
Panel: Future SoC Verification Methodology: UVM
Evolution or Revolution?

Rolf Drechsler†
University of Bremen/DFKI

Germany
drechsle@informatik.uni-bremen.de

Christophe Chevallaz§
STMicroelectronics
Grenoble, France

christophe.chevallaz@st.com

Franco Fummi§
University of Verona

Italy
franco.fummi@univr.it

Alan J. Hu§
University of British Columbia

Vancouver, Canada
ajh@cs.ubc.ca

Ronny Morad§
IBM Research - Haifa

Israel
morad@il.ibm.com

Frank Schirrmeister§
Cadence Design Systems

San Jose, CA, USA
franks@cadence.com

Alex Goryachev‡
IBM Research - Haifa

Israel
gory@il.ibm.com

†Moderator, ‡Organizer, §Panelist

Abstract—With increasing design complexity System on Chip
(SoC) verification is becoming a more and more important
and challenging aspect of the overall development process. The
Universal Verification Methodology (UVM) is thereby a common
solution to this problem; although it still keeps some problems
unsolved. In this panel leading experts from industry (both
users and vendors) and academy will discuss the future of SoC
verification methodology.

INTRODUCTION

It is a recent trend that SoCs are becoming more similar to
servers. Today, many SoCs are not tied to a single application
anymore, but look more like general purpose PCs and high-
end servers. Smartphones are the most notable example of
this development, but this can also be seen in TV chips,
in-car controllers, network routers, and more. This trend is
occurring in parallel to the constantly growing complexity of
SoCs, which support diverse IO interfaces and devices, and
have complex architectures including multiple heterogeneous
cores, multi-level caches, and multiple IO bridges

Today, common practice for verification is based on the
Universal Verification Methodology (UVM [1]), which, at
the system level, relies on reusing and combining unit-level
environments, followed by running real software on an SoC.
This methodology leaves a large gap. In high-end systems, this
gap is covered by system-level verification that focuses on HW-
only system integration. This level has its own methodology,
dedicated environment, set of tools, and teams. It looks at the
system as a whole and is not based on reusing lower level
environments.

Formal methods are a field of intensive research [2]. They
have been successfully applied to verify the correctness of
dedicated components on the block level or for equivalence
checking, but they have not been adopted by the industry for
SoC-level verification yet.

In this panel several questions around this highly relevant
topic are discussed. For example:

• Is the gap in today’s SoC verification methodology
significant? Is it growing? Or perhaps it does not exist?

• What is the right way to close the gap, if one exists?

• Is it sufficient to extend UVM capabilities (e.g.,
SystemC [3], TLM [4]) or are dedicated tools and
methodology needed?

• Are formal methods ready to play a significant role in
SoC-level verification?

In general, the panel will address the importance of system-
level verification and its unique needs—whether generators,
checking, coverage, or teams.

A short summary of panelists’ position statements is pre-
sented in the following section.

PANELISTS’ POSITION STATEMENTS

CHRISTOPHE CHEVALLAZ, STMICROELECTRONICS,
GRENOBLE, FRANCE

Is verification reuse a reality?

“3D Reuse”—a reality to improve: The main challenge of
the SoC verification is to change the gear in the 3D verification
reuse.

Horizontal reuse (“x axis”) from one SoC to derivatives
requires a clear definition upfront of what needs to be generic.
This will enable to focus the reuse effort and ensure the
development of the dedicated infrastructure for the identified
reuse points.

Vertical reuse (“y axis”) from IP to SoC still has room for
improvement. Integration of the Software & Hardware IPs at
SoC level focuses on connectivity and it is still one of the
main tasks of the verification at SoC level. This is mostly due
to the increasing numbers of IPs to manage and their diversity.
There is also work to improve the connection between IP
providers and SoC integrators for better understanding of their
own context (i.e.: random vs directed, visibility at SoC level).

The diagonal reuse (“z axis”) at various levels of ab-
straction (C, RTL, FPGA,..) is mandatory due the various
stakeholders involved in the verification task: architecture,



design, SW, validation teams. Mixed platforms enable the
mixed teams coming from various domains to be more efficient
in the project development. They have a sooner access to
these platforms with elements that they are more familiar with.
Smooth bridges between these platforms are a key factor to
ease the debug.

