
Compiled Symbolic Simulation for SystemC?

Vladimir Herdt1 Hoang M. Le1 Daniel Große1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{vherdt,hle,grosse,drechsle}@informatik.uni-bremen.de

Abstract—Ensuring the correctness of SystemC virtual pro-
totypes is indispensable. For such models, existing symbolic
simulation approaches are based on interpreting their behav-
ior. In this paper we propose a major enhancement called
Compiled Symbolic Simulation (CSS). For more scalable state
space exploration, CSS augments the DUV to integrate the
symbolic execution engine and the Partial Order Reduction based
scheduler. Then, a standard C++ compiler is used to generate a
native binary, whose execution performs exhaustive verification
of the DUV. An extensive experimental evaluation demonstrates
the potential of our approach.

I. INTRODUCTION

In todays Electronic System Level (ESL) [1] design flow,
Virtual Prototypes (VPs) play a very important role. They
are essentially an abstract representation of the entire hard-
ware platform and serve as reference for embedded software
development and hardware verification. For the creation of
VPs, which are composed of abstract models of the individual
IP blocks, the C++-based language SystemC [2], [3] has
been established as a standard. By virtue of their impact on
the design flow, these abstract SystemC models should be
thoroughly verified.

For this verification task, simulation-based approaches are
still the main work horse due to their scalability and ease-of-
use. However, in contrast to formal verification, they cannot
prove the absence of errors and often miss corner-case bugs.
Recently, symbolic simulation approaches [4], [5], [6] have
been shown to be very effective for formally verifying Sys-
temC. Such an approach essentially combines symbolic exe-
cution [7] with Partial Order Reduction (POR) [8], [9]. This
combination enables complete exploration of the state space
of a Design-Under-Verification (DUV), which consists of all
possible values of its inputs and all possible schedules (i.e.
orders of execution) of its (typically) asynchronous SystemC
processes.

? This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project EffektiV under contract
no. 01IS13022E and by the German Research Foundation (DFG) within the
Reinhart Koselleck project DR 287/23-1 and by the University of Bremen’s
graduate school SyDe, funded by the German Excellence Initiative.

The existing symbolic simulators are commonly interpreter-
based, i.e. they interpret the behavior of the DUV statement
by statement. An interpreter-based symbolic simulator man-
ages directly the execution state (i.e. the DUV state and the
scheduler state) and update it according to the semantics of
the to-be-interpreted statement. The main advantage of this
approach is the ease of implementation. Especially, when a
conditional branch is encountered or multiple orders of exe-
cution of runnable processes are possible during the symbolic
simulation, cloning the current execution state for further
exploration is required and can be straightforwardly imple-
mented. The trade-off for this convenience is the relatively
low performance of the overall verification, which becomes
clearer when symbolic simulation is applied to large models,
e.g. the barebone of a VP.

In this paper, we propose Compiled Symbolic Simulation
(CSS) to tackle this performance issue and make the following
contributions:

1) We describe a source code instrumentation technique –
the main novelty of CSS – that augments the DUV to
integrate the symbolic execution engine and the POR
based scheduler. The augmented DUV can then be com-
piled using any standard C++ compiler, leveraging its
efficient code optimizations, to create native binary code.
This binary, when executed, can achieve the complete
state space exploration much faster than interpreter-
based techniques.

2) We incorporate a set of optimization techniques (e.g.
path merging) tailored for CSS to improve the perfor-
mance further.

An extensive set of experiments including comparisons with
existing approaches demonstrates the benefits of CSS.

II. RELATED WORK

SystemC formal verification has been an active research
area in the last few years. In addition to symbolic simulation,
there are also a handful of other formal verification approaches
for SystemC. We refer to the Related Work section of [10]
for a detailed review of these works. Notable approaches
include KRATOS [10] and SCIVER [11]. The main model
checking algorithm in KRATOS is performed on an intermedi-
ate representation called threaded C. The algorithm combines
an explicit scheduler and symbolic lazy abstraction. POR is
also integrated into the explicit scheduler to prune redundant
schedules. Furthermore, KRATOS supports the transformation
of a SystemC DUV into sequential C code. SCIVER also
performs a similar transformation in the first step, then for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICCAD ’16, November 07-10, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4466-1/16/11...$15.00

DOI: http://dx.doi.org/10.1145/2966986.2967016

verification, it applies high-level induction on top of existing
C model checkers.

Although the C code produced by KRATOS and SCIVER
is executable, its execution only explores a randomly chosen
path in the whole verification state space. The code is rather
meant to be processed by a C model checker, which will
explore all feasible execution paths exhaustively. To the best
of our knowledge, SPIN [12] is the only verification tool that
currently also supports compiled verification. SPIN translates
a model in its input language Promela into an executable C
program. Translation from SystemC to Promela has also been
considered [13], [14]. In contrast to our symbolic approach,
the program generated by these approaches, when compiled
and executed, performs explicit model checking on the original
Promela model.

III. PRELIMINARIES

A. Intermediate Representation for SystemC

SystemC is essentially a C++ class library that includes an
event-driven simulation kernel with non-preemptive semantics.
The structure of a SystemC design is described with ports
and modules, whereas the behavior is described in processes
which are triggered by events. SystemC provides three types
of processes with SC THREAD being the most general type,
i.e. the other two can be modeled by using SC THREAD.

