
Behaviour Driven Development for Tests and
Verification

Melanie Diepenbeck1, Ulrich Kühne1, Mathias Soeken1,2, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{diepenbeck,ulrichk,msoeken,drechsle}@informatik.uni-bremen.de

Abstract. The design of hardware systems is a challenging and error-
prone task, where a signifcant portion of the effort is spent for testing and
verification. Usually testing and verification are applied as a post-process
to the implementation. Meanwhile, for the development of software, test-
first approaches such as test driven development (TDD) have become
increasingly important. In this paper, we propose a new design flow based
on behaviour driven development (BDD), an extension of TDD, where
acceptance tests written in natural language drive the implementation.
We extend this idea by allowing the specification of properties in natural
language and use them as a starting point in the design flow. The flow also
includes an automatic generalisation of test cases to properties that are
used for formal verification. In this way, testing and formal verification
are combined in a seamless manner, while keeping the requirements —
from which both tests and formal properties are derived — in a single
consistent document. The approach has been implemented and evaluated
on several examples to demonstrate the advantages of the proposed flow.

1 Introduction

In the design of hardware and software systems, testing and verification are often
more labour and cost intensive than the implementation itself. The higher the
quality standards — up to safety critical systems in cars, avionics, or medical
equipment — the more time needs to be spent in writing good test benches
or formal properties. In traditional hardware design flows, verification is often
done at post-design time. This practice can result in long design cycles, since
serious bugs discovered at this late stage might lead to major design changes
or modifications of the specification. This is why it is desirable to start the
validation as early as possible.

In the software domain, agile techniques have become quite popular, as a
means to shorten the design cycles and achieve a more flexible flow, where
changes can be integrated quickly. In test driven design (TDD), the tests are
written first [1], which forces the designer to think about the requirements
and interfaces before getting started with coding. Behaviour driven develop-
ment (BDD) is an extension of TDD, where the tests are written in natural
language [2]. In BDD, textual scenarios, which can easily be derived from the

2 Melanie Diepenbeck et al.

requirements, provide a valuable link between the specification and the imple-
mentation. During the design process, the scenarios are ported step by step to
executable tests. Writing tests and implementing the required code is interleaved,
resulting in short design cycles. There have been some attempts to make use of
agile techniques in the hardware domain [3], also with a focus on formal models
and verification techniques [4, 5].

In the context of BDD, the natural language scenarios are usually used to
describe acceptance tests, i.e. scenarios that test whether certain features are
implemented according to the requirements. But, when applied to safety critical
hardware designs, just testing is not enough. Since it is infeasible to cover the
whole input and state space even of smaller hardware blocks by mere simulation,
there remains a risk that subtle bugs will be missed. This is where formal meth-
ods come into play. Using automatic or semi-automatic proof techniques, high
confidence can be reached in the correct functionality. In particular, SAT-based
model checking techniques like [6–8] have been successfully applied to industrial
scale hardware designs. However, their application is difficult and requires writ-
ing properties in dedicated languages such as the property specification language
(PSL, [9]).

In this paper, we present for the first time a hardware design flow that com-
pletes the BDD method by complementing tests with formal verification tech-
niques in a flexible and agile way. The methodology builds on the popular BDD
tool cucumber [2]. We enhance the existing test driven flow by integrating for-
mal verification, while keeping the natural language requirements in a single
consistent document. As a first step to improve the design quality, test cases can
be generalised automatically to PSL properties. This enables the use of model
checking tools with no additional effort for the user. However, not all test cases
can be generalised in this way. We add further flexibility by allowing to write re-
quirements dedicated to formal verification only, that will be translated directly
to PSL. This allows the use of more powerful constructs, which cannot easily be
described by single test cases.

Overall, the contributions of this work are the following:

– Strengthening BDD for hardware design by automated test generalisation
– A seamless integration of tests and formal properties in a single human

readable document
– The implementation within the popular BDD tool cucumber
– The experimental evaluation on several examples

The paper is structured as follows. First, the used property specification
language and the basics of BDD are introduced in Sect. 2. The proposed BDD
flow for hardware design and verification are presented in Sect. 3. Section 4
discusses advantages and limitations of our approach. Related work can be found
in Sect. 5. The paper is concluded in Sect. 6.

Behaviour Driven Development for Tests and Verification 3

2 Background

2.1 Property Specification Language

PSL has been adapted as IEEE standard 1850 in 2005 [9]. It is supported by
many verification tools, both dynamic (simulative) and formal. PSL comes in
different flavors for the hardware description languages VHDL, Verilog, and
SystemVerilog, as well as for SystemC, a C++ library for hardware and system
design.

