
Generating an Efficient Instruction Set Simulator
from a Complete Property Suite

Ulrich Kühne
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

ulrichk@informatik.uni-bremen.de

Sven Beyer Christian Pichler
OneSpin Solutions GmbH

Theresienhöhe 12
80339 Munich, Germany

{Sven.Beyer, Christian.Pichler}@onespin-solutions.com

Abstract

Instruction set simulators can be used for the early
development and testing of software for a processor before
it is manufactured. While gate-level simulation offers cycle-
accurate results, performance of the simulation is typically
not sufficient for in-depth software testing. In addition, such
a gate-level simulation cannot be carried out in the early
phases of the design process when only the instruction
set architecture (ISA) is present and the design is not yet
complete. Therefore, more abstract simulators are based
on the ISA; these simulators can achieve a performance
of several million instructions per second. However, by
introducing a simulator separate from the design, the ISA
has to be re-implemented for the simulator. Therefore, there
is a risk that the instruction set simulator is not in sync
with the design or the ISA. We present an approach to
automatically generate an instruction set simulator from a
complete property suite, which can be used for the formal
verification of the processor. In this way, we obtain a
provably correct simulator with relatively small effort. We
show the feasibility of the approach for an industrial design;
the performance of the resulting simulator is shown to be
comparable to custom state-of-the-art simulators.

1. Introduction

In today’s processor and system design flows, instruction
set simulators (ISS) play an important role. One major field
of application of ISS is pre-silicon software development,
enabling the simulation of software before the target system
is manufactured or even the design is finished.

With increasing system complexity, simulation perfor-
mance in terms of executed instructions per second has
become an important factor. Thus, rather than simulating
program code on a gate level or cycle accurate model of
the design, ISS are based on the instruction set architecture
(ISA) and implemented in high level languages like C++.
For such an ISS, the ISA has to be reimplemented manually.
There are several tools that provide dedicated languages for
the description of instruction set architectures (see e.g. [1],
[2]). However, since both design and ISS are derived from

the ISA with a certain degree of independence, there is a
risk that the actual design behaves differently from the ISS
in some cases. Such a discrepancy between ISS and design
may lead to erroneous software: while the software behaves
as expected in the ISS, it does not work properly on chip.

In order to avoid the manual effort of developing an ISS,
it is also possible to automatically derive an ISS from a
high level or register transfer level (RTL) description of a
processor [3]. Note that for optimized or pipelined RTL
designs, such a higher level description is quite different
from the actual design. Therefore, the automatic extraction
of the ISS from the actual design is not feasible for these
cases.

In order to achieve an ISS that really corresponds to
the design, the ISS needs to be derived from the ISA
that is actually used in verification. What is more, the
verification should be carried out formally because only
formal verification offers the chance of eliminating all
discrepancies between ISA and the design. Today, formal
hardware verification is already used in industry. Especially
for safety critical systems involving medium size processor
designs and embedded systems, formal verification can offer
high quality solutions [4], [5]. One successful technique is
Interval Property Checking (IPC) [6], a technique similar to
Bounded Model Checking [7]. IPC is used in order to check
if a design satisfies a set of properties which is written in
a dedicated verification language. In contrast to simulation
based methods which are not able to exhaustively cover all
possible inputs for large designs, formal methods allow for
a gap-free, i.e., complete verification. Here, complete means
that the properties capture the behavior of the design in
a unique way for each possible combination of states and
inputs. Having finished the formal verification phase, the
set of properties forms a functionally equivalent model of
the verified design. This methodology generally offers the
highest quality of verification.

In this paper, we show how a complete property suite
resulting from the formal verification of a processor can
be reused to automatically generate an ISS. In this way,
the simulator is guaranteed to comply with the ISA that
has been used for the verification of the processor; by
construction, the ISS also complies to the design. This is

ISS

RTLISA

aut
om

ati
cal

ly
gen

era
ted

equivalent by construction

formal equivalence proof

Figure 1. Generating a Provably Correct ISS

illustrated in Figure 1. Furthermore, by making use of an
existing set of properties, the overhead for the creation of
the ISS is relatively small. Nevertheless, the generated ISS
offers a simulation performance comparable to state-of-the-
art techniques. Note that the ISS can already be generated
very early in the design and verification process, namely
as soon as the ISA has been captured formally. With the
completion of the verification, it is later on ensured that the
generated ISS actually corresponds to the design.