For formal verification, before dealing with the state space
of a SystemC DUV, a front-end is required to translate it to
a formal model. If one only wants to focus on efficient state
space exploration, a popular approach to avoid the need to
handle the full complexity of C++ is to employ an intermediate
representation, such as the threaded C subset [10] or the
Intermediate Verification Language (IVL) for SystemC [6].

In this paper, we also follow this approach and use the
Extended Intermediate Verification Language (XIVL) pro-
posed in [15]. Essentially, XIVL provides modeling primitives
for SC THREADs (called threads for simplicity), events and
corresponding synchronization functions (i.e. wait and notify
in different variants). Boolean and integer data types of C++
together with all arithmetic and logic operators are supported.
Conditional goto statements are used to model the control flow
of a thread. For verification purposes, the functions assume and
assert as well as the construct ?(type) to model symbolic value
are provided. Furthermore, XIVL also supports OOP features
such as classes, inheritance, virtual methods with overrides
and dynamic dispatch. These features allow to capture the
established modeling styles of SystemC virtual prototypes
more naturally. Fig. 1 shows a simple XIVL program with
a single thread that iteratively computes the sum for a given
symbolic input value n. This will serve as the running example
in the remainder of this paper.

XIVL offers the same simulation semantics as the SystemC
kernel [2]. Essentially, one of the runnable XIVL threads will
be non-deterministically selected. This thread is then executed
non-preemptively until it finishes or suspends itself by calling
wait. This causes a context switch back to the scheduler, which
can again select another runnable thread. If no runnable thread

1 int n;
2 int sum;
3
4 thread A {
5 int i = 0;
6 loop:
7 if (i >= n) goto

end_loop;

8 i += 1;
9 sum = sum + i;

10 wait_time(1);

11 goto loop;
12 end_loop:
13 }
14
15 main {
16 sum = 0;
17 n = ?(int);
18 assume (n <= 9);
19 start;
20 assert (sum <= 45);
21 }

Fig. 1. Basic XIVL example.

is available, the scheduler performs pending delta or timed
notifications accordingly to activate waiting threads.

B. SystemC Symbolic Simulation

SystemC symbolic simulation as proposed in [6], [4], [5]
combines symbolic execution with complete exploration of all
process schedules.

Symbolic execution analyzes the behavior of each individual
SystemC process pathwise by treating inputs as symbolic val-
ues. Along an execution path, XIVL statements are interpreted
as updates to the current DUV state. This state is represented
by a set of symbolic expressions and a path condition PC,
which must be satisfied by the expressions. The interpretation
of each conditional goto statement is as follows: the execution
path s is forked into two independent paths sT and sF due
to two possible evaluations of the condition c. The PC for
each path is updated accordingly as PC(sT) := PC(s) ∧ c
and PC(sF) := PC(s) ∧ ¬c. An SMT solver is used to
determine if sT and sF are feasible, i.e. their PC is satisfiable.
Only feasible paths will be explored further. For verification
purposes, assume(c) adds c to the current PC to prune
irrelevant paths and assert(c) calls an SMT solver to check
for assertion violation, i.e. PC ∧ ¬c is satisfiable.

The scalability of symbolic simulation can be improved
if visiting redundant process schedule is avoided. This is
accomplished by integrating POR techniques. Essentially, each
process is separated into multiple transitions. A transition is a
list of statements that is executed non-preemptively following
the SystemC semantics. Thus every process has a currently
active transition, which is runnable, iff the process is runnable.
The first transition begins at the first statement of the thread.
Subsequent transitions continue right after the context switch
of the previous transition. POR requires a dependency relation
between transitions. Intuitively, two transitions t1 and t2 are
dependent, if the two possible orders of execution t1t2 and
t2t1 lead to different results. In SystemC context, t1 and t2
are dependent if one of the following holds: 1) they access the
same variable with at least one write access, 2) one immedi-
ately notifies an event that the other awaits, 3) a transition is
suspended by the other. Transition dependencies are used at
runtime to compute a subset of runnable transitions, called a
persistent set [8], in each state. Exploration of transitions, and
hence processes, is limited to the persistent sets.

The basic symbolic simulation approach for SystemC de-
scribed above can be improved in various ways, for example,

XIVL Program

C++ Program

Instrumented
XIVL Program

Scheduler

SMT Layer
Native Binary

Dependency
Relation

Callstacks

Global Env.

Kernel

Path Condition

Guard Condition

Auxilliary Data

+ common
utility functions

Execution States

resume -thread /
forkable branch

access/
modify

smt types and operations /
satisfiability checks

context
switch

1

2

3

4

Automatic
Translation

C++
Compiler

Fig. 2. CSS Overview

[16] uses model checking to compute a stronger dependency
relation, [17] applies symbolic subsumption checking to detect
cycles in the symbolic state space, etc. In the following, we
present another major enhancement, that is also complemen-
tary to existing improvements.