How to fill the gap?: Relying on a standard (UVM/IP-
XACT [5]) to ensure interoperability is the key. Some extra
efforts have to be spent in order to define a uniform way
for describing an executable programming model of an IP.
This executable description done with UVM or/and IP-XACT
extension has to be part of the IP delivery to ease the
integration in the SoC context. The VIPs also need to be
part of the delivery of the IP providers. These VIPs need to
be delivered with a control mechanism compatible with the
SoC context. Some solutions are based on the definition of
virtual registers for the VIP control to fit for example a C
centric verification approach. On top, multilayered VIP that
can fit various platforms (e.g., TLM, RTL, Emulation, FPGA)
need to be more deployed. Tools and methodologies also have
to be developed for the definition of verification metamodel
with focus on the verification platform. This metamodel used
in conjunction with dynamic constraint solving mechanism
can support the efficient generation of derivative verification
platforms.

Use formal for what?

Formal has to be considered for hot spots at the SoC level.
The main area where we foresee a bigger usage is on some key
structural logic. It is applied to the connectivity checks, the dis-
tributed logic for low power management and security. Some
gain of efficiency can be achieved using formal techniques
on the infrastructure that is managing various levels of cache
and memory subsystem. More and more interconnect fabrics
embark cache coherency mechanism that requires dedicated
and tricky verification. One area of improvement is in more
automatic black boxing to focus the formal techniques in the
complex SoC environment. On top, formal methods that are
usually attached mostly on the hardware side, have to be
thought to be coupled with the embedded software to enhance
the debug. Another wild subject of interest is the link between
formal and mixed Analog Signals.

Address system verification

The challenges of system verification are multiple. There
is a deep need to create System stimuli that are representative.
Today, it is not obvious to get these stimuli at the right time
of the development and to have the appropriate platforms to
run it. The support for different platform views with mix of
abstraction levels becomes a must have; some components
need faster models for efficient execution.

The analysis of the system metrics that are not only func-
tional (e.g., performance, power, energy, temperature) requires
a multi-team collaboration. First solutions are to move to
an application usecases verification driven solution and to
leverage on closer collaboration with the architecture and
software community.

Some new tools and methodology like scenario graph
based techniques ease the sharing of information between the

communities. These techniques acting at a higher level of
abstraction give freedom of choice for test implementation
(e/SystemVerilog/C/...). They also enable to concentrate the
effort in building multiple data flows at the SoC level by
combining IP low level drivers.

Manage huge database

One of the big challenges is to manage the increasing
amount of verification data at the SoC level. The issue is that
more and more data needs to be tracked; SoC is managing
more and more complex and non-functional properties, e.g.,
performance, power, energy, temperature.

This amount of verification data makes the decision on
verification closure more complex. It also makes debugging
more complex. Some initiative and homemade solutions are
done to refine the verification metrics and ensure that these
metrics are actionable. The goal is to use these data in a more
automatic and straightforward way to ease the debug, optimize
the non-regression and enable the multi-team collaboration.

For example, there is a trend to leverage on MySQL
database [6] and business intelligence tool to support verifi-
cation closure.

FRANCO FUMMI, UNIVERSITY OF VERONA, ITALY

The name UVM is very promising, since something which
is “universal” is a dream for any designer. UVM is for sure
a step further from the point view of the universality of
the simulation tool, however, it is not for sure a universal
approach with respect to the design and verification language.
That is, the methodology is too language centered, while an
ideal universal verification methodology should be language
independent: verification is not a matter of syntax, but of
semantics. Thus, I will list the characteristics of a real universal
verification methodology and how complex could it be to reach
them, thus, how far away we are from the dream.