It turns out that even in a late phase of the design flow—
mostly as a consequence of the formal verification—changes
in the design or in the specification are likely to occur
[5]. In this case, one can obtain an adapted ISS from the
revised formal property suite with virtually no additional
effort, using our approach. Using the property suite as a
single source for the specification ensures the consistency
of software simulation with the verified design. This is a
major contribution of this work. As the property suite offers
a rigorous formalization of the specification, the simulator
will reflect all sophisticated effects of the design that might
be difficult to model using a high-level description, including
e.g. exceptions and asynchronous interrupts.

The paper is structured as follows: related work is dis-
cussed in Section 2. In Section 3, the formal verification
techniques used in this work are reviewed. The generation
of the ISS is described in Section 4. In Section 5, experi-
mental results are discussed, followed by the conclusions in
Section 6.

2. Related Work

Another approach for a tight interaction between high-
level simulation and verification is presented in [8]. The
method is complementary to this work in that it uses
an architectural description as starting point. From this
description, an implementation is generated, as well as
assertions to ensure the correctness of the design. However,
the approach relies on simulation-based and semi-formal
verification techniques, that do not allow for a complete
verification. Furthermore, it is limited to those domains
where a high-level synthesis is sufficient. Highly optimized
RTL designs cannot be handled.

The idea of generating an executable model from a
property suite is also used in [9]. In this work, it is even
possible to generate models from incomplete specifications,
resulting in partially nondeterministic behavior. However,
the emphasis of [9] is on the generation of verification-
friendly hardware designs rather than an efficient simulation
model.

The automatic generation of instruction set simulators is
examined in many publications. A common way to avoid the
manual coding of high-performance simulators is the use of
architecture description languages (ADL), which can then be
compiled into an ISS. Examples for such ADL are Facile [1]
or LISA [2]. However, these approaches still require the
reimplementation of the processor semantics in the ADL.
Thus, the functional equivalence of the ISS and the design
remains to be shown.

A different approach is presented in [10]. There, the start-
ing point is a structural description of all the components on
a processor’s data path. From this description, an instruction
set is extracted automatically. The information can be used
to generate an ISS as well as an RTL implementation. But, as
the description can get quite complex, this does not replace
the verification of the design. Furthermore, generated RTL
code is typically not suited for highly efficient designs.

3. Background

3.1. Instruction Set Simulation

As for the technical aspects of instruction set simula-
tors, there are mainly three different paradigms: interpretive
simulation, compiled simulation and just-in-time compiled
simulation. They differ in flexibility and performance. In-
terpretive simulators decode the instructions to be executed
one by one. In this way, they offer the highest flexibility
concerning run-time modifiable programs. The bottleneck in
interpretive simulation is the instruction decoding. Compiled
simulators carry out the decoding and in some cases even
static scheduling at compile time. However, this technique
is not applicable for run-time modifiable code and for
dynamic scheduling. Therefore, just-in-time compiled sim-
ulation (JIT-CS) tries to combine the best of both worlds.
In JIT-CS, information on previously decoded instructions
is stored in a cache and can be reused when the instruction
is executed again. In this way, a simulation performance
comparable to compiled simulation can be achieved without
losing the flexibility of the interpretive approach [2].

3.2. Formal Verification

Within the last two decades, there has been a great amount
of research in formal verification techniques. Methods based
on Boolean satisfiability (SAT) have proven to be a robust
solution. One prominent technique is SAT based Bounded
Model Checking (BMC), that has first been described in

[7]. Successive improvements in performance have made
BMC a suitable method for the formal verification of larger
scale designs. For the work at hand, we use the techniques
described in [6], referred to as interval property checking
(IPC). In the following, this verification methodology will
be briefly outlined.

In contrast to the original BMC, only safety properties are
verified using IPC. As digital circuits always have a finite
response time, this is not a serious restriction in practice.
It is rather natural to describe the intended behavior of a
design in terms of safety properties in order to formalize the
specification. Furthermore, this restriction leads to bounded
properties that can be checked efficiently using a SAT solver.