The language is organised in layers, starting at the bottom with the Boolean
layer, which consists of expressions from one of the flavor languages. On top of
this, timing can be added in the temporal layer. Basically, PSL is a superset
of linear time logic (LTL, [10]). Besides the standard operators such as always,
until, and next3, a convenient way to describe computations in PSL are sequen-
tially extended regular expressions (SEREs). Like ordinary regular expressions,
they allow for pattern matching and provide an easy way to express repetitions
and concatenation, but focusing on temporal aspects. Finally, at the verification
layer, directives are given to the verification tool, what to do with the stated
properties. Here, we will only introduce a subset of this very rich standard. A
good introduction to PSL for hardware verification can be found in [11].

Example 1. Consider the following simple PSL property:

property reset = always {rst; !rst} |-> pc == 0;

The operator always indicates that the following expression should be considered
an invariant, which must hold at every single cycle in any computation. The
invariant given by property reset is formed by the overlapping suffix implication
operator ‘|->’. On the left hand side of the suffix implication, a SERE is formed,
consisting of two cycles, where the signal rst is high in the first and low in
the second cycle. The suffix implication has the following meaning: if the left
hand side sequence occurs, then the right hand side must hold simultaneously
to the last cycle of the sequence. Overall, the property reset states that after
asserting and releasing signal rst, the signal pc must be set to zero. A slightly
more complex property is stated below:

property release_req = always {{req; ack} | {req; rty}} |=> !req;

Here, the operator ‘|=>’ is called non-overlapping suffix implication. The prop-
erty holds if the right hand side holds in the cycle directly after the last cycle
of the sequence on the left hand side. The left hand side SERE is a composition
of two sequences, combined with the non-length matching or ‘|’. The left hand
side matches if any of the two given sequences match. Overall, the property says
that req should be released after it has been asserted and after either ack or
rty has occurred.

3 according, respectively, to G, U and X in LTL

4 Melanie Diepenbeck et al.

Besides the operators in the above examples, we will use the non-length
matching and, expressed by a single ‘&’, which combines two sequences anal-
ogously to the non-length matching or. The built-in functions next(ϕ) and
prev(ϕ) can be used to retrieve the value of an expression ϕ in the next or
the previous cycle, respectively. The built-in function stable(ϕ) is a shortcut
for the expression ϕ== prev(ϕ).

2.2 Running Examples

FIFO

rst_n

push

pop

dat_in

empty

full

elems

dat_out

clk

(a) First-in-first-out queue

ALU

a_i

b_i

result_o

func_i

signed_i

(b) Arithmetic-logic unit

Fig. 1. Block diagrams of example circuits

As a running example, a first-in-first-out queue (FIFO) and an arithmetic-
logic unit (ALU) will be used. Figure 1 shows block diagrams of the designs
under test. The FIFO is a synchronous circuit, driven by the clock signal clk.
The single bit outputs empty and full give information on the fill status of the
FIFO, while elems shows the exact number of elements currently in the queue.
The oldest data element can be read from output dat_out. By asserting the
input rst_n (active low), the FIFO is cleared. Elements are added and removed
using the signals push and pop, respectively, where dat_in is used to present
the data to be added to the queue. The actual design under test has a capacity
of four elements.

The ALU in Fig. 1(b) computes 2-input logic and arithmetic functions. The
type of function is selected via the five bit input func_i. The ALU implements
17 different functions, among them addition, shifting, multiplication and com-
parisons like equals or less. The single bit input signed_i indicates whether
both the 32 bit data inputs are to be treated as signed or unsigned integers. The
ALU is part of an open source hardware project.4

4 http://opencores.org/project,m1_core

Behaviour Driven Development for Tests and Verification 5

Scenario Outline: Pushing
When the FIFO is empty
And I push <a>
And I wait 1 cycle
Then the output is <a>
Examples:

| a |
| 1 |
| 0 |
| 127 |

(a) Scenario

When /^the FIFO is empty$/ do
$assert(empty);

end

When /^I push (\d+)$/ do |arg|
rst_n = 1;
push = 1;
pop = 0;
dat_in = arg;

end

Then /^the output is (\d+)$/ do |arg|
$assert(dat_out == arg);

end

(b) Step definitions

Fig. 2. BDD scenario with step definitions

2.3 Behaviour Driven Development

BDD extends the idea of TDD with natural language written user stories or
acceptance tests, which are called scenarios. These are grouped by means of fea-
tures and each scenario is described as a sequence of sentences.

Example 2. Figure 2(a) shows an example scenario that describes how data is
written (push operation) into the FIFO from the previous section. When an
element is pushed to the empty queue, then it is the oldest element in the FIFO
and therefore it can be read from the output.

