
Trust is good, Control is better: Hardware-based
Instruction-Replacement for Reliable Processor-IPs

Kenneth Schmitz∗† Arun Chandrasekharan∗ Jonas Gomes Filho∗ Daniel Große∗† Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{kenneth, arun, gomes.filho, grosse, drechsler}@cs.uni-bremen.de

Abstract—Fault-free function and defect tolerance are key
requirements for modern embedded systems. To meet time-to-
market constraints, complex IP-components are used to assemble
even more complex semiconductor products. Often, trust is
required since these IPs are developed, verified and tested by ex-
ternal third-party IP-providers. In this work, we focus specifically
on processor-IPs. A method for run-time instruction-replacement
on hardware-level is presented to increase the reliability of
the system. In contrast to existing techniques, our scheme can
easily deal with black-box components and is comparatively
lightweight. Furthermore, it includes an easy to use methodology
for automated and convenient implementation. The results shows
the successful application of this novel technique for reliable
integration of state-of-the-art RISC-based processor-IPs.

I. INTRODUCTION

Modern state-of-the-art semiconductor systems experience a
rapid growth in terms of complexity. Recent studies have shown
that the industry moves towards larger designs and at least 17%
of all surveyed designs incorporate 500 million transistors or
more. As a matter of fact, a large portion of the development
time is spent on verification, i.e. almost 60% are confirmed
in a recent world-wide study summarized in [8]. Since time-
to-market and verification represent conflicting objectives in
this context, it is obvious that the development of the next-
generation systems requires reuse of existing functionality.
This is typically realized by in-house or third-party Intellectual
Property (IP)-components. At this point, the IP-integrator has
to trust the IP-provider’s verification strength and quality. If the
IP-provider did a good job in verifying the IP, it can be used
reliably and the IP-integrator can spend his time and resources
on parts of the system that will provide differentiation.

Since the IP is essentially a black-box from the integrator’s
perspective, dealing with IP related errors increases the effort
of integration. This is the case for processor-IPs in particular.
In general, depending on the category of errors (e.g. design
bug, soft error, aging), different counter-measures exist for
mitigation. With this work we focus on the first class, i.e. func-
tional design bugs on the ISA-level which may have been
missed during the verification phase of the IP-provider. A well
known example is the “FDIV” bug from the Pentium processor.
Addressing these design-bugs on a software-level remains a
hard problem. It often requires hardware-support (e.g. [21])
otherwise it will yield a significant observation overhead as
shown in [6]. Furthermore legacy-code often prevents simple
software-based solutions as some code-portions are beyond the

This work was supported in part by the German Research Foundation (DFG)
within the Reinhart Koselleck project DR 287/23-1 and by the University of
Bremen’s graduate school SyDe, funded by the German Excellence Initiative.
This work was also supported by the DAAD.

software-developer’s control or knowledge, hence this code
should not be modified afterwards. Hence our scheme is fully
transparent to the executed software.

If the problem has not been solved at design time, the only
remaining approaches are those which ensure correctness at
run-time. In this field most of the earlier published work require
detailed insight to the design-data (for more details we refer
to the related work section) which contradicts to the third-
party principle of IP, where no sources are available. As a
consequence, alternatives have been investigated. Primarily,
they propose the encapsulation of the IP to “control” (or
fix) the nested component or the surrounding system. In [3]
a “shield” is synthesized which continuously monitors the
input/output of the design and corrects its erroneous outputs.
This approach, however, is impractical for complex processor-
IPs since a complete property set for the processor is required.
A more general approach has been proposed in [7]. The paper
introduced the concept of a container to be installed around
the IP-block. The container then protects both, the IP and
the environment. As a concrete application the concept was
demonstrated for monitoring and fixing of bus protocol glitches
by essentially synthesizing the respective logic from a property
specification. Based on this concept the work of [5] showed
how to counter a memory disturbance attack following an
extended synthesis strategy.

In this paper we propose a methodology which still follows
the container principle, but focuses on more complex processor-
IPs. For them, the synthesis-based approaches cannot be
used, since a complete property specification of a processor
core is unrealistic and the synthesis results would become
far too complex. In essence, our idea for reliable processor-
IPs integration is to replace failing instructions at run-time
by another set of instructions which gives the equivalent
functionality. We implement this generic scheme for a Reduced
Instruction Set Computer (RISC)-based processor-IP. It matches
the next executed instruction and replaces it instantaneously
by a pre-defined replacement-code.

