
Automated Feature Localization for Hardware Designs
Using Coverage Metrics∗

Jan Malburg∗
malburg@informatik.uni-

bremen.de

Alexander Finder∗
final@informatik.uni-

bremen.de

Görschwin Fey∗†
Goerschwin.Fey@dlr.de

∗University of Bremen
28359 Bremen, Germany

†German Aerospace Center
28359 Bremen, Germany

ABSTRACT
Due to the increasing complexity modern System on Chip designs
are developed by large design teams. In addition, existing design
blocks are re-used such that the knowledge about these parts of the
design entirely depends on the quality of the documentation. For a
single designer it is almost impossible to have detailed knowledge
about all blocks and their interaction.
We introduce a simulation-based automation technique to support
design understanding. Based on use cases provided by the designer
and on their coverage information, the proposed technique identi-
fies parts of the source code that are relevant for a certain functional
feature. In two case studies the technique is shown to be at least as
exact as reading the documentation with two important advantages:
the automated approach is fast and more precise than the existing
documentation for the inspected designs.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Design, Documentation, Experimentation

Keywords
Feature Localization, Design Understanding, Simulation

1. INTRODUCTION
Modern chip designs, especially Systems on Chip, grow with re-

spect to their transistor count as well as their supported features.
Such chips are developed by large design teams consisting of hun-
dreds of people [9] and are far beyond the point where a single
designer knows every detail about the design. Furthermore, chips
are assembled of design blocks from different sources. A design
block is a part of a chip which provides a defined functionality.
The functionality ranges from very complex, for example complete
∗This work was supported in part by the German Research Foun-
dation (DFG, grant no. FE 797/6-1)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

CPU-cores, to simple encoder and decoder blocks. Typically, com-
plex design blocks are assembled from several less complex design
blocks. A design block could be a new block developed especially
for the new chip, or it might be a block already used in previous
designs, or even a third-party block. All of those design blocks in a
chip are responsible for one or more different features. Some of the
features might be realized by combining the functionality of sev-
eral different blocks.
A feature is a distinguishing characteristic of a design. A functional
feature defines the expected output of the system under specific in-
put. Other types of features are for example robustness, defining
the amount of errors which can occur before a result becomes in-
correct, or performance, limiting the time until a design has to re-
turn the expected output. In the following only functional features
are considered and for simplicity called features.
For design improvement, design extension, and bug fixing a devel-
oper has to understand the design. These tasks become even more
important, since the amount of re-used design blocks is continu-
ously increasing in future [9]. In order to understand a design it
is mandatory to know where in the design which feature is imple-
mented. This does not only mean to know the block providing a
feature, but where exactly in the block the feature is implemented.
In general, it is unlikely that a developer has this knowledge. Purely
manual inspection of the Hardware Description Language (HDL)
code is a laborious, and therefore cost intensive task and the devel-
oper still might miss relevant parts of the implementation. There-
fore, it is desirable to have tools which help the developer to find
the relevant code for a feature and to understand the design.
In this paper we present a new approach for locating parts of the
HDL code which are relevant for a functional feature. The pro-
posed technique uses a dynamic approach relating coverage infor-
mation gathered by simulation to features executed by use cases.
This technique is basically usable with all HDLs and representa-
tions given the design can be simulated and coverage can be mea-
sured, e.g. Register-Transfer-Level or Transaction-Level descrip-
tions. We currently support Verilog in our prototype. Results are
presented to the user by coloring the source code. The contributions
of this paper are:
• a feature localization technique for hardware designs,
• a unified notation to compare existing coloring schemes,
• a new coloring scheme,
• the use of toggle coverage for feature localization,
• an adaptive ranking of source files according to their likeli-

hood to be related to a feature,
• a comparison of orthogonal features to improve design un-

derstanding,
Experiments showed that, our approach even provides good results
when applied to designs with poorly separated features.

The remainder of this paper is organized as follows: Section 2 gives
an overview of related work. Notations are introduced in Section 3.
In Section 4 we present our technique. Section 5 describes the
application of our prototype to two open source designs. Section 6
concludes the paper and discusses results.