ALAN HU, UNIVERSITY OF BRITISH COLUMBIA,
VANCOUVER, CANADA

The future of SoC verification methodology is formaliza-
tion. This statement may seem controvertial, but it’s a direct
consequence of three facts:

Fact 1: Modern SoCs are among the most complex
devices ever created by humanity, and the demand for even
greater complexity continues: I expect this fact to be uncontro-
vertial and therefore provide no supporting evidence. Note that
beyond the complexity arising from additional functionality,
the end of Dennard scaling means that improvements in
performance and power consumption must now come from
additional complexity (e.g., many cores, power geting) rather
than relying on technology scaling.1

1The impact of Dennard scaling was pointed out to me by Prof. Subhasish
Mitra of Stanford.



Fact 2: The only technique known to humanity to
enable scalable complexity is formalization: This fact is not
common knowledge, so it merits some reflection. Consider
verification, for instance. For trivially small designs, a few
ad-hoc simulations suffices. For a larger design, one would
create a proper testbench. When designs became even larger,
that led to testbench automation tools, in which testcases
become increasingly formally specified. More recently, we
have witnessed the rise of assertion-based verification, which is
essentially a methodology of adding fully formal specifications
to a design, thereby naturally enabling fully formal property
checking. Each time there is a need for greater complexity,
the only way to manage it is to formalize what had previously
been informal.

Note that this phenomenon is not limited to verification.
For example, we can see the same pattern in which RTL
was introduced first as a semi-formal human notation, in
order to better document what were at the time were con-
sidered highly complex designs. RTL then became formalized
into machine-readable hardware description languages, which
enabled greater scalability via automatic (simulation) tool
support. To scale further required codifying (i.e., formalizing)
a synthesizable RTL, leading to logic synthesis. And so forth.

Indeed, this pattern of scalable complexity enabled by
formalization repeats throughout human history. Standardized
weights and measures enabled interchangeable parts, which
enabled the assembly line and the industrial revolution. Stan-
dardized time zones enabled large-scale interconnected rail
networks. We can even trace the scalability of markets and
the success of capitalism to the formalization of property
ownership [7].

The above two facts are sufficient to prove that formaliza-
tion is a necessary condition for continued progress in SoC
verification. It doesn’t tell us, however, when that will happen,
nor is it reassuring to those who dislike formality. Thus, I raise
a third fact:

Fact 3: Formalization wins when it is less painful than
the alternatives: Formalization requires effort and thought, and
most people avoid extra effort and thought as much as possible.
Accordingly, although formalization is necessary for scalable
complexity, people avoid it until they reach a level of scale
that requires it. This is natural and appropriate. Would you
use a lawyer to formalize a sales transaction at a garage sale?
Probably not. Would you use a lawyer to formalize the sale of a
house? Quite possible. Would you use lawyers to formalize the
sale of a major corporation? Undoubtedly, and of the highest
caliber available.

Similarly, would you use formal verification on a trivially
simple design? Probably not (unless it were effortless to use).
Will you use it when you have no other way to gain sufficient
assurance in the correctness of a complex SoC? Of course.
You will have no other choice.

The good news is that while rising complexity is mak-
ing non-formal alternatives for SoC verification increasingly
painful and untenable, research advances and commercial tool
improvements are making formal techniques increasingly easy
and painless. When formal becomes less painful than the
alternatives, formalization wins. For example, consider the
rapid shift in the 1990s from RTL-to-gate simulation to formal

equivalence checking, as soon as lengthy simulations had
become more painful than the increasingly capable formal
equivalence checking tools. Or more recently, it was the largest
companies with the most complex designs who drove the
adoption of formal tools and methodology, but these are be-
coming widespread as ordinary designs have become similarly
complex while the formal tools have become increasingly
capable and easy-to-use.

In the future, the same trend will envelope firmware and
software development, as well as analog and mixed-signal
circuits. Formalization will also enable a rich marketplace for
(hardware and software) IP, with buyers having confidence
because sellers can formally prove that their products will
integrate seamlessly into the buyer’s SoCs.

RONNY MORAD, IBM RESEARCH - HAIFA, ISRAEL

Hardware-only system-level verification is definitely a
growing challenge. SoCs today have more logic than ever
before, encompassing functionality that spans from CPUs,
to IO interfaces, message passing bridges, special purpose
accelerators, and more.