The main idea of IPC is to use an arbitrary starting
state instead of the initial state used in BMC. Any property
that holds starting from an arbitrary state then also holds
from any reachable state, i.e., it is exhaustively verified.
Conversely, false negatives can occur in IPC, i.e. counterex-
amples for properties starting in unreachable states may
be produced. These false negatives need to be removed
by adding invariants in order to restrict the starting state.
For more details on the idea of IPC and the following
formalization, refer to [6].

A synchronous circuit is modeled as a finite state machine
(FSM) M = (I, S, S0, ∆, Λ, O) with input alphabet I ⊆ Bn,
output alphabet O ⊆ Bw, a finite set of states S ⊆ Bm,
output function Λ and next state function ∆. The set S0 ⊆ S
denotes the initial states. With next state function ∆ : Bn ×
Bm → Bm, the transition relation of the circuit is given by

T (s, s′) = ∃x ∈ Bn : s′ ≡ ∆(x, s) (1)

A safety property f = AG(ϕ) can be translated to a
Boolean function [[f]]t, checking the validity of the formula
ϕ at time point t. Here, the translation is done such that a
satisfying assignment of [[f]]t corresponds to a counterex-
ample of ϕ. The resulting function depends on the inputs,
outputs and states within a bounded time interval [0, c]. IPC
searches for counterexamples by solving the SAT instance

c∧
i=0

T (st+i, st+i+1) ∧ [[f]]t (2)

The transition relation is unrolled within the time interval
[0, c] and it is connected to the single instantiation of [[f]]t.

3.3. Completeness

IPC is a powerful verification technique, enabling the
formalization of a specification in terms of safety properties
and its verification against the implementation. However, to
be sure that no bugs have been missed, the verification en-
gineer needs to reason about the completeness of the written
property suite. A technique to formally check whether a set
of properties forms a complete specification is described
in [11]. Applications of the method on industrial proces-
sor designs can be found in [5]. Automatic completeness

analysis integrated within an IPC verification environment
is commercially available in [12].

Completeness analysis determines whether every possible
input scenario—corresponding to a transaction sequence of
the design—can be covered by a chain of properties that
predicts the value of states and outputs at every point in time.
In other words, any two designs fulfilling all the properties
of a complete property suite are formally equivalent. The
completeness analysis basically boils down to check in the
end state of each property whether (1) there is always
a successor property with matching assumptions, (2) the
successor property is uniquely determined and (3) each
property describes the outputs and states of the DUV in
a unique way. For a detailed description of the methodology
please refer to [5], [11].

3.4. Verification Language

The properties presented here are written in the ITL
language [4]. In ITL, temporal logic expressions are used to
describe the behavior of a synchronous sequential system.
The discrete time steps correspond to the clock cycles of the
described system. Figure 2 shows an example of a simple
ITL property. Usually, the properties have an implication
structure: if the expressions in the assume part evaluate
to true, then the expressions in the prove part must hold
as well. In the freeze section, expressions can be assigned
to variables that are fixed to a certain time point, i.e. the
freeze variable c1 refers to the value of signal c at time
point t + 1, no matter in which temporal context it is used.
In the temporal expressions, the standard operators of the
respective HDL language (VHDL or Verilog) can be used,
as well as the operators next and prev, which shift the
enclosed expression relatively one cycle into the future or
the past, respectively.

Thus, the first line in the prove part of Figure 2 states
that at time point t + 1, the value of signal c must have
increased by one compared to the previous time step. The
next line shows an equivalent expression, making use of the
freeze variable c1.

ITL also supports macro functions, which are a powerful
mechanism to achieve abstraction and write high-level prop-
erties. Furthermore, all data types of the respective HDL are
supported, including arrays as well as user defined types and
nested record data types in VHDL.

4. Generating the Instruction Set Simulator

With the techniques presented above, it is possible to
perform a complete verification even for industrial designs
[4], [5]. If the verification is completed successfully, the
property suite forms a model of the verified design, i.e. the
properties describe the transitions and the output behavior
of the design in a unique way. This fact and the use of
abstraction in the verification can be exploited to obtain an

property simple;
freeze:
c1 = c@t+1;

assume:
at t: reset = ’0’;

prove:
at t+1: c = prev(c) + 1;
at t: c1 = c + 1;
end property;

Figure 2. Simple ITL Property

executable model that captures the entire behavior of the
design: a simulator.