2. RELATED WORK
Techniques for design understanding of HDL descriptions con-

centrated on inferring specifications from traces [7, 4, 11] or merg-
ing partial specifications to more abstract ones [13]. Another tech-
nique is program slicing [3], which differs from feature localization
as it answers the questions which parts of the code can affect or be
affected by a signal. Instead feature localization answers the ques-
tion which parts of the code are responsible for creating a defined
output under certain input. So far, no technique has been published
about feature localization in HDL descriptions.
Feature localization for software designs is an active research area.
Often the statement coverage of runs using a wanted feature is com-
pared to the coverage of runs not using this feature [16]. Simple
approaches only consider program statements which are covered
by runs using a wanted feature, but are not covered by runs that do
not use the feature [15]. More advanced approaches use more fine-
grained categorizations, where the statements are classified based
on the relation of runs using (not using) a certain feature [5].
Techniques for bug localization in software using coverage infor-
mation are similar to coverage-based feature localization. A well-
known tool in this context is Tarantula [10]. Tarantula is a visual-
ization tool for bug localization which colors statements depending
on their suspiciousness of causing a bug. The suspiciousness is
computed by comparing the percentage of failing runs which exe-
cute a statement to non-failing runs executing the statement. Abreu
et. al. [1] showed that using the Ochiai coefficient, a similarity co-
efficient used in molecular biology, yields better results for com-
puting the suspiciousness of a statement compared to the Tarantula
formula. Later Santelices et. al. [12] presented an approach to relate
branch coverage and definition-use coverage to statements. They
showed that using the average of several different coverage criteria
to compute the final suspiciousness creates better results than each
coverage criterion on its own.
The approach presented in this paper is based on coverage infor-
mation gathered by simulating the design under test. To this extend
it is similar to the approaches described above. However, all previ-
ous approaches are used for software, while we consider hardware
systems. There are several differences between software and hard-
ware. For hardware there exist different coverage metrics, like tog-
gle coverage, which we also use for feature localization. Moreover,
in HDL descriptions of a design, there is several code which con-
tinuously is executed without being called from any other function,
for example always-blocks and assign-statements in Verilog [8].
Finally, hardware designs are inherently parallel.

3. PRELIMINARIES
In this section we provide some basic definitions and introduce

some terminology required for the rest of the paper.
Let D be the design under test. A use case u for D is given by
a sequence u = (i1, i2, ..im) of input values ij , j = 1, ...,m
for D. A use case may either be directly defined by the user, or
a test case from the test bench of D may be considered as use
case. A run r is the simulation of D applying a use case. The
set R = {r1, r2, r3, ..., rn} is the set of all runs. A coverage met-
ric C with respect to D is a set of conditions over elements in R.
A coverage item c ∈ C is a single condition. The form of these
conditions is defined by C. A feature f is a distinguishing char-
acteristic of D, defining the expected output of D under specific

input. The set F = {f1, f2, f3, .., fk} is the set of all features sup-
ported by D. The user defines, if a run r uses a feature f . A feature
f is implemented by a set of coverage items Cf . The goal of fea-
ture localization is to determine Cf .
Two typical coverage metrics used in hardware design are state-
ment coverage and toggle coverage [14]. Toggle coverage is a cov-
erage metric especially for hardware design. Statement coverage is
also used in software design [10]. In case of statement coverage Cs

for each statement s contained in the HDL code of D, there exists
exactly one condition cs, where cs has the form "r executes s". In
case of toggle coverage Ct for each wire and each register t there
exist exactly two conditions ct1 and ct2 , where ct1 is of the form "r
switches t from 0 to 1" and ct2 is of the form "r switches t from 1
to 0". The set C = Cs∪Ct∪ ... is the union of all coverage metrics
with respect to D. A run r ∈ R covers c, if r fulfills c. Standard
coverage tools determine the following sets:

1. Coverage items covered by r:
coveredBy(r) = {c ∈ C|r covers c}

2. Coverage items not covered by r:
uncoveredBy(r) = C\coveredBy(r)

3. Coverage items covered by Rs:
coveredBySet(Rs) =

⋃
r∈Rs

coveredBy(r)

4. Coverage items not covered by Rs:
uncoveredBySet(Rs) = C\coveredBySet(Rs)

5. Runs covering c:
hit(c) = {r ∈ R|r covers c}

6. Runs not covering c:
miss(c) = R\hit(c)

with r ∈ R, Rs ⊆ R, and c ∈ C.