In order to have a nicely readable text, the BDD flow suggest to use the
keywordsGiven,When, and Then, that refer to test code containing assumptions,
conditions, and assertions, respectively. Note that these keywords have no further
semantic meaning in the BDD tool. The keyword And can be used to avoid
repetition and one can also use * as a generic keyword to introduce a sentence.
In fact, the keyword does not even have to match the keyword used in the
step definitions. Consequently, Then sentences can e.g. also be used as When
sentences.

To automatically execute a sentence in a scenario, one has to provide a step
definition which is a 3-tuple consisting of a keyword, a regular expression, and
test code. The BDD tool then essentially works as follows:

1. For each sentence in a scenario it is checked whether it is matched by a
regular expression of a step definition. Step definitions are ordered and the
first matching step definition is taken.

2. If necessary, values are extracted from the sentence using capture groups in
the regular expression. Then, the test code is executed.

Since regular expressions are used in order to match a sentence to a step
definition, there is no restriction on the natural language that is used to de-
scribe the scenarios (An exception is the approach that is presented in [12] and
uses natural language processing techniques to extract structural information to

6 Melanie Diepenbeck et al.

Requirements

BDD for Tests and Verification

Scenarios

Properties

Tests

Properties

DUV

implement

implement

BDD

BDD

generalise

check

verify

1

2

3

4

5 6

Fig. 3. Improved BDD flow

create a formal model from a set of natural language scenarios). Optionally, it is
possible to add special test code that is executed before and after each scenario.
Every scenario is executed separately within its own test bench environment.

Example 2 (continued). For each sentence in the scenario the designer creates a
step definition, as listed in Fig. 2(b). Since no implementation is available at this
point, the designer only decides on the input and output signals of the FIFO
module in the step definitions.

A predefined sentence “And I wait t cycles” handles timing where test code
in succeeding sentences takes place t cycles after the sentence before this timing
sentence.

This scenario can now be used for testing, however, step definitions cannot
be run directly. Instead, they require a test bench that encloses the test code of
all sentences of a scenario. This test bench can either be written by the designer
or generated automatically from the design information given by the designed
module.

In our examples we mainly use scenario outlines instead of scenarios. A
scenario outline is a parameterised scenario which is enriched with an examples
table that allows the specification of several test assignments given by each row
in the table. The variables of a scenario outline, denoted e.g. with <a>, enable
property generalisation, which will be shown in Sect. 3.1.

3 BDD for Tests and Verification

Based on the BDD flow that has been described in the previous section, the idea
for the improved flow is introduced in this section. Our proposed flow is driven
by tests and properties.

The first thing that is usually done in a BDD based approach is writing test
cases in terms of scenarios to drive the implementation. This is a first step in
verifying the design under verification (DUV), and helps in achieving a good
design quality. Nevertheless, this is usually insufficient to completely verify the

Behaviour Driven Development for Tests and Verification 7

design, since the input and state space of non-trivial designs can hardly be
covered by test runs. As a first improvement, it is possible to automatically
generalise test cases to formal properties, thereby covering more potential bugs.
However, some requirements cannot be easily stated as test cases. This holds
especially for global properties like in the following example.

Example 3. Consider the FIFO example of Sect. 2.2 which has a capacity of four
elements. In order to check this requirement of the FIFO, the designer needs to
check two scenarios; (1) a scenario which checks if it is possible to insert at
least four elements and (2) a scenario that checks that a fifth element cannot
be inserted into the queue. Even then, possible bugs — like an underflow when
popping from an empty queue — could be missed, which would violate this
requirement.

Therefore, we propose to drive the implementation by both tests and proper-
ties, as shown on the left hand side of Fig. 3 (marked by 1), where requirements
are described by scenarios and properties. For each sentence of each scenario
and property, step definitions are defined to express the desired behaviour of a
sentence using test code or PSL expressions. This code is then used to guide the
implementation of the design (2). The properties and tests are used in all stages
of the BDD approach to implement, test, and verify the DUV (3,4,6). By gener-
alising tests to properties (5), the verification is strengthened. The generalisation
even allows to reuse parts of a test scenario in a property.

In the remainder of this section it is described how test cases can be gener-
alised, but also limitations are drawn. It is then shown how to overcome these
limitations by writing properties in addition to scenarios to cover more require-
ments of the DUV.

3.1 From Tests to Generalised Properties

As described in Sect. 2.3, acceptance tests are used to create a circuit design
using Verilog. The tests are created in a BDD manner, as shown in Fig. 3 and
can be used to check the DUV.

