up to 2.83 of the total diagnosis run
time were achieved.

So far the experiments yielded the highest improvements for
combinational circuits with #g > 1000 and k ≥ 2. But for k ≥ 5
the enumeration of all candidate fault sites starts to be the limiting



Table 3: Large fault candidates
Std. Unsat. core diag.

Settings Dbg. proc inters.
circuit #g #c #f k (sec.) (sec.) (sec.)
pair 2848 9 5 5 615.58 10.81 10.79
pair 2848 25 10 6 7773.01 38.66 40.47
pair 2848 38 15 7 M.O. 63.38 63.33
pair 2848 19 20 10 T.O. 43.94 42.68
pair 2848 92 25 14 M.O. 3924.90 1198.38

factor. Moreover, in practice it is questionable whether one is inter-
ested in a large set consisting of fault candidates that contain many
gates. Here, finding a few solutions or even a single fault candidate
is more important. Therefore, only one fault candidate is calculated
for multiple faults with k ≥ 5 in the following. The results in Table
3 compare the standard debugging method (column Std. Dbg), the
unsat core diagnosis (Section 4 + Equation (3), column proc), and
the improvement when intersections of unsat cores are considered
as discussed in Section 3.3 (column inters.). All algorithms were
configured to stop after finding the first fault candidate.

In Table 3 the results for the combinational circuit pair with up
to 25 injected faults (column #f ) are given. These faults were
repaired by a fault candidate of cardinality k. The standard debug-
ging algorithm needs by far more run time than the other two. Often
the memory out (M.O.) or time out (T.O.) was reached, even before
a first solution was found. In comparison, the unsat core diagnosis
finds the first solution with significantly less effort.

The run time of our framework with and without considering in-
tersections is similar for most testcases, except the last one where k
is large. In case of k = 14, even our framework stops after one hour
when intersections of cores are not taken into account. A detailed
analysis showed, that the first 13 unsat cores are non intersecting
and the 14th core intersects some of them. This initially led to limit
the 429 suspects by k = 14. This limitation theoretically leave`
429
14

´
possible fault candidates which does not efficiently support

the search process. But the tighter limitations enforced for intersec-
tions of cores solve this issue. The first solution was found within
1200 seconds.

In summary, the suspects and as a result the debugging time are
reduced by using unsat cores in presence of multiple faults. Espe-
cially, in case of fault candidates with large cardinality additional
optimizations are useful.

6. CONCLUSIONS
The proposed debugging framework exploits the knowledge of

unsatisfiable cores. The solutions were proven to be identical to
that of standard SAT-based debugging. Especially for the computa-
tionally hard case of multiple faults the run time was significantly
reduced.

It remains future work to consider the sequential case more thor-
oughly, for instance by considering the distance in time between a
fault candidate and the observation of a fault [7]. Moreover, ex-
ploiting incremental SAT within our framework more efficiently
by keeping detailed information about learned clauses [14] may
further improve the performance.
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