IV. COMPILED SYMBOLIC SIMULATION

An overview of the proposed approach is shown in Fig. 2.
The starting point is an XIVL program, which is an intermedi-
ate representation of the SystemC DUV. Please note that the to-
be-verified properties are already embedded into this program
by means of assertions. Our approach first automatically trans-
lates the XIVL description into an executable C++ program,
then invokes a C++ compiler to produce a native binary.
Executing the binary equates to verifying the properties on the
XIVL model with symbolic simulation. To accomplish this,
several symbolic simulation components must be integrated
into the XIVL-to-C++ translation. In the following, we discuss
the main parts of the generated C++ program, which is also
shown on the right hand side of Fig. 2.

A. Generated C++ Program Overview

Essentially such a C++ program consists of four parts:
1) The scheduler; 2) The instrumented XIVL program; 3)
The SMT layer; 4) The declaration of data structures to
store and manipulate execution states. The symbolic execution
engine (SEE) is located inside the instrumented program. This
interacts with the scheduler, the SMT layer and execution
states via API functions to perform the state space exploration.

At each point of time during the execution, only one
execution state is considered active. The scheduler provides
API functions for managing a set of execution states including
cloning (implemented as deep-copy) and swapping the cur-
rently active execution state. This allows to explore different
independent paths, which arise due to process scheduling
decisions and forking in symbolic branches. The scheduler
selects which runnable thread or which direction of a branch
to be executed next. It will also backtrack when execution

1 // callframes allow to preserve local execution state
across context switches

2 struct Callframe {
3 unsigned ip;
4 void *env;
5 Callable fn;
6 void *result;
7 };
8 struct GlobalEnv { // global variables
9 SmtExpr n;

10 SmtExpr sum;
11 };
12 struct LocalEnv_A { // local variables of thread A
13 SmtExpr i;
14 };
15 // specialized callframe for every thread/function
16 struct Callframe_A : public Callframe {
17 LocalEnv_A env_A;
18 Callframe_f(Callable fn) {
19 env = &env_A;
20 result = nullptr; // threads have no return value
21 ip = 0;
22 fn = f;
23 }
24 };

Fig. 3. Data structures for the CSS transformation of thread A to store and
access local and global program state (located in block 2 of Fig. 2)

of a path finishes and thus eventually explore all different
alternatives. Furthermore, the (static) dependency relation is
computed during translation process and embedded into the
scheduler to prune redundant schedules.

The SMT layer provides API functions to create symbolic
data types, to manipulate symbolic expressions and to check
their satisfiability. Essentially, it is a convenience layer on top
of underlying SMT solvers.

The main function in the C++ program will first create the
scheduler and then setup an initial execution state. Essentially
this step registers all threads and the XIVL main function so
that they can be selected by the scheduler to execute. In the
following we will discuss the data structures for execution state
and the instrumented XIVL code together with its interactions
with other components in more details.

B. Data Structures for Execution State

The first component of an execution state is the state of
the simulation kernel (i.e. status of threads and events). The
second component is the state of the XIVL model itself. This
is further divided into global and local program state.

All global variables are stored in a GlobalEnv class. In
Fig. 3, Line 8-11 show the definition of this class for the XIVL
example. The local program state consists of the local state of
all functions declared in the XIVL description. Please note that
the local state of a function must be saved when a blocking
statement (i.e. wait) is executed. This local state is stored in a
callframe to preserve it across context switches. A callframe
contains the following data: a) the label identifier to resume
execution at the interrupted point (IP); b) a local environment
(env), which stores arguments and local variables; c) a pointer
to a callable object, which is either a global function or a pair
of class instance and member function, which allows to call
the actual function; d) a generic pointer to the result stored in
the local environment, so a callee can retrieve it.

1 #define GLOBAL(VAR) active_state->global_env->VAR
2 bool dir;
3 void thread_A(Callframe *c) {
4 // retrieve local state and goto beginning or last

context switch location
5 LocalEnv_A *env = (LocalEnv_A *)c->local_env;
6 switch (c->ip) {
7 case 0: goto A_start;
8 case 1: goto A_branch_1;
9 case 2: goto A_interrupt_1;

10 default: assert (false);
11 }
12 A_start:
13 // create a constant SMT expression (compatible with

symbolic SMT expressions)
14 env->i = smt_create(0);
15 loop:
16 // store location in case of context switch
17 c->ip = 1;
18 A_branch_1:
19 dir = active_state->on_branch(smt_ge(env->i,

GLOBAL(n))); // check feasibility, might fork
20 if (dir) goto end_loop;
21 env->i = smt_add(env->i, smt_create(1));
22 GLOBAL(sum) = smt_add(GLOBAL(sum), env->i);
23 c->ip = 2;
24 wait_time (1); // modifies kernel state and

triggers context switch
25 A_interrupt_1;
26 goto loop;
27 end_loop;
28 A_end:
29 c->ip = -1;
30 }

Fig. 4. CSS transformation of thread A (located in block 2 of Fig. 2), which
has been defined in Fig. 1

For every function a custom local environment and call-
frame class is statically generated during translation. The def-
inition of the specific callframe class for the thread function A
from the example is shown in Line 16-24 in Fig. 3.