4. LOCATING FEATURES
In this section we will present our approach for feature localiza-

tion in hardware designs. The main idea of feature localization us-
ing coverage metrics is to compare the coverage of runs which use a
certain feature with those not using this feature. Therefore, several
different runs of the system under test are required. An underlying
assumption for our approach is, that for a developer it is easier to
decide if a run is related to a feature than deciding if a coverage
item is related to a feature. Which feature f ∈ F is used by a run
must either be specified by a developer or taken from the test bench
documentation: Based on the user input and the coverage informa-

7. Runs using f :
use(f) = {r ∈ R|r uses f}

8. Runs not using f :
notuse(f) = R\use(f)

tion the relation between features and coverage items is computed:
Intuitively, a coverage item c is likely related to a feature f , if c is

9. Runs covering c and using f :
pass(c, f) = hit(c) ∩ use(f)

10. Runs covering c and not using f :
fail(c, f) = hit(c) ∩ notuse(f)

covered whenever f is used but never covered when f is not used,
or formally: (pass(c, f) ≡ use(f)) ∧ (fail(c, f) ≡ ∅). Still the
difference in the coverage may have other reasons. For some cov-
erage item c it might be possible that c /∈ setCoveredBy(use(f)),
even though c is related to the implementation of f . For instance,
if c is related to a special case of f . Having only small differences
between the runs, which use a feature and which do not, as well
as having runs which use as few other features as possible often
improves the result [6]. Next we will present three coverage based
heuristics for computing the likelihood of a coverage item to be
related to a feature.

4.1 Coloring heuristics
For feature localization, there exist several heuristics to relate the

source code parts to a feature [5, 16]. For evaluating which heuris-
tics are best for the localization of features in hardware designs,
three heuristics from literature have been adapted for our technique.
To present the results to the user we use color coding. This way of
presentation is inspired by the Tarantula tool [10].
In [5] a categorization for feature localization is described. This
categorization is defined over a set of computational units. Based
on how fine-grained the partition should be, a computational unit
can be for example a source code statement, a basic block, or a
function. For our approach we define the categorization over the
set of coverage items C. This categorization (Cat) partitions the
coverage items with respect to a certain feature into five groups de-
fined as: In addition to the presented categorization, two coloring

1. Coverage items covered if and only if f is used:
specific(f) = {c ∈ C| (pass(c, f) ≡ use(f))∧

(fail(c, f) ≡ ∅)}
2. Coverage items sometimes covered when f is used and

never when f is not used:
conditional(f) = {c ∈ C| 0 < |pass(c, f)| < |use(f)|∧

(fail(c, f) ≡ ∅)}
3. Coverage items always covered when f is used and

at least once when f is not used:
relevant(f) = {c ∈ C| (pass(c, f) ≡ use(f))∧

(fail(c, f) 6= ∅)}
4. Coverage items sometimes covered when f is used and

at least once when f is not used:
shared(f) = {c ∈ C| 0 < |pass(c, f)| < |use(f)|∧

(0 < |fail(c, f)|)}
5. Coverage items never covered when f is used:

irrelevant(f) = {c ∈ C| pass(c, f) ≡ ∅}
schemes from bug localization in software are adapted for our ap-
proach. The first scheme extends the two-dimensional Tarantula
scheme [10] to differentiate multiple features. One dimension is
the likelihood likeT of a coverage item c to be related to feature f :

likeT (c, f) =

{
passed(c,f)

passed(c,f)+failed(c,f) if hit(c) 6= ∅
0 otherwise

with passed(c, f) = |pass(c,f)|
|use(f)| and failed(c, f) = |fail(c,f)|

|notuse(f)| . Our
formula is a generalization of the original formula. The value of the
original formula can be computed by fixing the feature f to "does
not pass the test case". For our approach, the hue of a coverage item
is defined by its likelihood. The hue reaches from green (likeT = 1)
over yellow (likeT = 0.5) to red (likeT = 0). The other dimension
of the Tarantula scheme estimates the confidence con towards the
likelihood value of c. The confidence is defined as:

con(c, f) = max(passed(c, f), failed(c, f))