Acceptance tests as illustrated in Example 2 usually consider only few se-
lected test input data and never cover a scenario exhaustively. Such scenarios
can be generalised in terms of a PSL property which covers the whole test input
space. To obtain the PSL property, the structure of the scenario defined by the
Given-When-Then keywords is mapped to an implication property. While the
antecedent of the implication property is filled with the step definition code of
all When-steps of a scenario, the consequent is filled with the step definition
code of all Then-steps of scenario. In this way, the verification intent of the test
scenario is captured in a PSL property. A property is generated as follows.

Algorithm P (Property Generation). Given a scenario and its step definitions,
this algorithm generates a property for it.
P1. [Sorting step definitions.] The step definition code of every step of the sce-

nario is mapped to the appropriate part of the property.

8 Melanie Diepenbeck et al.

Scenario Outline: Pushing
When the FIFO is empty
And I push <a><a>
And I wait 1 cycle1 cycle
Then the output is <a><a>

(a) Feature file

When /^the FIFO is empty$/ do
$assert(empty);$assert(empty);

end

When /^I push (\d+)(\d+)$/ do |arg||arg|
rst_n = 1;rst_n = 1;
push = 1;push = 1;
pop = 0;pop = 0;

dat_in = argarg;
end

Then /^the output is (\d+)(\d+)$/ do |out||out|
$assert (dat_out === outoutdat_out === outout);

end
(b) Step definitions

vunit fifo(fifo) {
restrict {!rst_n; rst_n};

property pushing = always
{emptyempty
&& rst_n == 1&& rst_n == 1
&& push == 1&& push == 1
&& pop == 0&& pop == 0 ;;
stable(rst_n)stable(rst_n)
&& stable(push)&& stable(push)
&& stable(pop)&& stable(pop)
&& stable(dat_in)}&& stable(dat_in)}

|->
{dat_out == prevprev(dat_indat_out == prevprev(dat_in)};

assert pushing;
}

(c) Resulting property

(t = 0)

(t = 0)

(t = 0)

(t = 0)

(t = 0)

(t = 1)

<a>

<a>

Fig. 4. From a scenario to a generalised property

P2. [Resolve dependencies.] Since inputs and outputs need to be related, the
parameters used to set the test input data inside the step definition must
be replaced by the placeholder variable from the scenario.

P3. [Timing.] Timing information from all step definitions needs to be extracted.
Every statement of the step definition code is assigned to one time step.

P4. [Test semantics.] In order to follow the same semantics as in the test, the
property is extended by expressions that ensure the test semantics.

P5. [Assembling.] Assemble all statements of the antecedent and the consequent
to SERE expression using the timing information of step P3 and the addi-
tional test expressions of step P4.

Figure 4 illustrates the briefly sketched algorithm P. All statements in Fig. 4(b)
that have a grey background will be inserted into the appropriate part of the
property, depending on whether the step is a When or Then-step, as described
in step P1. The last statement of the second step definition is left out, because
it only assigns test input data.

After that the dependencies between the inputs and the outputs are resolved.
For this purpose, the implicit information of the glue code is used. The glue code

Behaviour Driven Development for Tests and Verification 9

is the part of the scenario and the step definitions that relates the input and out-
put signals with placeholders such as <a>. Placeholders correspond to selected
test input data. Since the same placeholder variables are used to target the same
inputs and outputs in the scenario, it is possible to resolve the dependencies in
the step code. In Fig. 4(b) the parameters arg and out are substituted by the
placeholder <a>. This is indicated by the solid arrows that connect the parame-
ters of the step definitions with the placeholder <a> in the scenario. Both mark
the same input dat_in. For this reason, the parameter out can be replaced by
the input dat_in in the last step definition, which is indicated by the dashed
arrow.

For timing consideration each statement is annotated with a current time t.
The timing of the statements can be seen in Fig. 4(b) on the left side of each
statement. The predefined Timing sentence “And I wait t cycles” increments
the current time step.

Before the complete property can be assembled, it is necessary to consider
the test semantics first. While testing, the input signals are assigned impera-
tively. A new time step does not change the value of the signals unless explicitly
specified. Since the imperative semantics of test code is not implicitly considered
in properties for verification, these test semantics need to be ensured explicitly.
For signals that do not change, a stable-expression is inserted to ensure the
value of the signal stays the same. These statements can be seen in the resulting
property in Fig. 4(c).

In the last step, the property is assembled using all gathered informations.
The timing informations gathered in step P3 is used to assemble the SERE
expression for the antecedent and consequent. This can be seen in Fig. 4(c) in the
antecedent of property pushing where a ’;’ is added between the expressions
of the first and the second time step. In the antecedent the second time step
consists of all stable-assignments of all unchanged signals.