Our solution is generic in the sense that the replacement is
fully software-specified and it can be provided by programmers,
i.e. the fix is specified in form of instructions and hence no
detailed knowledge of the processor core is required. Moreover,
for user convenience, we provide a Domain Specific Language
(DSL), which is directly used to generate the robust and
reliable replacement mechanism. Overall, our methodology
enables reliable processor-IPs by a hardware-based replacement
approach for fixing erroneous instructions.

To summarize, the main contributions of this paper are:

• Convenient IP-integration methodology for fixing erro-
neous instructions of processor-IPs

• Specification of correction scheme on the programmers
level using a DSL

• Lightweight and very cost-effective approach due to its
low implementation overhead

The remainder of this paper is structured as follows. In
Section II related work is discussed. Our methodology will
be introduced in Section III. Subsequently, in Section IV our
method is demonstrated for a modern RISC implementation.
The achieved results are discussed in Section V. Finally,
Section VI concludes our paper.

II. RELATED WORK

There have been several approaches proposed for design
and use of reliable processor-IPs. Many of these approaches
require design modification and/or detailed internal knowledge
of the processor-implementation. An overview of the relevant
works is given next.

In [14] the multi-compartment concept introduces multiple
protection domains, which enable secure sharing of processing,
memory and other system resources. The approach was
extended consequently for more complex multi-core and shared
memory architectures [13].

A programmable error-detector was integrated to a processor
design in [12] and [15]. Errata signatures and internal signals
are used to detect erroneous instructions and insert appropriate
measurements. The authors propose built-in mechanisms to
avoid an invalid or incorrect system-state.

A state-matcher is implemented in [18] as a part of a Field
Repairable Control Logic, to derive the internal states of the
processor. This is used to correct design errors and circumvent
wrong computations by switching the processor to a degraded
execution mode. Additionally, the authors provide a detailed
discussion on a minimum set of signals needed to determine
the processor’s internal state.

In [17] the framework “CASPAR” has been presented. The
framework deploys hardware-detectors inside the cache-sub-
system to assess the system state. This approach specifically
deals with problems related to multi-core processors as they
often partially share their caches. The idea was shown to be
effective and very lightweight with respect to logic overhead
and performance reduction.

There have also been hybrid approaches that combine
software and hardware such as [16] for a VLIW processor
with a statically scheduled data path.

As mentioned before, most of the approaches proposed so
far require some added functionality to the processor core or
monitoring of internal signals of the processor. However, in
practice, this is mostly not viable due to the cost, effort and
licensing restrictions. In contrast to these white box approaches,
our work treats the processor-IP as a black-box and no internal
signal information or extra functionality is assumed. Moreover,
our approach is automated and the modifications introduced are
transparent to other components of the system and software,
thereby vastly extending the applicability.

DSL-
Compiler

Correction-
ROM-Image

Processor-
Container-
Generator

Processor-Container

DSL-file

Design-
Data

Processor-IP

Glue-Logic

Insn-Screener Addr-Screener

Fig. 1. Processor container generation flow

III. METHODOLOGY

Our approach for integration and reliable operation of the
processor-IP consists on replacing an erroneous instruction at
run-time by another functionally equivalent set of instructions
to “work around” the design bug and related effects. This
is achieved using a hardware encapsulation-scheme called
processor-container, which is generated from the requirements
specified in a DSL. In the following we give a brief overview on
the general flow for the generation of the processor-container.
After this, we explain each component in detail.

The overall flow is depicted in Figure 1. Based on the
Instruction Set Architecture (ISA) of the processor-IP, the user
defines the erroneous instruction and the correction in the
DSL. Subsequently, the DSL-compiler generates a correction-
ROM-image, which holds the replacement-code. The flow
further proceeds to the processor-container generation. Here,
the container-generator processes the design data (e.g. the
interfaces of the processor-IP) and the correction-ROM-image
from the DSL. Both are assembled and the additional circuitry
(building-blocks for detecting and correcting; depicted in form
of puzzle-pieces in Figure 1) is added to generate the final
processor-container.

The whole approach is transparent to the software and to
any other IP involved in the system. Hence, this encapsulated
processor-IP serves as a “drop-in substitution” in the con-
ventional system design flow. This is an important aspect of
our work that clearly differentiates it from previous solutions
reported in the literature.