C. Instrumented XIVL Code

Essentially, the original XIVL code is instrumented in three
steps: 1) Adding context switch logic to interact with the
scheduler; 2) Replacing native data types and operations with
symbolic types and operations; 3) Transforming branches to
support exploration of both paths in case of a symbolic branch
condition. The last two points are parts of the integrated SEE.
In the following we will describe context switch, symbolic
branch and function call execution in more detail.

a) Context Switch Logic: For each defined function, a
label is associated with every statement that can interrupt the
execution of the function. Every label is assigned a unique
identifier within the function. A switch block is added at the
beginning of the function to dispatch execution to the correct
label. This block for our thread A can be seen in Line 6-11 of
Fig. 4 Before the dispatching, the local state of the function
is retrieved (Line 5).

The corresponding label is added right after the blocking
statement. An assignment of the IP of the callframe to the ID
of this label is added right before the blocking statement. This
allows to resume it after the context switch. These steps can
be seen in Line 23-25.

b) Executing Symbolic Branches: The branch in Line 7
of Fig. 1 is translated into the code block shown in Line 17-20
of Fig. 4. Please note that at this point, native data types and

1 enum BranchDirection {True, False, None};
2 enum BranchStatus {BothFeasible, TrueOnly, FalseOnly};
3
4 bool ExecutionState::on_branch(const SmtExpr::pointer

&cond) {
5 // initially *branch_direction* is set to None
6 if (branch_direction == BranchDirection::True) {
7 // remove scheduler annotation, update path

condition accordingly and return concrete
scheduler decision

8 branch_direction = BranchDirection::None;
9 PC = smt->bool_and(PC, cond);

10 return true;
11 } else if (branch_direction ==

BranchDirection::False) {
12 // similar to above branch direction
13 branch_direction = BranchDirection::None;
14 PC = smt->bool_and(PC, smt->bool_not(cond));
15 return false;
16 }
17 assert (branch_direction == BranchDirection::None);
18
19 // let the scheduler decide in case both branches

are feasible
20 BranchStatus::e b = check_branch_status(cond);
21 if (b == BranchStatus::BothFeasible) {
22 forkable = true;
23 // back to the scheduler, unwind potentially

nested function
24 throw ContextSwitch(active_state);
25 } else {
26 return b == BranchStatus::TrueOnly ? true : false;
27 }
28 }

Fig. 5. Execution of branches with symbolic conditions (located in block 4
of Fig. 2)

operations have been already replaced with symbolic types
and operations (prefixed with smt in Fig. 4); The on branch
function of the active execution state is called with the
symbolic condition and will always return a concrete boolean
value. This result is stored in a designated global variable dir
which is used as concrete condition in the branch.

The on branch function is shown in Fig. 5 and works as
follows: First the SMT layer is invoked to check if both
paths are feasible in Line 20. If only one path is feasible,
then the corresponding concrete boolean value - true for the
goto path and false for the fallthrough path - is returned in
Line 26 and the execution will continue normally without any
interruption. In case both paths are feasible, the execution
state will be marked as forkable and a context switch back
to the scheduler will be triggered (Line 22-24). The scheduler
will then clone the execution state and decide which path to
continue. The decision will be annotated on the execution
state and execution is resumed by calling the interrupted
thread function of A. The execution of thread A will directly
continue at the branch statement since the IP of A has been
updated to point to the branch label in Line 18 during the
first execution. The on branch function is called again, but
this time the execution state is marked with a concrete path
decision annotated by the scheduler, i.e. either the condition
in Line 6 or Line 11 will be true. In this case the function will
ignore the symbolic condition, but instead simply return the
scheduler decision and update the path condition of the active
execution state accordingly. Additionally, it will remove the
scheduler annotation from the state to ensure correct handling
of the next branch.

1 void f_impl(Callframe *c) {
2 LocalEnv_f *env = (LocalEnv_f *)(c->local_env);
3 // ... other instructions
4 env->result = smt_add(env->a, env->b);
5 goto f_end;
6 // ... other instructions
7 }
8 void f_wrapper(SmtExpr a, SmtExpr b) {
9 // wrapper allows correct callframe allocation in

case of virtual functions
10 Callframe_f *c = new Callframe_f(a, b, f_impl);
11 active_state->push_callframe(c);
12 f_impl(c);
13 }
14
15 // implementation function does not return here when

interrupted, thus store resumption point
16 c->ip = LABEL_ID(f_call_1);
17 f_wrapper(env->y, env->z);
18 f_call_1:
19 // retrieve the result and cleanup
20 Callframe *c_f = active_state->pop_callframe();
21 env->x = *((SmtExpr *)(c_f->result));
22 delete c_f;

Fig. 6. Relevant instructions for a function call (located in block 2 of Fig. 2)

c) Function Calls: Every function is translated into two
parts: a wrapper and an implementation. The original function
call is replaced by a call to the wrapper function which in turn
calls the implementation. An example for the function call x
= f(y,z) = y + z is shown in Fig. 6. The wrapper (Line 8)
has the same signature, except the return type, as the original
function. It allocates a callframe based on the given arguments
and delegates to the implementation function (Line 12 and
Line 1). A wrapper is used because the target function is not
statically known when calling a virtual function.

The implementation function contains the logic of the origi-
nal function, instrumented similarly as the example for thread
A has demonstrated (see Fig. 4). Once the implementation
function finishes, execution will continue at the callee in
Line 18. The callee can retrieve the result value from the
callframe and is responsible for cleanup (Line 20-22). A label
is placed after each function call (Line 18) and the IP is set
to that label right before the function call (Line 16) to resume
execution correctly in case the implementation function is
interrupted. In this case execution control will return to the
scheduler and unwind the native C++ stack. The scheduler is
then responsible to call the callee once the implementation
function finishes.