In this section the generation of the ISS is described. First
we discuss the techniques applied during the verification,
which are used to define an abstract state of the design,
corresponding to the architectural state of a processor. Then,
in Section 4.2 it is shown how the property suite can be
formulated to allow for an automatic translation into an
equivalent C++ program. The translation itself is presented
in Section 4.3.

4.1. Abstraction

As stated in section 3.2, after having completed the
verification, the properties form a model of the verified
design. However, the equivalence between the properties
and the design under verification (DUV) is not achieved
by simply reimplementing the complex logic of the circuit
in the verification language ITL. Instead, the properties are
formulated in a compact and readable form by making use
of abstraction techniques.

The view of the DUV that is expressed by the properties
is a high-level operation view. For a processor, an operation
naturally corresponds to the execution of a single instruction.
Thus, each property describes the change of the internal
state and the behavior of the output signals, when the
processor executes an instruction. The state of the DUV
is described in terms of a high-level or architectural state,
which corresponds to a programmer’s view on the visible
registers of the design. This abstraction is achieved by the
use of mapping functions.

As an example, consider the register file of a pipelined
processor. The behavior of the implementation registers in
the design may depend on several instructions that are cur-
rently processed by the pipeline. Consequently, the mapping
function that links the architectural state of the register file
to the implementation captures the forwarding logic of the
pipeline. Note that these mapping functions are still much
more compact than the implementation (see also [5]).

By using these mapping functions as representatives of
the state of the design, the operation properties strongly
resemble a high level specification. As an example, Figure 3
shows the ITL property for an ADD instruction of a simple

property instrADD;
freeze:
opcode = instr(15 downto 11)@t, // decoding of
regA = instr(10 downto 8)@t, // instruction
regB = instr(7 downto 5)@t, // word
regD = instr(4 downto 2)@t;

assume:
at t: opcode = ADD_op; // processor ready
at t: not stall; // to execute
at t: not interrupt; // instruction ADD

prove:
at t: write_reg(regD, vreg(regA) + vreg(regB));
[. . .]
end property;

macro write_reg(i, res: unsigned): boolean :=
foreach k in 0..7:

if (k = i) then
next(vreg(k)) = res(15 downto 0);

else
next(vreg(k)) = vreg(k);

end if;
end foreach;

end macro;

Figure 3. Operation Property

pipelined processor. In the freeze section of the property, the
instruction word is decomposed according to the specifica-
tion into the opcode and the addresses of source and target
registers. The assume part states that there is actually an
ADD instruction, and that the processor is ready to execute
it. Under these constraints it is proved that one time step
later the register file is updated with the correct value. The
forwarding logic of the pipeline is hidden in the mapping
function vreg which represents the architectural register file.
Due to completeness requirements, the property also needs
to claim that the remaining registers will not change their
value—this is included in the write_reg macro—and it
must specify the output behavior of the processor. The latter
statements are omitted in the figure.

4.2. Architectural Style Properties

The basis for an ISS is an architecture description; such
a description mainly consists of an architectural state and
a next state function describing the effect of each of the
instructions and interrupts on this state. For a set of oper-
ation properties as illustrated in Figure 3, the architecture
description is rather implicit; hence, a generic and fully
automatic extraction from the property would be quite hard.
We therefore focus on reformulating the properties in a so-
called architectural style which allows for a straightforward
generation of the ISS; also supporting operation properties
would be a possible extension of this work after showing
the feasibility of the approach.

Note that the reformulated property is checked against the
RTL and the automatic gap-detection is executed as well.

Hence, any possible discrepancy between the architectural
and operation properties are identified automatically and, in
particular, the reformulated property set is still equivalent to
the design. An architectural style verification is characterized
by:

1) Explicit modeling of the architectural state and the
interfaces to memories or ports

2) Explicit definition of a macro next_state capturing the
effects of instructions and interrupts on the architec-
tural state

3) Explicit definition of macros that capture the behavior
of the interfaces to memories and ports

4) Explicit definition of the architectural reset state
Note that if the verification has been carried out in

architectural style to begin with, the ISS can be generated
from the verification without any manual steps in between.