A. DSL

The primary purpose of the DSL is to provide an easy-to-
use replacement mechanism. A DSL should have two essential
components; a detection segment and correction segment. The
segment for detection essentially answers the question - “what
is the behavior to be detected?”, and the correct section is
the solution to this problem; i.e. “how to correct this error
if its detected?”. It does not provide the full flexibility of a
programming language, but rather it enables the IP-integrator
to specify the requirements concisely.

In this work, the DSL is created towards detecting erroneous
instructions and their correction. Hence, we provide the conve-
nient abstraction from hardware and machine-encoded binary
in terms of the DSL and assembly. This approach has several
advantages, since the IP-integrator does not need to know the
complex details of the processor and the specific instruction-
encoding/decoding schemes. Moreover, this is impossible in
the first place, since the processor-IP is assumed to be a black-
box. Besides, the implementation details are different in each
generation of processor-IP, but the ISA remains consistent. Also
the correction and detection approaches can be easily described

from a procedural way similar to a software application.
Moreover, describing hardware directly is a very challenging
task with considerations on concurrency and specific hardware
architecture. The DSL-compiler addresses all these concerns.
In short, for our methodology the knowledge of the ISA and
basic assembly syntax are the only prerequisites from the
IP-integrator’s standpoint.

The DSL-compiler processes the input description and
generates the correction-ROM-image. The circuitry to match the
erroneous instruction, is generated later by processor-container-
generator. The typical pattern of a DSL is shown below.
DETECT : /∗ e r r o n e o u s i n s t r u c t i o n ∗ /
CORRECT_BEGIN :

/∗ r e p l a c e m e n t code segment ∗ /
/∗ P r o c e d u r e :

check assembly code
backup assembly code
a l t e r n a t e compute assembly code ∗ /

CORRECT_END:
Listing 1. DSL skeleton for container-generation

At first glance, it may look that using assembly instead
of a complete software language (e.g. C/C++) restricts the
scope of the container. However, it has to be noted that the
DSL-compiler directly generates the correction-ROM from
the assembly. Hence, this DSL-based approach has several
advantages in direct comparison to describing the matching-
hardware in an HDL. Moreover, since assembly grants full
control over the processor (e.g. registers, control flow, etc.), a
combination of assembly, embedded to a concise DSL-syntax,
is the best fit.

B. Container-Architecture

The container-generator processes the information from the
DSL-compiler together with the original design-data (e.g. inter-
faces) to generate the final encapsulated IP-core. This container
incorporates all interface requirements of the processor-IP and
implements the necessary hardware for detection and correction
of an erroneous instruction.

To implement this functionality in a modern state-of-the-
art processor1 is a challenging task. It is also important to
note that the processor-IP is treated as a black-box and no
information about the internal states is externally available.
The main complexity arises from the fact that any instruction
sequence observed at the memory interface is not necessarily
executed. During normal operation, these instruction streams
are cached by the included cache hierarchy of the processor.
Data is rather loaded from this local memory (integrated as
part of the processor hardware, hence, not visible from the
outside) than from the main memory. Furthermore, if there is
a cache-miss, the processor transfers a complete memory-page
(as opposed to a single instruction) in a series of memory
burst-read cycles to the cache. Hence, observing an erroneous
instruction at the memory interface does not imply that it is
eventually executed. Additionally, there is a high amount of
non-determinism at this level. There are events like interrupts
and exceptions that alter the normal flow of execution in the
processor significantly.

To cope up with this uncertainty, we have introduced a
two tier architecture in the form of screeners as part of the

1A modern state-of-the-art processor at least contains integrated cache and
pipeline stages.

MUX

Correction-
ROM

A
d

d
re

ss
 S

cr
e
e
n

e
r

D
A

T
A

 (IN
)

Detector

Memory Interface

A
D

D
R

E
S

S

Detector

In
st

ru
ct

io
n

 S
cr

e
e
n

e
r

MUX

D
A

T
A

Processor Interface

D
A

T
A

 (IN
)

A
D

D
R

E
S

S
 (O

U
T

)

Correction-
Vector

Fig. 2. Instruction- and address-screeners

container. The first one, namely instruction-screener, scans
for the erroneous instruction. The second one is the address-
screener. It scans if the address range lies within a dedicated
pre-defined memory range which holds the correction-ROM.
At the current state of development, highly specialized or
non-standard interrupt service routines (ISR) are not entirely
covered by our approach which will be addressed in future
work.