The confidence is visualized as the brightness in which c is colored.
The brightness of c is linear to its confidence. The highest confi-
dence (con = 1) is colored brightest and the lowest confidence
(con = 0) is colored darkest.
The other coloring scheme adapted from bug localization in soft-
ware uses the Ochiai coefficient for computing the likelihood. Com-
pared to the Tarantula scheme, the Ochiai coloring scheme yields
better results in case of bug localization in software [2]. Again we
generalize the formula by adding a parameter for the wanted fea-
ture f , such that we compute the likelihood likeO of a coverage
item c to be related to f by:

likeO(c, f) =

{ |pass(c,f)|√
|use(f)|∗|hit(c)|

if hit(c) 6= ∅

0 otherwise

The computation of the confidence is identical to the Tarantula
scheme.
4.2 Comparison

Early experiments with Cat have shown that for hardware de-
signs a large portion of the coverage items is categorized as rele-
vant even if it has nothing to do with the feature. This is due to the
fact that there is much code which is always executed, like always-
blocks and assign-statements. For overcoming these problems we
propose an extension of Cat. This extension Catext introduces the
category common and redefines relevant as: The categorizations

2a. Coverage items always covered:
common(f) = {c ∈ C| ∀r ∈ R, c ∈ coveredBy(r)}

2b. Coverage items always covered when f is used and
sometimes covered when f is not used:

relevantext(f) = {c ∈ C| (pass(c, f) ≡ use(f))∧
(0 < |fail(c, f)| < |notuse(f)|)}

and the Tarantula scheme are related to each other. Categoriza-
tion Catext subsumes Cat and the Tarantula scheme subsumes
the categorizations. By partitioning the Tarantula scheme in dif-
ferent classes the categorizations can be computed. Table 1 shows
the relation between the three schemes and describes which color
is used for which category. The Ochiai scheme cannot be related to
the other coloring schemes, because this scheme also considers the
total number of runs covering c.
As an advantage the Tarantula and the Ochiai scheme provide a
continuous range preventing runs with very high or very low cov-
erage to have a disproportionately strong effect on the result. Both
schemes also identify coverage items that are not covered if and
only if a certain feature is used. The other two do not distinguish
between not covered items while using a feature f , and items never
covered.
4.3 Feature comparison

Often there are sets of features for which at a point in time at
most one feature in the set can be used. Such features are called or-
thogonal. The user can define features as orthogonal to each other.
An extension unique to our approach is the comparison of two or-
thogonal features. This allows the user to see which are the parts
where the features differ from each other and therefore gives addi-
tional insight to the implementation of the features and the design
as a whole. This comparison is defined over the likelihood and the
confidence of the features and therefore only usable for the Taran-
tula and Ochiai coloring schemes. The comparison value comp
computes how likely a coverage item c is covered by one feature fb
but not by a feature fc orthogonal to fb. The comparison value is
defined as:

comp(c, fb, fc) =
(1 + (like(c, fb)− like(c, fc))

2

with like ∈ {likeT , likeO} defining which coloring scheme is used
for the comparison. The feature fb ∈ F is the feature which we
want to inspect and fc ∈ F is the orthogonal feature which we
want to compare with fb. The mapping of the comparison value
to hue is equivalent to mapping the likelihood to the hue. For the
brightness, the maximum of the confidences is used:

brightness(c, fb, fc) = max(con(c, fb), con(c, fc))