V. OPTIMIZATIONS

This section presents two optimizations tailored for CSS.
First, we show how to efficiently integrate existing path
merging methods into our CSS framework. This integration
is important, since path merging is a powerful technique to
alleviate the path explosion problem during symbolic execu-
tion. Second, we show how to generate more efficient code by
employing a static analysis to determine which operations can
be executed natively. This can further speed-up the execution
of concrete code parts significantly.

A. Path Merging

This section describes how to use path merging in combina-
tion with CSS. Our algorithm assumes that branches and loops

1 env->x = smt_bv(32, true);
2 START_LABEL:
3 if (resume_merging) {
4 resume_merging = false;
5 dir = resume();
6 } else {
7 dir = begin(smt_gt(env->x, smt_create(0)));
8 }
9 if (dir) {

10 env->x = assign(env->x, smt_mul(env->x,
smt_create(2)));

11 } else {
12 env->x = assign(env->x, smt_create(1));
13 }
14 if (end()) {
15 resume_merging = true;
16 goto START_LABEL;
17 } else {
18 resume_merging = false;
19 }
20 env->x = smt_add(env->x, smt_create(1));

Fig. 7. Branch merging example (located in block 2 of Fig. 2)

that should be merged are marked, e.g. by placing @mergeable
before them in the input code. This is a flexible approach that
allows both an automatic analysis, e.g. see [18], and an user
to annotate mergeable branches. This allows a fine grained
tuning between merging and explicit exploration. Merging can
reduces the number of explored paths exponentially at the cost
of more complex solver queries. A limitation of our current
algorithm is that merging SystemC kernel parts is not yet
supported, since the kernel state is available in explicit form.
Therefore, loops and branches that update kernel state will
not be merged. In the following we will discuss our branch
merging approach in more detail. Loop merging in principle
works similar to branch merging and thus will not be further
discussed.

a) Merging Branches: Consider an example program
x=?(int); if (x > 0) { x = 2*x; } else { x = 1; } x++;,
where the if-statement is marked as mergeable. This code is
transformed into the code block shown in Fig. 7. The initial
assignment of x and the increment at the end are not inside
the mergeable block and thus normally translated.

Four functions are involved in the translation of merge-
able branches, for convenience we use short names in this
example: begin, resume, end and assign. They operate on the
currently active execution state. The additional global variable
resume merging is a simple boolean value, similar to dir,
to control execution of the program. It allows to distinguish
between the first and second visit of the branch. Initially it
is set to false. The execution state internally keeps a stack of
triples (GC, status ∈ {none, first, second}, cond) to capture the
execution progress of potentially nested mergeable branches.
GC is the current guard condition and cond the symbolic
branch condition passed to the begin function. Initially the
guard condition is true. On every solver query, it is combined
with the path condition using a logic and operation. There are
two choices when begin is called:

1) Both paths are feasible. The begin function will store the
triple (GC, first, cond) and return true, an arbitrary choice to
start execution with the if-path. Backing up the guard condition
and branch condition allows to use them for the exploration

of the else-path, as they can be modified during execution of
the if-path. Furthermore, GC is updated as GC ∧ cond. The
assign(lhs, rhs) function will return a guarded expression of
the form GC ? rhs : lhs, i.e. update lhs to rhs based on
GC. Finally the end function will notice that status=first, i.e.
branch merging is active, so it will update status to second and
return true. Therefore, execution will jump to the beginning
of the branch again, but this time the resume function will
be entered. It will retrieve the stored GC and cond from the
top of stack, update GC as GC ∧ ¬cond and return false to
execute the else-path. Since status=second, the end function
will pop the top of stack and return false, which leaves the
mergeable branch.

2) Only one path is feasible. The begin function will push
(GC, none, cond) on the stack and return the path direction.
The assign function will either return GC ? rhs : lhs, in case
this branch is nested within another active mergeable branch,
i.e. GC 6= true, or just rhs, otherwise. The end function
will recognize status=none, thus pop the data triple and return
false.

B. Native Execution

We provide two native execution optimizations to improve
the execution performance of instructions and function calls,
respectively: 1) A static analysis is employed to determine
variables that will never hold a symbolic value. Such variables
can keep their native C++ type. Furthermore, native operations
can be performed on native datatypes. They are significantly
faster than (unnecessarily) manipulating symbolic expressions.
2) To optimize function calls, a static analysis is employed to
determine which functions can be interrupted. Essentially, a
function is interruptable, iff it contains an interruptable state-
ment, i.e. wait time/event or branch with symbolic condition,
or any function it calls is interruptable. Callframe allocation
and cleanup is not required for a non-interruptable functions,
therefore a function call x = f(y, z) is not instrumented but
executed unmodified on the native stack. In the following we
describe our first static analysis, which determines symbolic
variables, in more detail.

a) Computing Maybe-Symbolic Variables: This static
analysis starts by computing two pieces of informations: 1)
A root set of variables which are symbolic. 2) A dependency
graph between variables, where an edge from a to b denotes
that b maybe symbolic if a maybe symbolic. Then all variables
reachable from the root set following the dependency graph
can potentially be symbolic. Such variables are called maybe-
symbolic The other variables can keep their native data types.