The reformulation of operation properties does not require
any new detailed consideration of the design’s behavior. The
identification of the components of the architectural state and
the precise description of the semantics of the instructions
is carried out in the verification phase, anyway. In fact, one
of the most sophisticated parts of the verification is to find
the appropriate mapping functions for the architectural state;
these mapping functions are not needed at all in order to
automatically generate the ISS.

We only describe the main technical aspects of the
formulation in an architectural style in the following. The
architectural state is established in terms of a user defined
VHDL record data type. This record combines all parts
of the architectural state. Typically, this includes a register
file as well as status flags and a program counter of the
processor. In the same way, new data types describing the
interfaces to memories and ports are defined.

One essential aspect for the modeling of the ISS in ITL
is the newly introduced keyword update, which allows for
the explicit definition of a write access to an array or record
data structure. As an example, Figure 4 shows part of the
next_state function for a simple processor. Here, the variable
state of type state_t is the record holding all the elements
of the architectural state. In another record iw of type
instruction_t, the decoded fields of the current instruction
word are kept. Using this information, the repeated decoding
of the same instruction can be avoided in the simulator (see
Section 4.3). The return value of the macro next_state is the
architectural state modified by the execution of the current
instruction. The execution itself is modeled in a case block,
stating that when the opcode refers to an ADD instruction, the
register file of the current architectural state will be updated
by the sum of the source operands. Hence, the next_state
functions forms the core of the ISA.

The intuition of the equivalence proof between RTL and
ISA is shown in Figure 5. The dashed arrows represent the
abstraction function vstate that maps the implementation
state of the CPU to the state of the ISA. The aim is to prove
that applying the mapping vstate to the implementation state

macro next_state(state: state_t;
iw: instruction_t): state_t :=

case iw.opcode is
when ADD_op =>

update(state.register(iw.regD),
(state.register(iw.regA) +
state.register(iw.regB)));

[. . .]
end case;

end macro;

Figure 4. Next State Function

CPU

CPU’ ISA’

ISA

T next_state

vstate

vstate

Figure 5. Structure of Equivalence Proof

and then mapping the resulting architectural state ISA to the
new architectural state ISA′ using next_state corresponds
to applying the transition relation T on the CPU and then
mapping the resulting implementation state CPU ′ to the
architectural state. Furthermore it has to be proved that the
interface signals of the design actually behave as captured
by the interface macros, and that the implementation reset
state of the design complies with the defined architectural
reset state.

4.3. Generation of the ISS

The outcome of the reformulation in architectural style
is a single property capturing all of the behavior of the
verified design by making use of the next_state function (see
Figure 6). In other words, one obtains a formally checkable
ISA description. This is the starting point for the generation
of the C++ instruction set simulator. In this section we
discuss how the ISS is automatically generated by translating
the property.

Note that for the generation of the ISS, it is not required
to carry out the full equivalence proof between ISA and RTL
upfront or even to identify the mapping functions between
the architectural state and the implementation state. Instead,
it is possible to develop the ISA at the beginning of the
design process in ITL and use it for an early generation of
the ISS. This ISS only needs to be generated again in case
the ISA is updated, for example because a bug is found in the
ISA during the formal verification. Therefore, a generated
ISS is already available when the verification starts; the full
confidence that the ISS complies to the design is achieved
additionally at the end of the verification.

property isa;
freeze:
instr = decode(instruction) @ t,
isa_state = vstate @ t,
isa_state_p = vstate @ t+1,
nstate = next_state(isa_state, instr) @ t;

assume:
at t: not stall; // ready to start instruction

prove:
at t+1: isa_state_p = nstate;
[. . .]
end property;

Figure 6. Architectural Style Property

The core of the ISS is a C++ class Sim. It contains all
of the code for the execution of instructions and it holds the
architectural state. Now that the ITL description is already in
a form similar to a procedural language, the translation of the
functionality is straightforward. It comprises the following
steps:

1) Generate public functions for next_state, decode and
the interface macros

2) Generate private functions for all remaining macros
3) Generate a member variable for the architectural state
4) Replace ITL/HDL data types and operations by C++

types and operations
5) Replace update expressions by a direct array/struct

overwrite in C++
In order to achieve a simulation performance comparable

to custom state-of-the-art simulators, several optimizations
are applied during the generation of the C++ code. As long
as the bit size of the ITL/HDL data types is less than or
equal to the bit width of the hosting system, native data
types like unsigned integers are used. Only the remaining
large bit vectors are replaced by dedicated data structures.
Similarly, all basic operations, like integer arithmetic and
simple logic operations, are mapped to the corresponding
native C++ operations. For more complex operations like bit
slicing or bit rotation, as well as for operations on large bit
vectors, a library with optimized functions that implement
the ITL/HDL operators is used.

Furthermore, an analysis of the data dependencies in the
macro functions is performed in order to identify shared
expressions. With this information, additional member vari-
ables can be inserted in the simulator class in order to hold
temporary results and to cache intermediate results of the
computations, speeding up the simulation.

Finally, a technique similar to the just-in-time compiled
simulation (see Section 3.1) is used. As described above,
there is a decode macro which decomposes the instruction
word into several bit fields according to the specification.
These bit fields are stored in a record data type. By caching
the results of the decode function, it is possible to avoid
the repeated instruction decoding during the simulation.

Due to the locality of most software—caused e.g. by loop
constructs—this is a very efficient technique to decrease
simulation run-time.

The generated C++ class forms the core functionality of
the ISS. Besides this, the user has to provide a suitable
wrapper, which calls the generated public functions of
the simulator class to trigger the execution of the single
instructions. Moreover, the wrapper is used to connect the
simulation core to peripheral components like external mem-
ories or buses. It is also possible to integrate the simulation
core with commercial simulation and debugging tools, as
has been done for the experiments that are discussed in the
next section.

5. Experimental Results

For a first evaluation of the proposed method, an ISS
was generated for a small pipelined processor. The CPU
contains a total of 8 registers with 16 bit and a special
register for an interrupt return vector. It is implemented with
a 5 stage pipeline. The data memory is connected to the CPU
via a simple interface. The instruction set is made up of 7
instructions, including logic, arithmetic, memory access and
jump instructions.

For comparison, an ISS for the processor was built using
a commercial tool. This tool also provides a wrapper that
supplies the simulation kernel with the instructions, as well
as a graphical debugging interface. The ISS generated with
our approach has also been integrated with this environment.

As for the commercial tool, the ISS showed an aver-
age performance of 0.22 million instructions per second
(MIPS) using an interpretive approach, while a just-in-time
compiled simulator achieved 14 MIPS. The ISS generated
from the property suite showed a performance of 7 MIPS.
This shows that our method clearly outperforms interpretive
simulators—emphasizing the effectiveness of the optimiza-
tion techniques described in Section 4.3—while it reaches
about 50% of the performance of a state-of-the-art JIT-CS
simulation tool.

As a second experiment, an ISS was generated for an
industrial processor design. The CPU contains a total of 64
registers of 32 bit in multiple hardware contexts and offers a
number of advanced processor features. It is implemented as
a 7 stage pipeline and connects to a data memory and a bus
interface. It is capable of executing 88 different instructions
based on the DLX instruction set architecture [13]. The
source code of the processor core adds up to about 10,000
lines of VHDL code, while the final reformulated property
suite has a size of 2,000 lines of ITL. The property suite
and its completeness were successfully checked against the
processor design using [12] and thus can be considered a
correct and complete specification.

Like for the first experiment, another ISS was imple-
mented using the commercial tool suite. It showed an
average performance of 2.5 MIPS (just-in-time compiled

Table 1. Performance of Different ISS

Design Interpretive JIT-CS Generated
P1 0.22 MIPS 14.0 MIPS 7.0 MIPS
P2 - 2.5 MIPS 1.2 MIPS

simulation), while the ISS that was generated using our
approach reached 1.2 MIPS. This confirms the results of
the first experiment, i.e. that the generated ISS shows a
performance comparable to modern custom made instruction
set simulators. The results are summarized in Table 1,
showing the simulation performance for the simple processor
(P1) and the industrial design (P2) in terms of MIPS.