The instruction-screener monitors a sequence of instructions,
but it can only do a one-to-one replacement of the instructions
due to the non-determinism explained before. Hence, we
explicitly disallow any internal synchronization between the
screener instances inside the container. The instruction-screener
and the address-screener act independently, but the combined
action creates the replacement-mechanism. In this way, the
processor is restricted (or allowed) only to work with the
information provided by the container controlled environment.

1) Instruction-Screener: The instruction-screener scans the
incoming instruction stream and replaces an erroneous instruc-
tion with a vector-jump to the location of the correction-ROM.
This is a same-cycle, instruction-to-instruction replacement
scheme and essentially achieved by using hardware comparators
and multiplexers only. Since interruptions (e.g. interrupts,
exceptions, etc.) could modify the sequence of execution at any
time, obviously this vector-jump must not span more cycles
than the erroneous instruction at most, as such a scheme would
affect the spatial and temporal consistency of the instruction
stream. In Figure 2, the instruction-screener is shown. It is a
lightweight hardware logic that monitors the data-path to the
processor.

2) Address-Screener: This component scans the address bus
for the applied address. Since our proposed scheme suggests
the code execution from a correction-ROM, the execution
has to be redirected to this ROM. In typical scenarios, the
location of the correction-ROM is moved to an un-populated
area inside the addressable address-space. If the vector-jump
causes the processor to jump to the address of the correction-
ROM, the address-screener instantaneously feeds the content
of the correction-ROM to the processor. This ROM is compiled
to have the correction routines as given in the DSL. Similar to

instruction-screener, the address-screener is also a multiplexer
logic that switches to a different set of instructions (from the
correction-ROM).

3) Container-Action: The container will engage into opera-
tion only when the replacement is needed. In all other situations,
it will act as a passive monitor. The sequence of operations
leading to the correction of an erroneous instruction can be
explained as follows. If the executed instruction-stream contains
an erroneous instruction, the instruction-screener swaps it
with a vector-jump. If the processor eventually executes this
instruction, the control is transferred to the correction-ROM
address-range. Simultaneously, the address-screener monitors
the address, and as long it detects this address-range, the
data-path is re-routed to take instructions from the correction-
ROM. The correction-ROM is always compiled by the DSL-
compiler in the in form of a standalone (self-contained) function.
Additional control transfer mechanisms are augmented to this
correction-ROM as part of the compilation in order to redirect
the control back to the original instruction-stream once the
correction is completed. Thus, using instruction- and address-
screener, the erroneous instruction is omitted from execution
since it will be consequently removed from the instruction-
stream to the processor-IP. In other words, the container
modifies the environment in which the processor operates,
rather than the processor logic itself.

Although the proposed methodology is fairly easy to use,
some important pitfalls, when attempting a replacement scheme
like this, need to be noted. First of all, the instruction-screener
can monitor a sequence of instructions, but can only do a one-
to-one replacement of the instructions. Therefore, if additional
house keeping is required (e.g. saving the state of some
registers, or checking the status of some operation), it has
to be incorporated as part of the correct section in the DSL.
However, this is not a limitation by itself, since the designer
can be provided with a pre-built library of functions. These
functions can contain code for setting up the safe environment
for the replacement-code or restoring the initial state after
the replacement. Moreover, the retriggering of erroneous
instructions in the correction phase has to be dealt with. Since
there are a wide range of external interrupt- and exception-
mechanisms, the re-triggering of erroneous instructions as part
of these has to be always considered as a possibility in a real
situation.

For successful application of our methodology, two criterion
for the target processor core have to be met. First it should
support an unconditional control transfer instruction to a
reserved memory area where the correction routines are stored.
Second it should have a convenient mechanism to save the
address of the next instruction (the one immediately after
the jump). This address will be later used to return from the
correction routine. These two conditions hold for many of the
modern RISC processor architectures such as MIPS, SPARC,
ARM, RISC-V, PowerPC etc.

At this point, it is important to add a note on generality of
our approach. This methodology is applicable with little or
minor modifications in a variety of scenarios. Building Triple
Modular Redundancy (TMR) schemes for reliable hardware
using replication in time [9], is fairly straight forward with
this approach. In a similar way, the detect section given in
the DSL does not necessarily need to detect an erroneous
condition. However this is not the main focus of this paper

and a detailed discussion on such capabilities is omitted for
the sake of brevity.