4.4 File ranking
Another extension particular to our approach provides additional

guidance for feature localization by ranking the different files based
on their likelihood to be related to a feature. As the mapping of sig-
nals to files is a non-trivial task, our current implementation only
considers statement coverage for the ranking. The ranking works

Table 1: Relation between categorizations and Tarantula coloring scheme; colors encoding categories
Cat Catext Tarantula

Category Color Category Color equivalent class
specific bright green specific bright green likeT = 1 ∧ con = 1

relevant yellow green common bright yellow likeT = 0.5 ∧ con = 1
relevantext yellow green 0.5 < likeT < 1 ∧ con = 1

conditional dark green conditional dark green likeT = 1 ∧ con < 1

shared dark yellow shared dark yellow (con = 1 ∧ 0 < likeT < 0.5) ∨
(0 < con < 1 ∧ likeT < 1)

irrelevant dark grey irrelevant dark grey likeT = 0

Table 2: Overview of the designs used in the case study
Design LOC Files use cases features time
double_fpu_verilog 2555 7 144 8 22.4 sec
SD/MMC Controller 3840 17 5 5 2.8 sec

as follows: Initially the user has to choose a threshold for the com-
putation. In case of the categorization this is a category and in
case of the Tarantula and Ochiai scheme this is a minimum value
for the likelihood. Then starting with the highest value (specific
or likelihood of 1, respectively) as the upper bound and the lower
bound, all files having statements within these bounds are consid-
ered and then ordered based on the percentage of statements within
these bounds. Those files are added to the ranking in this order.
The lower bound is reduced until more files are found or the given
threshold is reached. In case a new file is found, it is added to the
ranking. If several files are found at the same time, they are added
to the ranking ordered by the percentage of statements within the
bounds.

5. CASE STUDIES
For testing our approach we have implemented a prototype. This

prototype uses ModelSim, to compute the coverage of the different
use cases. The current version of our prototype supports only Ver-
ilog, but this is only a technical limitation of our prototype. Adding
the support for additional HDLs requires only adding an additional
parser, which can translate the hierarchical signal name to the lo-
cal signal names in each source code file. In the current version
our implementation supports statement and toggle coverage, where
statement coverage is represented by coloring the corresponding
lines. Toggle coverage is represented by overlining, in case of a
toggle from 0 to 1, or underlining, in case of a toggle from 1 to 0,
the corresponding signals.
In order to evaluate our approach, we considered designs that have
to fulfill the following requirements: they provide several differ-
ent features, they are written in Verilog, the designs and the cor-
responding test benches run in ModelSim, and they have a well
commented test bench either distinguishing the different features
or allowing to easily use the test bench as template for use cases.
Two designs from the website OpenCores.org, fulfilling these re-
quirements, have been chosen. We conducted our case study as
follows:

1. we looked for a design, unknown to us, which provides sev-
eral features and including a test bench testing those features,

2. we analyzed the design using our prototype,
3. we wrote down all our findings,
4. finally, we checked our findings against the documentation.

Note, as we only used designs which were originally unknown to
us, the only information we had about the designs were their de-
scriptions at OpenCores.org and the structure of their test benches.
Table 2 gives a brief overview of the designs used for the case stud-
ies. The column Design contains the title under which the designs
are listed at OpenCores.org. Lines of code (LOC) is the number
of all non-comment and non-empty lines of the design. In col-
umn time the time required to compute and present the heuristics

is shown. Compared to the time for simulation and coverage gath-
ering, which takes 30 minutes for double_fpu_verilog and 18 sec-
onds for SD/MMC Controller, the computation of the heuristic is
rather fast, making the simulation the main limitation of our tech-
nique. In many cases this coverage information will already be
computed during the validation of the design. In our studies, gath-
ering the coverage information has not increased the time needed
for the simulation, i.e. the computational overhead of our approach
is negligible.