We presume that the custom JIT-CS simulators are still
faster than our solution due to technical issues. The com-
mercial tools that were used to build the JIT-CS simulator
are subject to a great amount of optimizations, while we
provided here the basic methodology of ISS generation as a
proof of concept. Furthermore, the properties that the ISS is
generated from reflect all hardware and pipeline effects that
may not be included in a high level ISA description and that
decrease the simulation performance.

6. Conclusions

In this paper, we have presented an approach to use a
gap-free, i.e., complete property suite, formulated in an ar-
chitectural style, to generate a C++ instruction set simulator.
The generation makes use of the fact that after the successful
formal verification, the property suite forms an architectural
model of the verified design and hence, the ISS is equivalent
to the design by construction. By applying a number of
optimizations during the generation of the C++ code, the
performance of the resulting simulator is comparable to
state-of-the-art commercial tools.

As formal verification is increasingly used for industrial
designs, the presented method is a practical way to obtain
a proven correct and efficient instruction set simulator. It
allows for an automatic adaptation of the simulator, when
parts of the design or the specification need to be changed in
a late phase of the design process. Using the formal property
suite as a single source for the specification ensures correct
results for early software development based on instruction
set simulation.

Acknowledgment

This research work was supported by the German Federal
Ministry of Education and Research (BMBF) in the Project
HERKULES under the contract number 01M3082.

References

[1] E. Schnarr, M. Hill, and J. Larus, “Facile: a language
and compiler for high-performance processor simulators,”

in Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation (PLDI),
2001, pp. 321–331.

[2] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers,
and H. Meyr, “A universal technique for fast and flexible
instruction-set architecture simulation,” IEEE Trans. on CAD,
vol. 23, no. 12, pp. 1625–1639, 2004.

[3] R. Leupers, J. Elste, and B. Landwehr, “Generation of inter-
pretive and compiled instruction set simulators,” in Proceed-
ings of the ASP-DAC, 1999.

[4] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey, “Cost-
efficient block verification for a UMTS up-link chip-rate
coprocessor,” in DATE, vol. 1, 2004, pp. 162–167.

[5] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg,
T. Blackmore, and F. Bruno, “Complete formal verification
of TriCore2 and other processors,” in Design and Verification
Conference (DVCon), 2007.

[6] M. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel,
and W. Kunz, “Unbounded protocol compliance verification
using interval property checking with invariants,” IEEE Trans.
on CAD, vol. 27, no. 11, pp. 2068–2082, Nov. 2008.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS, vol. 1579.
Springer Verlag, 1999, pp. 193–207.

[8] A. Chattopadhyay, A. Sinha, D. Zhang, R. Leupers, G. As-
cheid, and H. Meyr, “Integrated verification approach during
ADL-driven processor design,” in IEEE International Work-
shop on Rapid System Prototyping (RSP), 2006, pp. 110–118.

[9] M. Schickel, V. Nimbler, M. Braun, and H. Eveking, “An
efficient synthesis method for property-based design in formal
verification: On consistency and completeness of property-
sets,” in Advances in Design and Specification Languages for
Embedded Systems, S. Huss, Ed. Kluwer Acad. Publishers,
2006, pp. 163–182.

[10] S. Weber, M. W. Moskewicz, M. Gries, C. Sauer,
and K. Keutzer, “Fast cycle-accurate simulation and
instruction set generation for constraint-based descriptions
of programmable architectures,” in International Conference
on Hardware/Software Codesign (CODES), September 2004,
pp. 18–23. [Online]. Available: http://www.gigascale.org/
pubs/566.html

[11] J. Bormann and H. Busch, “Method for determining the
quality of a set of properties, applicable for the verification
and specification of circuits,” Patent, 2007, european Patent
Application, publication number EP1764715.

[12] OneSpin Solutions GmbH, Munich, Germany, OneSpin Veri-
fication Solutions, http://www.onespin-solutions.com, 2009.

[13] P. M. Sailer, P. M. Sailer, and D. R. Kaeli, The DLX
Instruction Set Architecture Handbook. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1996.