SEREs provide a concise and flexible way to express complex properties, in
particular when compared to the initial approach in [13], which only allowed the
translation of rather simple test cases. For instance, in this style, the generalisa-
tion of an if-then-else statement can be represented as follows:

{{{condition} & {if_assigns}} | {{!condition} & {else_assigns}}}

3.2 Limitation of Test Generalisation into Properties

The method to generalise properties as discussed in the previous section cannot
be applied to all scenarios. Limitations of the approach are listed in the section,
and two types of test cases that lead to invalid properties are illustrated.

Example 4. Consider the exemplary generalisation of the scenario for an addition
operation of the ALU in Fig. 5. Figure 5(a) shows a valid scenario for this
requirement. The step definitions for this scenario are given in Fig. 5(b). The
first two step definitions set the inputs to the values from the examples table.
When this test is generalised the design inputs a_i and b_i are detected as inputs

10 Melanie Diepenbeck et al.

Scenario Outline: Adding
When I set the 1st operand to <a>
And I set the 2nd operand to
And I want to add these
Then the output should be <c>
Examples:

a	b	c
10	15	25
20	15	35
-20	15	-5

(a) Feature file

WhenWhen /^I set the 1st operand to
(\d+’b\d+)$/ do |arg|

a_i = arg;
end

AndAnd /^I set the 2nd operand to
(\d+’b\d+)$/ do |arg|

b_i = arg;
end

AndAnd /^I want to add these$/ do
signed_i = 1;
func_i = 4;

end

ThenThen /^the result should be
(-?\d+)$/ do |arg|

$assert(result_o === argarg);
end

(b) Step definitions

property addition_signed = always
{signed_i==1 && func_i==4} |-> {result_o == ?? };

(c) Resulting property

1

2

3

4

Fig. 5. Missing input-output-relationship

that can have arbitrary values. The fourth step definition compares the result of
the design output with the given value for <c> in the table. But the assertion of
the design output result_o cannot be generalised since <c> cannot be mapped
to anything in the design. That is because no input-output-relationship is known.
This is shown in the property of Fig. 5(c) where arg is replaced by a question
mark. Although <c> is the addition of <a> and , the relation is never explicitly
stated. Therefore this scenario can not be generalised and would be skipped.

The designer could make this scenario generalisable when she restates the last
step to “Then the output should be the addition of <a> and ” and creates a
complying step definition for it that explains the relation.

Then /^the result should be the sum of (-?\d+) and (-?\d+)$/
do |arg1, arg2|

$assert(result_o === arg1 + arg2);
end

There might also be test cases where generalisation does not yield a useful
property. This is often the case when the relationship of the design input signals
is relevant.

Example 5. Consider the relation operator ‘<’ of the ALU module. A typical
scenario for an acceptance reads as follows:

Behaviour Driven Development for Tests and Verification 11

Scenario Outline: less than
When I set the first operand to <a>
And I set the second operand to
And I use the less-than operator
Then the output should be true
Examples:

a	b
10	15
400	512
-40	15

(1)

The property that is being generalised from this scenario and the correspond-
ing step definitions is:

property less_than = always {signed_i==1 && func_i==13} |-> {result_o==1};

Although the property can be generalised it will fail when verifying it against
the implementation. The relationship of the inputs a_i and b_i cannot be de-
rived from the test case. A specific counter example for this property is that the
design input a_i is set to 7, while b_i is set to 0. Therefore a_i (respectively
<a>) is greater than b_i (respectively). Again, this relationship has only
been stated implicitly in the examples table. This is why the property will fail
when considering arbitrary values of <a> and .

In this case, the user needs to make the relationship explicit by adding it as
an assumption. This can be done using Given-sentences. In the above example,
the designer can fix the property by adding the sentence “Given <a> is less than
” to the beginning of the scenario. This Given-sentence is then translated to
a global assumption, using an assume directive in PSL:

property is_less_than = always {a_i < b_i};
assume is_less_than;

The refactoring of scenarios can lead to a better code inspection and therefore
improves the design understanding. In general, it is easy to rephrase the scenarios
in order to apply property generalisation. But it may also be desirable to treat a
scenario as a normal test case. We offer this possibility by annotating a scenario
with a tag indicating it must not be generalised.