IV. CASE STUDY

We use the RISC-V processor architecture [19] for the
demonstration of our methodology. General features of the
RISC-V architecture are 32 general purpose registers, 64-bit
address space (supports other formats also) and architectural
support for position-independent code. Using this architecture
is motivated by several reasons. RISC-V is a modern, high
quality, general purpose ISA based on RISC principles. The
ISA is designed to handle a wide variety of modern high end
embedded systems and computer devices [10]. The architecture
is open source and hence it is particularly suited for academic
work. Further open source implementations of this ISA are
available [11], [4] with a complete set of tools including
software compilers.

We base our case study on one such implementation IP
called Rocket-chip [2]. Rocket-chip is a 64-bit, 5-stage single-
issue in-order pipeline processor. The design has separate L1
and L2 memory caches with 64 entry branch target buffer
(BTB), 256 entry branch history table (BHT) and 2 entry return
address stack (RAS). The memory management unit supports
page-based virtual memory addressing, support for DMA and
other high speed interfaces. Furthermore, this implementation
comes with a facility to automatically generate a cycle accurate
emulator2 along side with the hardware and is described in
Chisel language (Constructing Hardware in SCALA Embedded
Language [1]). Chisel supports advanced hardware design using
parametrized generators, functional programming and object
orientation, and this aids greatly in the development flow.

For demonstration of this case study, we reserve two registers
from the general purpose register list of Rocket-chip. The first
register serves as the link register, the register where the return
address after a successful correction is stored. By design, the
processor updates this register when a branch is taken 3. The
second register holds the base address of the correction routine.
This is required by the architecture of RISC-V since in this
architecture the branch instruction is always relative to the
contents of a register. A direct consequence of this is that
the software compiler, targeted for this methodology, has to
generate binary which leaves two registers of the complete
register list unoccupied. However, this limitation arises only
for the sake of demonstration.

Our experimental setup, as shown in Figure 3, is organized as
follows. An arbitrary instruction in the Rocket-chip is assumed
to be erroneous and this is specified in the DSL along with
the correction code. This is given as the input to our DSL-
compiler that generates the container description. The container-
generator generates the encapsulated processor-IP based on this
description. As part of this experimental setup, a cycle accurate
emulator is also generated along with the processor-container
IP core. We use this emulator for all the experimental purposes.
In our setup all the process up to the emulator generation is
fully automated and the user has to provide only the DSL. A
cross compiler4 is also built based on this description which
can then be usedto compile software programs targeted to

2This emulator is generated as part of the build flow.
3In RISC-V, any register can be provided as the link register.
4We use GNU Compiler Collection - v5.3 in this work.

Cycle Accurate
Emulator

Cycle Accurate
Emulator

GCC
Binutils

GCC
Binutils

Processor-Container
GCC Cross-Compiler

Processor-
Container-
Generator

Results / Log
M cycles / N values

Results / Log
M cycles / N values

Rocket Chip
GCC Cross-Compiler

Rocket Chip Design

Applications:
sorting,
queens,
dijkstra,
dhrystone,
factorial,
sqrt...

sorting,
queens,
dijkstra,
dhrystone,
factorial,
sqrt...

Applications:

H
EX

ELF H
EX

ELF

Des
ig

n-
Dat

a

DSL

Rocket Chip Reference
Encapsulated
Processor-Container

compare

Fig. 3. Complete Experimental Setup

this encapsulated processor. In a similar fashion we build the
cycle accurate emulator and the cross compiler for the original
Rocket-chip processor.

This Rocket-chip processor, the associated emulator and the
cross-compiler serve as the golden reference tools throughout
our experiments. The only difference between the processor-
container cross-compiler and the Rocket-chip cross-compiler
is that the former one uses only 30 registers instead of the full
32 registers for application binary generation.
As mentioned before, in this case study two registers are
reserved exclusively for the container-action and hence this
reduction in the number of registers.

A wide variety of software applications were chosen from
standard benchmark suits and other common programming
tasks and two flavors of binaries are generated out of these;
one with the Rocket-chip cross compiler and the other with the
encapsulated processor-container compiler. These application
binaries are in the ELF format5 and these are converted to
HEX format (ASCII text form of the binary) using GNU
Binary Utilities6. The cycle accurate emulators reads in this
HEX file and executes the application. Thus as shown in
Figure 3, a virtual emulator platform is provided where
compiled applications can be run and compared against each
other.