The root set S contains all variables where a symbolic value
is directly assigned, e.g. x =?(int) will add x to S. Similarly
∗p =?(int) will add the pointer p to S, since it needs to have
SmtExpr* type.

The dependency graph G essentially records assignments
between variables. Here pointer and non-pointer types are
treated differently. The assignment a = b will add an edge
from b to a. On the other hand, if a is symbolic, then b
can still be a native type, since b can simply be wrapped

in an smt create call to be compatible with a. This allows
native execution of other operations involving b. If a pointer
is involved in the assignment, e.g. p = &a, then an edge in
each direction is added to G. The reason is that there is no
conversion available that allows to assign a int* to SmtExpr*.
Therefore a must also have a symbolic type. Argument and
return value passing during function calls is handled the same
way as assignments.

b) Determining Symbolic Operations: Once the set of
maybe-symbolic variables is known, it can be used to compute
the set of symbolic expressions by walking the expression trees
bottom-up. This allows to determine which operations need
to be performed by the symbolic execution engine and which
can be natively executed. For example consider the expression
a < b+ 1, where a is symbolic and b is not. Then b+ 1 will
first be natively executed and then converted to a symbolic
value. Finally the < operation will be executed symbolically.

VI. EXPERIMENTS

We have implemented the proposed CSS together with the
optimizations and evaluated it on an extensive set of bench-
marks. The evaluation also includes comparisons to state-of-
the-art tools. We employ Z3 v4.4.1 in the SMT Layer and
compile the generated C++ programs using Clang 3.8 with
−O3 optimization. All experiments were performed on an
Intel 3.5 GHz machine running Linux. The time and memory
limit has been set to 2000s and 6GB, respectively. In the
following tables all runtimes are given in seconds. T.O. (M.O.)
denotes that the time (memory) limit has been exceeded. The
column V (Verdict) denotes if the benchmark is bug-free, i.e.
safe (S), or contains bugs (U). Thus, if a runtime can be
reported for a tool on a benchmark with (without) bug, it
means the tool terminated successfully and detected the bug
in the benchmark (confirmed its correctness) as expected.

A. Native Execution Evaluation

Our first experiment demonstrates the benefits of native exe-
cution over interpretation in context of symbolic execution. We
compared CSS with KLEE [19], the state-of-the-art symbolic
executor for C, which includes a highly optimized interpreta-
tion engine for the LLVM IR. The results are shown in Table I.
For CSS, we show the compilation time (column Compile)
and include it into the total runtime (column TOTAL) to make
the comparison fair. The upper half of the table shows pure
C benchmarks, for which KLEE is directly applicable. The
iterative and recursive benchmarks perform some lightweight
symbolic computation in 4 (small) and 400 (large) million
iterations/recursive calls, respectively.

The lower half of Table I shows SystemC benchmarks.
Since KLEE cannot directly handle SystemC semantics, we
applied a sequentialization scheme similar to [10], [11]. For
a fair comparison, we limited the state space to a single
arbitrary process schedule, otherwise KLEE would perform
very poorly because it does not support POR. Both KLEE and
CSS are then applied on the same sequentialized programs
available in C or XIVL, respectively. These sequentialized

TABLE I
NATIVE EXECUTION EVALUATION (RUNTIMES IN SECONDS)

Benchmark V KLEE CSS
TOTAL Compile

iterative-small S 4.60 0.62 0.61
iterative-large S 444.64 0.84 0.62
recursive-small S 104.77 0.65 0.61
recursive-large S M.O. 0.85 0.61
mem-slave-tlm-bug.500K* U 15.16 0.81 0.74
mem-slave-tlm-bug.5M* U 144.56 0.83 0.58
mem-slave-tlm-sym.500K* S 17.17 10.91 0.71
mem-slave-tlm-sym.5M* S 164.65 113.17 0.65
pressure.40M* S 23.03 0.82 0.58
pressure.400M* S 220.74 3.08 0.59

benchmarks are marked with *. For scalability investigation,
we also varied the size of the benchmarks, indicated by the last
number in benchmark name with K=thousand and M=million.
In these cases, that means the number of loop iterations and
the maximum simulation time.

Overall, CSS shows significant improvements over KLEE.
The mem-slave-tlm-sym benchmark performs in every loop
iteration heavier symbolic computations, which are not op-
timized by native execution. Therefore, the benefit of CSS is
less pronounced.

B. Comparison with Existing SystemC Verifiers

a) Freely Available Benchmarks: Table II shows a com-
parison between CSS with Interpreted Symbolic Simulation
(ISS), basically a reimplementation of the symbolic simulation
technique described in Section III-B, and the state-of-the-
art abstraction-based verifier KRATOS [10]. The benchmarks
are freely available and commonly used to compare SystemC
formal verification tools (see e.g. [10], [6]). The comparison
with KRATOS is mainly to confirm that our ISS implemen-
tation is reasonably fast. Generally, the obtained results are
consistent with the results reported in [6]. Again, we also
varied the size of the benchmarks for scalability investigation.
The compilation times are already integrated into the CSS
runtimes. In general they are negligible for longer running
benchmarks. For CSS, improvements of several orders of
magnitude can be observed. In one case CSS is unable to verify
the up-scaled pressure benchmark, since our POR algorithm is
unable to limit the exponential growth of thread interleavings
due to complex dependencies. This problem can be solved by
employing a stronger POR algorithm or combine CSS with a
stateful exploration.

b) Real-World Virtual Prototype Models: This second
comparison was performed on two larger real-world SystemC
VP models: 1) An extended version of the Y86 CPU [20],
which implements a subset of the instructions of the IA-32
architecture [21]. 2) A TLM model of the Interrupt Controller
for Multiple Processors (IRQMP) of the LEON3-based VP
SoCRocket, partly developed and used by the European Space
Agency [22].