5.1 Case Study: double_fpu_verilog
This case study considers a double precision FPU which requires

20 (addition) to 71 (division) clock cycles per operation. The sup-
ported features are four arithmetic operations:
• addition
• subtraction
• multiplication
• division

and four rounding modes:
• round to nearest even
• round to zero
• round to +INF
• round to -INF

For each combination of operation and rounding mode, there ex-
ist nine use cases. The documentation consists of a pdf-file with
twelve pages and very few source-code comments.
There is a huge difference between the difficulty to localize arith-
metic operations and to localize rounding modes. For the arith-
metic operations, the statement-coverage-based coloring schemes
provide several locations related to the feature. But still 56% of
the statements are executed for all use cases. For these statements,
statement coverage cannot help to decide whether they are part of
the feature or not. The information provided to the user based on
statement coverage is very similiar for all coloring schemes such
that no qualitative difference can be found between them.
When in addition considering toggle coverage, it is easy to parti-
tion the statements always executed in statements that use toggling
signals and statements using not toggling signals. Since statements
that operate on constant values are unlikely to be part of the com-
putation, they can be filtered out. When considering toggle cov-
erage all coloring schemes can support the user by locating fea-
tures. The Tarantula coloring scheme provides the strongest con-
trast and therefore shows the difference in toggle coverage very
clearly. The Ochiai scheme also provides the information clearly,
but with less contrast, making it harder to recognize. These two
coloring schemes show whether a coverage item is not covered if
and only if a feature is executed. When relating this information to
toggle coverage, this translates to a given register or wire staying
constant if and only if a given feature is used. This information
helps to understand a feature, as already assumed in Section 4.2.
As the two categorization schemes do not provide this information,
it is not possible to recognize which signals are changing and which
are not using them.
Figure 1 gives two examples how the FPU design is presented to

Figure 1: Screenshots of our prototype inspecting a part of the design belonging to a feature, as claimed by the documentation (left),
and a part of the design which does not (right)

Table 3: The file ranking for the arithmetic operations of the
double_fpu_verilog design compared to the documentation.

Feature Tarantula scheme documentation
Addition fpu_sub fpu_add

fpu_add fpu_sub
Substraction fpu_double fpu_sub

fpu_sub fpu_add
fpu_add

Multiplication fpu_mul fpu_mul
Division fpu_div fpu_div

the user, and how clearly the design is partitioned in case of an
arithmetic operation (multiplication). The example shows
that statement coverage provides a clear distinction for some parts
of the design, but also that the toggle coverage provides additional
information to further distinguish statements always executed (yel-
low statements). More difficult is the localization of the rounding
features. Based on statement coverage there is no difference be-
tween the rounding modes, forcing the user to completely rely on
toggle coverage. Even for toggle coverage there is only very lit-
tle difference. In case of round to nearest even only the
Tarantula or the Ochiai scheme show a difference, still for iden-
tifying the feature it is necessary to use the feature comparison
functionality of our approach. Altogether in case of the rounding
modes the feature localization results in 2-4 statements correspond-
ing to each rounding mode. The comparison of our findings with
the documentation shows the benefits of our approach. First the
documentation only describes in which module a feature is imple-
mented, and all the positions found with our approach are placed in
the corresponding module. Therefore, we are able to get at least as
good results as someone reading the documentation of the design.
Also there are special cases for addition and subtraction
based on the signs of the operands. An addition could be ex-
ecuted by the subtraction unit and vice versa. The documentation
does not include this information in the description of the two op-
erations, but in the description of the design hierarchy. By this,
someone only reading the operation descriptions would miss this
peculiarity. Additionally, our approach determines the signal that
defines which variant is used. This information does not even exist
in the documentation. After inspecting the corresponding code for
the rounding modes we are confident that the lines marked by the
prototype in fact are the main parts implementing the rounding fea-
tures. Again this is information not included in the documentation.
The result of the comparison of the file ranking and the documen-
tation is shown in Table 3. Only the file ranking for the Tarantula
scheme is shown because this scheme yields the best results. As
the file ranking currently only considers statement coverage only
the arithmetic operations are shown. For the rounding mode all

files have been included for each rounding mode. Similarly to the
approach in [12] only the ranked files are shown until the point
where all files are included which the documentation claims to be-
long to the feature. Except of for subtraction these are exactly
those file which the documentation relates to the feature. In case
of subtraction also the top-module is included as it contains
some statements executed if and only if subtraction is used.
In conclusion, the Tarantula coloring scheme has provided the best
results and statement coverage gives a first overview. Toggle cov-
erage allows to differentiate those statements which are always ex-
ecuted. The arithmetic operations were practically found at the first
glance, and except for the round to nearest even all fea-
tures were found faster than by looking at the documentation. In
addition our prototype yields more information about the design
than the documentation does. The file ranking feature was very
useful in several cases.