V. DISCUSSION OF RESULTS

The robust integration of the processor-IP was discussed
such that the main interest for the case study is, to show that
the processor-container scheme works transparently in a variety
of work loads. Hence we chose the integer multiply instruction
from the RISC-V ISA as the erroneous instruction. The multiply
or mulw is a fairly repeated instruction in many common
programs and benchmarks and therefore a huge number of hits
for the container action is anticipated for bug-compensation.
A looped addition-routine is provided inside the DSL as the
correction mechanism for the erroneous multiply instruction.

As expected, the implementation of this addition serves solely
the demonstration purpose. Based on the input-parameters,
the anticipated run time will easily increase. In case of time-
critical applications (e.g. real-time- and safety-critical-systems),

5Executable and Linking Format (ELF) is the default format for executables
and libraries in a Linux Operating System.

6GNU Binutils are the standard tools used in conjunction with GNU
Compiler Collection.

TABLE I
RESULTS SUMMARY

Application Details Reference Processor-container

Rocket Total† Correction‡

Program mulw cycles cycles factor cycles %
n c ĉ c̃

multiply1 20 1594 2888 1.812 936 32.41
sqrt12 20 6057 7847 1.296 1654 21.08
sqrt23 24 6057 8628 1.424 2745 31.82
sqrt34 567 6628 766480 115.642 759712 99.12
factorial15 60 2056 4362 2.122 2258 51.77
factorial26 147 2523 28273 11.206 25772 91.15
scalar7 120 4070 8532 2.096 4410 51.69

Dhrystone8 2005 437212 507433 1.161 68880 13.57

64-queens9 0 5928057 5928507 1.000 0 0
quick-sort10 0 884930 886570 1.002 0 0
reverse-sort11 0 1409719 1410445 1.001 0 0
towers12 0 46267 46799 1.011 0 0
vector-add13 0 37243 37763 1.014 0 0
Dijkstra14 0 7947 9463 1.191 0 0

† Total number of cycles (ĉ) inside processor-container.
‡ Relative number of cycles (c̃) inside correction-ROM.

1: Plain multiplication of two numbers, no further processing.
2, 3, 4: Different input for the Babylonian square-root algorithm.
5, 6: Different parameter values for the factorial program.
7: Computation of dot- and scalar-product.
8, 9: Dhrystone Benchmark [20], 64-queens problem
10, 11, 12: Towers of Hanoi, quick sort and reverse sort programs
12, 13, 14: Vector addition and shortest path algorithm.

more efficient replacements (e.g. common Russian Peasants
multiplication) can be implemented.

Since this replacement is parameter-independent wrt. the
time-domain, the linear overhead can be considered in advance.
This will additionally serve as a stress test with the container
being active in several places with different program conditions.
Hence, the successful completion of programs with the mulw
being substituted with looped additions by the container, is
demonstration such that the container-logic is effective. The
resulting emulator execution trace for the reference Rocket-
chip is compared with the processor-container emulator trace
to check for the successful and corrected completion of the
execution.

The execution results for some of the common programs
is summarized in Table I. All programs are executed until
completion and results are verified to be equivalent. The number
of mulw instructions (n) in the application is provided along
side with the program name. The main comparison in this table

is the number of cycles taken by the reference Rocket design
(c) and the cycles taken by the processor-container (including
CPU, ĉ). Besides the number of cycles inside the container
(ĉ), those executed as part of the correction procedure (in the
table c̃) are also provided in the column “Correction”. The
increased number of cycles as a result of container-presence
and the percentage of cycles executed as part of correction
are also shown in the table. One important aspect to consider
is that even though the software compilations are configured
differently for the Rocket-chip and processor-container variant
(see Figure 3), the number of mulw instructions in both final
binaries is found to be the same. Hence we do not provide
these separately.