3.3 Specifying Properties

As motivated in the previous section, the property generalisation approach has
its limitations. However, when disabling property generalisation for certain sce-
narios, an exhaustive consideration of the input space is no longer guaranteed.
As an alternative, we extended the features to contain standalone properties next
to scenarios. They work like scenarios with the difference that step definitions do
not contain test code but PSL code to build the property. Consequently, prop-
erties are checked using an automatic formal verification tool and not executed

12 Melanie Diepenbeck et al.

Property: Incrementing
When the FIFO is not empty
And I push an element
And I wait 1 cycle
Then the number of elements has increased

(a) Property

When /^the FIFO is
not empty$/ do

Verilog::add_antecedent do
!empty

end
end

When /^I push an element$/ do
Verilog::add_antecedent do

rst_n == 1 && push == 1
&& pop == 0

end
end

Then /^the number of elements
has increased$/ do

Verilog::add_consequent do
elems == prev(elems) + 1

end
end

(b) Step definitions

Fig. 6. Implication property

as part of a test bench. On the level of the natural language requirements, there
is no difference between plain properties and test cases.

A natural language property can be specified in two different ways: (1) as
an implication property similar to the generated properties given by the Given-
When-Then-structure or (2) as an invariant property without using the provided
structure.

Specifying natural language implication properties. In the following we
illustrate how to specify natural language implication properties. The structuring
of this type of properties is very similar to the specification of scenarios.

Example 6. Figure 6(a) shows how to write an implication property that states
that the number of elements of a FIFO is increased whenever an element is
pushed. The property looks very similar to a scenario which is used for testing,
but instead of writing test code, the desired behaviour is expressed with PSL
code. The step definitions in PSL are given in Fig. 6(b).

The PSL property code is written in a Verilog flavour. To build the property,
the designer specifies for which part of the property, i.e. antecedent, consequent,
or assume, the given PSL code is written. For each part an API command is
provided.

Although this information could in principle be generated from the appro-
priate keywords (When as antecedents, Then as consequents, and Given as as-
sumes), it is not generated automatically, so that properties can be written more
flexible. In some cases those keywords are not suitable at all as described in the
following section.

Specifying natural language invariant properties. When an implication
structure is not needed to express a property, the usual When and Then keyword
may be superfluous.

Behaviour Driven Development for Tests and Verification 13

When the FIFO is not full
And I push an element
And I wait 1 cycle1 cycle
Then the number of elements has increased

(a) Feature file

Then /^the FIFO is not full$/ do
$assert(!full!full);

end
When /^I push an element$/ do
Verilog::add_antecedentadd_antecedent do

rst_n == 1 && push == 1 && pop == 0rst_n == 1 && push == 1 && pop == 0
end
end
Then /^the number of elements has increased$/ do
Verilog::add_consequentadd_consequent do

elems == prev(elems) + 1elems == prev(elems) + 1
end
end

(b) Step definitions

vunit fifo(fifo) {
restrict {{!rst_n; rst_n}};

property incrementing = always {
{!full!full} &
{rst_n == 1 && push == 1 && pop == 0}rst_n == 1 && push == 1 && pop == 0}

} |=>|=> {
{elems == prev(elems) + 1elems == prev(elems) + 1}

};

assert incrementing;
}

(c) Resulting property

Fig. 7. Implementation

Example 7. As an example for a simple invariant, this property fixes the maxi-
mum amount of elements that can be stored in the FIFO.

Property: Invariant
* The number of elements in the FIFO is at most 4.

(2)

The following step definition contains the PSL code for the property, stating
that the number of elements shown at output elems will at most be 4:

Then /^the number of elements in the FIFO is at most 4\.$/ do
Verilog::add_antecedent do

elems <= 4
end
end

In this case it may seem that a comment to a PSL property would also
suffice to describe the property, but the difference is that the natural language
description also serves as a specification. Therefore the invariant property is an
important part of the feature description of the design.

Assembling the property. The property code in the step definitions needs to
be assembled to a correct property in PSL syntax in order to be checked against
the implementation. Similar to the property generalisation, the PSL code from
the antecedent parts and the consequent parts of the step definitions are mapped
to the antecedent and the consequent of the resulting property, as can be seen
in Fig. 7.

The PSL code of each step is joined for the antecedent and consequent block,
respectively. If the property code of the antecedent (respectively consequent)

14 Melanie Diepenbeck et al.

Table 1. Examples used to evaluate the new flow

Design #Scenarios #Properties #Gen. Properties

FIFO 7 4 5
m1_alu 22 19 8
counter 1 4 1
hamming 6 5 2

occurs in the same time step, they are assembled as parallel sequences using the
non-length matching and ‘&’ operator. Steps in consecutive cycles are treated
using the concatenation operator ‘;’ between the statements as it is done in the
generalisation.