5.2 Case Study: SD/MMC Controller
The design of a controller chip for SD/MMC cards for up to

2GB, is used in this case study. The controller is accessed through a
Wishbone-slave-interface. The test bench of the controller includes
a Wishbone simulator and an SD-card simulator used for testing.
The test bench defines five different features:
• Register access
• SPI bus access
• SD init
• SD write
• SD read

The test bench consists of one test case, but clearly defines when
which feature is used, such that we used this distinction to measure
the different coverages for the corresponding executions.
The documentation of this design consists of two pdf-files, one con-
sisting of 23 pages and the other one consisting of 17 pages. Addi-
tionally, there are several source code comments.
In contrast to the first case study, in the SD/MMC Controller all
features are equally easy to find. They are less easy to spot than the
arithmetic operations in the first case study, but far easier than the
rounding modes. When comparing the different coloring schemes,
we observed that the run for the Register access feature cov-
ers very few coverage items, resulting in the effect that the catego-
rization based schemes mark the coverage items which are cov-
ered by all the other runs as relevant or indispensable, respectively.
This practically rendered the categorization schemes useless. This
is very similar to the effect which motivated us to introduce Catext.
However, this causes no problem for the schemes with continuous
range (Tarantula and Ochiai) as the computed likelihood is only
minimally affected, both schemes showed good results, with no

Table 4: The file ranking for the SD/MMC Controller design
compared to the documentation.
Feature Tarantula scheme documentation

Ranking Belongs Possible
Register ctrlStsRegBl2
access

SD init
initSD initSD sendCMDspiTxRxData spiCtrl
spiCtrl

SD read
readWriteSDBlock readWriteSDBlock sendCMDspiMasterWishBoneBl2 spiCtrlspiCtrl
sm_RxFifoBl1

SD write
readWriteSDBlock readWriteSDBlock sendCMDsm_TxFifoBl1 spiCtrl
spiMasterWishBoneBl2
spiCtrl

SPI bus spiCtrl
readWriteSPIWireData spiCtrl

access spiTxRxData spiTxRxData
ctrlStsRegBl2
readWriteSPIWireData

1File that is not documented or the documentation does not relate it to any
feature
2File that the documentation claims to belong to the Wishbone-interface
and therefore is commonly used for all features

visible differences between each other. As there are no features
which are clearly orthogonal the comparison function of our tech-
nique was not used.
Again, after we finished our inspection we checked the documen-
tation to find out where which feature was implemented. The pdf-
files of the documentation did not help because they only explain
how to use the design. However, most of the source code files have
a description explaining their purpose. In many cases this descrip-
tion can directly be related to a feature. However, there are some
files without any description, e.g. sm_RxFifoBl.v, or files where the
description could not be related to any feature, e.g. sm_fifoRTL.v.
Additionally, the design is accessed through a Wishbone-interface.
The Wishbone-interface identifies the commands and forwards them
to the corresponding modules. Therefore, we consider the files re-
lated to the Wishbone-interface as commonly used by all features.
Table 4 compares our findings with the claims of the documenta-
tion. The files are ordered based on their ranking. If the documen-
tation clearly relates a file to a feature this file is listed in column
Belongs and those files where the documentation is unclear, listed
in column Possible. In case of Register access only the files
in the ranking with a threshold of 1.0 are shown. In all other cases
all files are shown until the point where all files from Belongs are
included. Over all features only one file is included by our approach
which the documentation relates to another functional behavior.
This case study shows clearly that the three categorization based
coloring heuristics are inaccurate when being faced with a sin-
gle use case yielding very low coverage. The Tarantula and the
Ochiai scheme provide equally good results as there are no visi-
ble differences between both schemes. Again, our approach gives
at least as good information as the documentation. Moreover, the
approach often provides additional information for feature local-
ization. Therefore techniques for feature localization, like the one
presented in this paper, are needed for design understanding.