All this functionality needs to operate together correctly.
For example, a CPU must be able to handle the sending of a
message while being interrupted because an accelerator com-
pleted its work. Therefore, the number of possible interactions
between all components in an SoC is huge. What exacerbates
this situation is that a bug in a single component in an SoC may
require another tape-out, unless it can be easily bypassed by
software. This, in turn, creates schedule delays and additional
costs.

Due to all of the above, HW-only system-integration has to
be verified. Reusing unit-level environments is not sufficient,
since each unit is focused on its functionality and is not
concerned with the complex interactions at the SoC level. Note,
that HW/SW co-simulation does not solve this problem either.
There are two reasons for it. The first is that the SW exercises
the design in a certain way, and rarely reaches corner cases.
The second reason is that when the SW changes, it may interact
with the design in a different way, which has not been tested
before.

Luckily, the server companies have been dealing with this
challenge for quite a while and several tools and methodologies
have been developed for the purpose of system-level verifica-
tion [8], [9]. These tools are characterized by the fact that they
are focused on handling the system as a whole. They allow
the verification engineers to create scenarios where the stress
and the complexity are at the system-level, and not within
an individual unit. These scenarios can expose bugs that are
impossible or very hard to find at the lower-levels.

I propose to leverage this kind of tools and methodologies
for SoC verification. However, the differences between server
chips and SoCs present challenges that make it difficult. The
first notable difference is that the size of a verification team
that works on a typical server chip is much bigger than the
size of a corresponding team that works on a typical SoC. That
is why it is reasonable to invest the effort required to use the
system-level verification methodology mentioned before for a
server chip. The second difference is that in a typical SoC



there’s much more 3rd party IP, than a typical server chip. So,
utilizing this fact may be the key to adapting server verification
methodologies for SoC verification.

Another growing challenge in this domain is the fact that
the interaction between HW and SW is becoming more and
more complex. This is because neither the HW nor the SW
alone can satisfy the growing demands for increasing function-
ality and performance with limited power consumption. The
current practice is to document the HW/SW interface using
specifications written in natural language (English). However,
this creates several problems. Just a few examples include:
contradictions within the specification, ambiguity with respect
to responsibility between HW and SW (i.e., it’s not clear from
the text whether HW or SW needs to carry out a certain task),
or vague and hard-to-interpret sections.

A possible solution for this problem is to formally specify
the HW/SW interface (and interface only). This can prevent
some of the problems noted earlier. While there has been some
work done on formal specification of HW/SW interfaces [10],
[11], it has not yet matured enough to be widely adopted by
the industry.

I propose to further pursue this direction as this also enables
the automatic generation of FW/OS/device driver code, as well
as test case generation for verification purposes.

FRANK SCHIRRMEISTER, CADENCE DESIGN SYSTEMS,
SAN JOSE, CA, USA

Multi engine and abstraction verification

SoCs certainly tend to cluster in their architecture topolo-
gies around specific application domains automotive, wireless
comms, wired comms, graphics, gaming, industrial etc. Within
the application domain, starting with a base platform, SoCs
more and more often are derivatives of the base platform
and can address different performance, power and cost points
starting from the same base architecture.

With growing complexity and further increasing challenges
in verification which was, is and probably always will be
an unbound problem in itself, verification environments need
to evolve from the pure unit level to Full SoC and even
SoC in System verification that take into account the SoC
and system-level aspects including the software executing on
processors appropriately. Key aspects to be addressed going
forward include

• enabling users to run as many verification cycles as
smart as possible using combinations of transaction-
level simulation, RTL simulation, RTL emulation and
RTL FPGA based prototyping

• efficient hardware/software co-development and co-
debug

• verification automation enabling the re-creation of
different derivatives of verification environments as
efficient as possible

• virtualization of the system environment to efficiently
represent the environment in which SoCs reside in

• the emergence of software as an instrument to verify
hardware

Fig. 1. Faster and Smarter Verification

Only a combination of the various techniques assertions,
checkers, coverage analysis and smart connections between
different levels of abstraction will allow to keep the gap
between verification needs and verification capabilities small
enough that users get the confidence level high enough to
actually tape out their designs.