In the property in Fig. 7, the timing is explicitly stated by one of the steps
that separates the antecedent and consequent blocks. Using the non-overlapping
suffix implication operator ‘|=>’ in the generated property, it is expressed that
the consequent is expected to hold one cylce after the last cycle of the antecedent.

The first step definition in the example in Fig. 7 is particularly interesting,
since it is written in Verilog test code. This example shows that it is additionally
possible to reuse sentences that are used in acceptance tests. To add this test
code to the resulting property it is necessary to generalise the statement. The
step definition code is assumed to belong to the antecedent block due to the
When keyword and inserted into the antecedent as it is done in the property
generalisation.

Because assume-blocks describe global restrictions, an independent property
is assembled for every assume-block given in a property, which is then assumed
in the generated PSL code. This is analogous to the transcription of the Given-
sentences. This is not shown in the example in Fig. 7.

4 Discussion

In this section we discuss the new flow which has been implemented on top of the
cucumber tool in Ruby. We use WoLFram [14] as the underlying model checker.
Our approach was applied to several examples which are listed in Table 1. The
table states the number of specified scenarios and properties that have been used
to drive the implementation in the first two columns. The third column states
the number of properties that could be generalised from the specified scenarios.
Every functionality of each example is verified using properties that have either
been written or been generalised from the specified scenarios.

In the following we discuss the advantages that arise with the new proposed
flow by referring to some of the examples on which we applied our approach. The
first point to be noticed is the previously explained limitation of the property
generalisation which is described in Sect. 3.2. In the proposed approach of [13]
the generalised properties were the only possibility to formally verify the design.
Therefore, it was sometimes necessary to rephrase the scenario or add a new

Behaviour Driven Development for Tests and Verification 15

Scenario Outline: and operation
When I set the first input to <a>
And I set the second input to
And I use the AND operation
Then the result is the logical

AND of <a> and
Examples:

a	b
2’b11	2’b00
2’b01	2’b10
2’b00	2’b00
2’b11	2’b01

Property and operation
When I want to and two operands
Then the result is the logical AND

Fig. 8. Scenarios vs. Properties

step in order to create a valid property. While this is generally easy, it is rather
uncommon when defining tests. In this case, the direct mapping from a scenario
to a property is a convenient alternative.

In Fig. 8 the specification of scenarios and properties for the logical AND
operation of the ALU example can be compared. It is apparent that stating
the requirements in a scenario is more long-winded than the specification of
the requirement as a property. This shows an advantage of this approach since
requirements can be described more concisely which improves the discussion with
stakeholders. This could be observed while specifying tests for the 17 functions
of the ALU.

Also some requirements cannot be easily stated just using scenarios. Con-
sider the invariant from the previous section that stated that the FIFO can only
contain at most 4 entries.

Property: Invariant
* the number of elements in the FIFO is at most 4

In order state this invariant as acceptance tests, the designer would need to
write several scenarios. At least one that states that the FIFO can contain 4
elements and another one that states that the FIFO will not take a fifth ele-
ment after four elements have been inserted. This is very laborious and not very
concise. This observation has an important implication on the original idea of
BDD; defining properties as “acceptance tests” completes the aspect of behaviour
driven development.

However, it is not just that scenarios and properties can be defined in the
same document and then tests and verification is used separately. It is even
possible to use steps from scenarios that were only designed for testing in the
specification of properties. The significance of this became very evident while ap-
plying the approach on the examples of Table 1. While implementing the FIFO
one third of the step definitions in properties were reused from test scenarios.

16 Melanie Diepenbeck et al.

Even complete properties were defined using only steps from scenarios, but in-
stead of resulting in executable test code creating a valid provable property.

5 Related Work

A first step in this direction has been presented in [13]. But this approach is
one-sided since it only supports a test-based approach that generalises prop-
erties. Our new approach additionally supports a property-based BDD which
goes hand in hand with the previously presented test-based BDD approach. It is
also enhanced by a more advanced property generalisation that supports a more
complex test bench design. Both tests and verification are the main driver for
the implemented design.

Baumeister proposed an approach of a generalisation of tests to a formal
specification in [15]. His work considers Java as target language where the spec-
ification is checked using generated JML. The drawback is that the approach
does not facilitate an automatic generalisation of tests. In [16] a property driven
development approach is presented where a UML model is developed together
with a specification and tests in a TDD manner and OCL constraints are being
added to the UML models while generalising test cases. But this approach is not
implemented.

Agile techniques for hardware design are heavily discussed in several blog
post [17]. One of the most promising approaches that was presented is SVUnit [3],
which is a unit test framework created for SystemVerilog that enables TDD for
circuit design.