6. CONCLUSION
We described an approach for feature localization in hardware

designs. Our approach uses coverage information gathered by sim-
ulation to relate different coverage items to different features. Our
prototype supports statement coverage and toggle coverage. Four
different coloring schemes to present the results have been imple-

mented. Two categorize the coverage items into different groups.
The other two schemes compute the likelihood of a coverage item
to be related to a feature and the confidence in this likelihood.
These values are then presented as the hue and the brightness of the
coverage items. We also introduced a heuristic to rank file based on
their likelihood of being related to a feature, allowing to guide the
user faster to the corresponding code. Additionally we introduced a
comparison for orthogonal features to improve design understand-
ing.
The case studies emphasize the strength of our approach. They
also showed that the Tarantula scheme performs best and that cov-
erage metrics typically used for feature localization in software
systems are not sufficient for feature localization in hardware de-
signs. Therefore, hardware specific coverage metrics must be used
as well. Additionally, the two case studies showed that the main
advantages of the Tarantula and Ochiai scheme are their contin-
uous range and their notion of not covering a coverage item if a
certain feature is used. Altogether our approach often yields more
information about the implementation of the features than the doc-
umentation, even in difficult cases.

7. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evaluation of

similarity coefficients for software fault localization. In Pacific Rim
International Symposium on Dependable Computing, pages 39 –46,
2006.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and
Industrial Conference Practice and Research Techniques -
MUTATION, pages 89 –98, 2007.

[3] E. Clarke, M. Fujita, S. Rajan, T. Reps, S. Shankar, and
T. Teitelbaum. Program slicing of hardware description languages. In
Correct Hardware Design and Verification Methods, volume 1703 of
Lecture Notes in Computer Science, pages 72–72. 1999.

[4] A. DeOrio, A. Bauserman, V. Bertacco, and B. Isaksen. Inferno:
Streamlining verification with inferred semantics. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
28(5):728 –741, 2009.

[5] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code. IEEE Transactions on Software Engineering, 29:210–224,
2003.

[6] A. Fantozzi. Locating Features in Vim: A Software Reconnaissance
Case Study. Technical report, 2002.

[7] G. Fey and R. Drechsler. Improving simulation-based verification by
means of formal methods. In Asia and South Pacific Design
Automation Conference, pages 640–643, 2004.

[8] IEEE 1364 Working Group. IEEE Standard for Verilog Hardware
Description Language. IEEE Std 1364-2005 (Revision of IEEE Std
1364-2001), 2006.

[9] ITRS Working Group. International technology roadmap for
semiconductors 2009 update system drivers, 2009.

[10] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization for fault
localization. In Proceedings of the Workshop on Software
Visualization, pages 71 –75, 2001.

[11] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for
verification and diagnosis. In Design Automation Conference, pages
755 –760, 2010.

[12] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight
fault-localization using multiple coverage types. In International
Conference on Software Engineering, pages 56–66, 2009.

[13] A. Sinha, P. Dasgupta, B. Pal, S. Das, P. Basu, and P. P. Chakrabarti.
Design intent coverage revisited. ACM Transactions on Design
Automation of Electronic Systems, 14:9:1–9:32, 2009.

[14] S. Tasiran and K. Keutzer. Coverage metrics for functional validation
of hardware designs. IEEE Design Test of Computers, 18(4):36 –45,
2001.

[15] N. Wilde and C. Casey. Early field experience with the software
reconnaissance technique for program comprehension. In Working
Conference on Reverse Engineering, pages 270 –276, 1996.

[16] N. Wilde and M. C. Scully. Software reconnaissance: Mapping
program features to code. Journal of Software Maintenance:
Research and Practice, 7(1):49–62, 1995.