Verification Engines

Figure 1 outlines the concepts of faster and smarter verifi-
cation. Starting from the core engines of RTL simulation, on
the horizontal axis methods for faster verification are outlined:

• RTL simulation is the baseline for verification and is
characterized through fastest turnaround time once a
change in RTL code has been made as well as best in
class hardware debug.

• For longer simulation sequences as well as for faster
execution that enables software bring-up of operating
systems (OSs) like Linux, Android and Windows
Mobile, Processor Based Emulation uses hardware ac-
celeration to raise the speed from the Hz or KHz range
in simulation to the MHz range. It is characterized
through fast compile times on single hosts, allowing
the mapping of multiple RTL drops per day, with great
hardware software debug.

• To allow speed-levels that are sufficient for soft-
ware development, FPGA Based Prototyping maps
the design into an array of FPGAs and raises the
speed level to tens of MHz. In exchange, though,
traditional manual bring-up takes months at a time,
design capacity is limited and hardware visibility for
debug is very limited or intrusive and degrading speed.
FPGA Based Emulation positions itself in-between
Emulation and Prototyping, with faster bring-up than
prototyping, more limited hardware debug and only
marginally faster execution speeds.

• In the spirit of not letting bugs slip into the design
in the first place, verification can be executed faster
at higher levels of abstraction using transaction-level
models (TLM [4]). TLM test benches can be re-used
for verification of RTL, TLM based virtual proto-
types allow earlier hardware verification and serve as
verification reference. In conjunction with high-level
synthesis, TLM based verification flows are emerging.



Faster and Smarter Verification

To achieve more efficient smarter verification for all en-
gines, Metric Driven Verification, Automation of Test Benches,
Verification IP and Advanced Debug features for better root
cause analysis can be added. To achieve smarter and faster
verification the various core engines can be combined:

• Simulation acceleration is the combination of RTL
simulation and hardware acceleration.

• Virtual prototyping and hardware acceleration can be
combined to allow accelerated OS bring-up and faster
software execution.

• By making software an instrument of verification,
test bench development can start on virtual platforms,
can be refined on RTL simulation and accelerated
hardware execution and even run on the actual silicon
as diagnostics, effectively shifting traditional post-
silicon verification techniques to the left into pre-
silicon hardware/software verification.

REFERENCES

[1] Accellera, “UVM - Universal Verification Methodology,”
http://uvmworld.org/.

[2] R. Drechsler, Advanced Formal Verification. Springer, 2004.
[3] N. Ip and S. Swan, “An introduction to the new SystemC verification

standard,” in Proceedings of the 2003 Design, Automation and Test in
Europe Conference (DATE), March 2003.

[4] L. Cai and D. Gajski, “Transaction level modeling: An overview,” in
Proceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS
’03. New York, NY, USA: ACM, 2003, pp. 19–24.

[5] “IEEE standard for IP-XACT, standard structure for packaging, inte-
grating, and reusing IP within tools flows,” 2010, IEEE Std 1685-2009.

[6] “MySQL,” open source database. http://www.mysql.com.
[7] H. De Soto, The Mystery Of Capital. Transworld, 2010.
[8] R. Emek, I. Jaeger, Y. Naveh, G. Bergman, G. Aloni, Y. Katz,

M. Farkash, I. Dozoretz, and A. Goldin, “X-Gen: A random test-case
generator for systems and SoCs,” in Seventh IEEE International High-
Level Design Validation and Test Workshop, 2002, pp. 145–150.

[9] D. Geist and O. Vaida, “A method for hunting bugs that occur due to
system conflicts,” IEEE International High Level Design Validation and
Test Workshop Location: Incline Village, NV, USA, pp. 11–17, 2008.

[10] J. Li, F. Xie, T. Ball, V. Levin, and C. McGarvey, “Formalizing
hardware/software interface specifications.” in ASE, P. Alexander, C. S.
Pasareanu, and J. G. Hosking, Eds. IEEE, 2011, pp. 143–152.

[11] P. Gerin, H. Shen, A. Chureau, A. Bouchhima, and A. A. Jerraya,
“Flexible and executable hardware/software interface modeling for
multiprocessor soc design using systemc.” in ASP-DAC. IEEE, 2007,
pp. 390–395.