Since both models extensively use object oriented program-
ming features as well as arrays, KRATOS is not applicable
and thus omitted from the comparison. The results are shown

TABLE II
COMPARISON WITH EXISTING SYSTEMC VERIFIERS ON PUBLICLY

AVAILABLE BENCHMARKS (RUNTIMES IN SECONDS)

Benchmark V ISS KRATOS CSS
jpeg-p6-bug U 2.57 T.O. 1.29
mem-slave-tlm-bug.50 U 2.74 T.O. 0.84
mem-slave-tlm-bug.500K U M.O. T.O. 19.96
mem-slave-tlm-bug.5M U M.O. T.O. 208.81
mem-slave-tlm-sym.50 S 2.81 T.O. 0.88
mem-slave-tlm-sym.500K S M.O. T.O. 47.96
mem-slave-tlm-sym.5M S M.O. T.O. 479.70
pressure-safe.10 S 7.18 0.41 0.71
pressure-safe.15 S 211.36 1.27 1.42
pressure-safe.40M S M.O. T.O. M.O.
pressure-unsafe.25 U 0.83 31.79 0.67
pressure-unsafe.50 U 0.82 443.08 0.68
simple-fifo-bug-1c2p.20 U 1.33 18.10 0.92
simple-fifo-bug-1c2p.50 U 1.94 1806.62 0.85
simple-fifo-bug-2c1p.20 U 1.45 14.54 0.90
simple-fifo-bug-2c1p.50 U 2.30 434.98 0.84
token-ring-bug2.15 U 1.59 3.74 1.66
token-ring-bug2.20 U 1.92 M.O 1.90
token-ring-bug.20 U 1.07 149.26 1.19
token-ring-bug.100 U 4.20 M.O 3.93

in Table III. For CSS, the first column shows the total runtime.
The next three columns show the detailed breakdown (includ-
ing percentage) of the total time into native execution time,
SMT solving time, and compilation time. In an analogous
manner, the ISS total runtime as well as its breakdown into
interpretation time and SMT solving time are reported. Also
please note that both CSS and ISS explore the state space in
the same order, i.e. they follow the same execution paths and
solve the same SMT queries.

Benchmarks in the upper half only operate on concrete
values (hence the SMT time is not available). The test-
1, test-2 and test-3 are testcases for the IRQMP from the
SoCRocket distribution. The y86-counter benchmarks executes
a computation on the Y86 processor model. As expected, CSS
significantly outperforms ISS here.

The lower half shows results for verification of functional
properties on the IRQMP model. The y86-isr benchmark
combines the IRQMP and Y86 processor model. The Y86
model runs a version of the counter program and furthermore
an Interrupt Service Routine (ISR) is placed in memory. The
IRQMP prioritizes a symbolic interrupt received from the test
driver and forwards it on a signal line to the Y86 CPU. The
CPU stores the received interrupt in its register and triggers
the ISR, which processes and acknowledges the interrupt
using memory-mapped IO over a bus transaction. The other
benchmarks in the lower half verify functional properties of
the IRQMP, in particular that broadcasts are send to all CPUs
and interrupt prioritization as well as masking works correctly.

For the benchmarks in the lower half, notable improvements
in total runtimes can still be observed, although not in the scale
of the previous comparison. The reason becomes clear when
inspecting the detailed breakdown of runtimes. While signifi-
cant improvements of native execution over interpretation are
still visible, the SMT solving times for CSS are only slightly
better. On the other hand, path merging has been shown to be

TABLE III
REAL-WORLD VIRTUAL PROTOTYPE BENCHMARKS (RUNTIMES IN SECONDS)

Benchmark V CSS ISS
TOTAL Execution SMT Compilation TOTAL Interpretation SMT

test-1 S 4.49 0.50 11% - 3.99 89% 79.28 79.28 100% -
test-2 S 4.15 0.23 5% - 3.93 95% 44.52 44.52 100% -
test-3 S 3.88 0.24 6% - 3.64 94% 35.99 35.99 100% -
y86-counter S 0.94 0.12 13% - 0.82 87% 276.70 276.70 100% -

broadcast S 10.54 0.62 6% 6.69 63% 3.23 31% 18.68 10.15 54% 8.53 46%
prioritization-8 S 34.01 0.98 3% 30.22 89% 2.81 8% 114.20 70.58 62% 43.62 38%
prioritization-12 S 497.36 16.96 3% 477.63 96% 2.77 1% T.O. N.A. N.A. N.A. N.A.
masking-regular U 5.69 0.10 2% 2.49 44% 3.10 54% 7.22 4.28 59% 2.94 41%
masking-extended U 7.81 0.36 5% 4.22 54% 3.23 41% 10.69 5.48 51% 5.21 49%
y86-isr S 179.83 30.79 17% 140.14 78% 8.90 5% T.O. N.A. N.A. N.A. N.A.

crucial to avoid path explosion in verifying properties on the
IRQMP design. Solving complex SMT queries, as a result of
extensive path merging, often dominates the total runtime for
these benchmarks. Thus, the overall advantage of CSS over
ISS is less pronounced here.