The combination of formal techniques and agile design has been considered
in [4]. There, Henzinger et al. propose a paradigm called “extreme model check-
ing”, where a model checker is used in an incremental fashion during the de-
velopment of software programs. Another approach is called “extreme formal
modeling” [18]. In contrast to our work, a formal model is derived first, which
can then be used as a reference in the implementation process. The technique
has also been applied to hardware [5].

6 Conclusions

We proposed a new BDD based flow that combines testing and verification in a
seamless manner using natural language tests and properties as starting point
for the design. For this purpose we introduced a new element for defining prop-
erties in natural language and supported the assembling of PSL code to valid
properties that can be used for verification. This approach helps designers to
write properties by starting from natural language. Our new flow supports the
idea of completeness driven development (CDD) [19] by also defining properties
as a starting point.

Further research will explore how to generate tests from properties written
in BDD style. This can be useful to speed up regression tests during the design,
when the formal verification of global properties would take too long. Future

Behaviour Driven Development for Tests and Verification 17

work will extend the specification language for properties to make scenarios and
properties more expressive and to help the designer in writing properties more
easily, especially if he or she is not a verification engineer.

Acknowledgments.

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck project DR 287/23-1 and by the Graduate School SyDe,
funded by the German Excellence Initiative within the University of Bremen’s
institutional strategy.

References

1. Beck, K.: Test Driven Development. By Example. Addison-Wesley Longman,
Amsterdam (November 2003)

2. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. The Pragmatic Bookshelf (January 2012)

3. Morris, B., Saxe, R.: svunit: Bringing Test Driven Design Into Functional Verifi-
cation. In: SNUG. (2009)

4. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model check-
ing. In: International Symposium on Verification: Theory and Practice. Volume
2772 of LNCS., Springer (2003) 332–358

5. Suhaib, S., Mathaikutty, D., Shukla, S., Berner, D.: Extreme formal modeling
(XFM) for hardware models. In: Fifth International Workshop on Microprocessor
Test and Verification MTV04. (2004) 30–35

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking with-
out BDDs. In: Tools and Algorithms for Construction and Analysis of Systems,
Springer (March 1999) 193–207

7. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In Jr., W.A.H., Johnson, S.D., eds.: FMCAD. Volume 1954 of
Lecture Notes in Computer Science., Springer (2000) 108–125

8. Bradley, A.R.: SAT-based model checking without unrolling. In Jhala, R., Schmidt,
D.A., eds.: VMCAI. Volume 6538 of Lecture Notes in Computer Science., Springer
(2011) 70–87

9. Accellera: Accellera property specification language reference manual, version 1.1.
http://www.pslsugar.org (2005)

10. Pnueli, A.: The temporal logic of programs. In: FOCS, IEEE Computer Society
(1977) 46–57

11. Eisner, C., Fisman, D.: A Practical Introduction to PSL (Series on Integrated
Circuits and Systems). Springer, Secaucus, NJ, USA (2006)

12. Soeken, M., Wille, R., Drechsler, R.: Assisted behavior driven development using
natural language processing. In: TOOLS. (2012) 269–287

13. Diepenbeck, M., Soeken, M., Grosse, D., Drechsler, R.: Behavior driven develop-
ment for circuit design and verification. In: Int’l Workshop on High Level Design
Validation and Test Workshop (HLDVT). (Nov 2012) 9–16

14. Sülflow, A., Kühne, U., Fey, G., Grosse, D., Drechsler, R.: WoLFram – A word level
framework for formal verification. In: Proceedings of the IEEE/IFIP International
Symposium on Rapid System Prototyping. RSP ’09, IEEE (2009) 11–17

18 Melanie Diepenbeck et al.

15. Baumeister, H.: Combining formal specifications with test driven development. In:
XP/Agile Universe. (2004) 1–12

16. Baumeister, H., Knapp, A., Wirsing, M.: Property-driven development. In: Soft-
ware Engineering and Formal Methods, 2004. SEFM 2004. Proceedings of the
Second International Conference on, IEEE (2004) 96–102

17. Johnson, N., Morris, B.: AgileSoC. http://www.agilesoc.com/ (2012)
18. Suhaib, S.M., Mathaikutty, D.A., Shukla, S.K., Berner, D.: XFM: an incremental

methodology for developing formal models. ACM Trans. Des. Autom. Electron.
Syst. 10(4) (2005) 589–609

19. Drechsler, R., Diepenbeck, M., Große, D., Kühne, U., Le, H.M., Seiter, J., Soeken,
M., Wille, R.: Completeness-driven development. In: International Conference
on Graph Transformation. Lecture Notes in Computer Science, Springer Berlin
Heidelberg (2012) 38–50