Also please note that while these real-world SystemC VP
models are still rather small compared to those that can be
verified by simulation-based techniques, we are unaware of
any other symbolic verification approach for SystemC, which
can scale to models of this complexity (e.g. y86-isr).

VII. LIMITATIONS

Even though CSS and further optimizations such as path
merging have remarkably improved the scalability of symbolic
simulation for SystemC, it is still expectedly subject to state
space explosion on large SystemC VP models. The two main
limitations of our CSS approach are as follows. First, the
native execution selection of CSS is currently based on a
static (type) analysis. This prevents optimization in case code
parts, e.g. functions, are executed multiple times with concrete
and symbolic parameters. Second, CSS is currently stateless,
i.e. it does not keep a record of already executed states,
and cannot yet be used to verify safe programs with cyclic
state spaces. It is still to be investigated, how a stateful
symbolic simulation approach, such as described in [17], can
be efficiently incorporated into CSS.

VIII. CONCLUSION

In this paper we have proposed Compiled Symbolic Sim-
ulation (CSS) for improved SystemC verification. In contrast
to existing symbolic simulation approaches CSS is based on
compiled execution instead of interpretation. For a scalable ex-
ploration, the symbolic execution engine as well as the Partial
Order Reduction (POR) based scheduler are integrated into
the DUV. Then a standard C++ compiler is used to generate
a native binary, which will perform an efficient exhaustive
exploration of the DUV. To further improve the efficiency we
have proposed two optimizations tailored for CSS: existing
path merging methods adapted to CSS in order to mitigate the
well-known state explosion problem in symbolic simulation,
and native execution, which can further speed-up the execution
of concrete code parts significantly. The experiments using an
extensive set of freely available SystemC benchmarks as well

as larger real-world SystemC TLM models demonstrated the
efficiency and applicability of our approach. For future work
we plan to investigate the applicability of runtime informations
to select code parts for native execution dynamically and
integrate a stateful exploration into our CSS framework.

REFERENCES

[1] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescrip-
tion for Electronic System Level Methodology. Morgan Kaufmann/Elsevier,
2007.

[2] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666, 2011.
[3] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer, 2010.
[4] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic model checking

on SystemC designs,” in DAC, 2012, pp. 327–333.
[5] C.-N. Chou, C.-K. Chu, and C.-Y. R. Huang, “Conquering the scheduling

alternative explosion problem of SystemC symbolic simulation,” in ICCAD,
2013, pp. 685–690.

[6] H. M. Le, D. Große, V. Herdt, and R. Drechsler, “Verifying SystemC using an
intermediate verification language and symbolic simulation,” in DAC, 2013,
pp. 116:1–116:6.

[7] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[8] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. Springer, 1996.

[9] C. Flanagan and P. Godefroid, “Dynamic Partial-Order Reduction for model
checking software,” in POPL, 2005, pp. 110–121.

[10] A. Cimatti, I. Narasamdya, and M. Roveri, “Software model checking Sys-
temC,” TCAD, vol. 32, no. 5, pp. 774–787, 2013.

[11] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-level
properties of untimed SystemC TLM designs,” in MEMOCODE, 2010, pp.
113–122.

[12] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Software Eng.,
vol. 23, no. 5, pp. 279–295, 1997.

[13] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi, “A SystemC/TLM seman-
tics in Promela and its possible applications,” in SPIN, 2007, pp. 204–222.

[14] D. Campana, A. Cimatti, I. Narasamdya, and M. Roveri, “An analytic evalua-
tion of SystemC encodings in Promela,” in SPIN, 2011, pp. 90–107.

[15] H. M. Le, V. Herdt, D. Große, and R. Drechsler, “Towards formal verification
of real-world SystemC TLM peripheral models - a case study,” in DATE, 2016,
pp. 1160–1163.

[16] N. Blanc and D. Kroening, “Race analysis for SystemC using model check-
ing,” TODAES, vol. 15, no. 3, pp. 21:1–21:32, Jun. 2010.

[17] V. Herdt, H. M. Le, and R. Drechsler, “Verifying SystemC using stateful
symbolic simulation,” in DAC, 2015, pp. 49:1–49:6.

[18] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in
symbolic execution,” in PLDI, 2012, pp. 193–204.

[19] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in OSDI,
2008, pp. 209–224.

[20] A. Biere, D. Kroening, G. Weissenbacher, and C. Wintersteiger, Digitaltechnik
- eine praxisnahe Einführung. Springer, 2008.

[21] IA-32 Architecture Software Developer’s Manual, Intel Corporation, 2003.
[22] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic, “SoCRocket

- A virtual platform for the European Space Agency’s SoC development,” in
ReCoSoC, 2014, pp. 1–7.