The first set of applications do extensive stress-test to the
processor-container as they heavily rely on mulw instruction.
It is notable, that the number of cycles taken by the processor-
container has increased in most of the cases. This has to
be expected when a single mulw instruction (single cycle) is
substituted with a series of instructions and associated load/store
mechanisms. Next, we examined the standard Dhrystone bench-
mark for embedded systems. The percentage of instructions
executed as part of correction routine is about 14%. In addition
we have selected a set of applications which do not contain
mulw instructions, to study the interference incurred due to the
container mechanism. Since these are similar but effectively
different emulators and differently configured compilers, some
difference are anticipated. However, in this case study the
software compiler of the processor-container cannot use the
full register-set compared to default Rocket-chip configuration.
This will have some performance impact, which is reflected in
Dijkstra algorithm for example. Either way, we demonstrate
the successful embedding of a black-boxed processor-IP (i.e.
RISC-V). The minor modification we introduced for the
implementation of this work, can be subsequently ruled out as
soon as this methodology is established.

Finally, we synthesized the processor-container in Xilinx
FPGA and the results are given in Table II. From the table it
is evident that the overhead due to the container is minimal
and this confirms the lightweight nature of our approach.

VI. CONCLUSION

This paper proposed a methodology for reliable black-
box processor-IP integration based on the principle of run-
time instruction replacement. The user specifies the erroneous
instruction and the correction in an easy-to-use DSL at
design-level. Results show the effectiveness of the proposed
solution for a state-of-the-art RISC processor. Our approach is
lightweight and only introduces minimal hardware overhead.
This way, we can overcome the notion of trust towards the IP-
developer’s verification and test methodologies and implement
robust systems composed from IP components.

TABLE II
HARDWARE RESOURCE UTILIZATION

Element Rocket chip Processor-container Increase

Registers 14086 14096 0.07%
LUTs 36906 37173 0.72%
Logic 31461 31728 0.85%

Results from Xilinx FPGA Virtex6 (XC6VLX75T) using ISE 14.7

REFERENCES

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizie-
nis, J. Wawrzynek, and K. Asanovic. Chisel: Constructing
hardware in a scala embedded language. In Design Automation
Conf., pages 1212–1221, 2012.

[2] S. Beamer, H. Cook, Y. Lee, S. Twigg, H. Vo, and A. Waterman.
rocket-chip, 2016.

[3] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang. Shield
synthesis: - runtime enforcement for reactive systems. In Tools
and Algorithms for the Construction and Analysis of Systems,
pages 533–548, 2015.

[4] C. Celio, D. A. Patterson, and K. Asanović. The berkeley out-of-
order machine (boom): An industry-competitive, synthesizable,
parameterized risc-v processor. Technical Report UCB/EECS-
2015-167, EECS Dept., University of California, Berkeley, Jun
2015.

[5] A. Chandrasekharan, K. Schmitz, U. Kühne, and R. Drechsler.
Ensuring safety and reliability of IP-based system design - A
container approach. In IEEE International Workshop on Rapid
System Prototyping, pages 76–82, 2015.

[6] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons,
T. C. Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and
E. Vlachos. Flexible hardware acceleration for instruction-grain
program monitoring. In International Symposium on Computer
Architecture, pages 377–388, June 2008.

[7] R. Drechsler and U. Kühne. Safe ip integration using container
modules. In International Symposium on Electronic System
Design, pages 1–4, 2014.

[8] H. D. Foster. Trends in functional verification: a 2014 industry
study. In Design Automation Conf., pages 48:1–48:6, 2015.

[9] T. Koal, M. Ulbricht, and H. T. Vierhaus. Virtual TMR
schemes combining fault tolerance and self repair. In Euromicro
Conference on Digital System Design (DSD), pages 235–242,
2013.

[10] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Sto-
janovic, and K. Asanovic. A 45nm 1.3 ghz 16.7 double-precision
gflops/w risc-v processor with vector accelerators. In European
Solid State Circuits Conference, pages 199–202. IEEE, 2014.

[11] R. Mullins, G. Ferris, and A. Bradbury. lowRISC: A fully
open-sourced, Linux-capable, RISC-V-based SoC, 2016.

[12] S. Narayanasamy, B. Carneal, and B. Calder. Patching processor
design errors. In Int’l Conf. on Comp. Design, pages 491–498,
2006.

[13] J. Porquet, A. Greiner, and C. Schwarz. NoC-MPU: a secure
architecture for flexible co-hosting on shared memory MPSoCs.
In Design, Automation and Test in Europe, pages 1–4, 2011.

[14] J. Porquet, C. Schwarz, and A. Greiner. Multi-compartment: a
new architecture for secure co-hosting on SoC. In International
Symposium on System-on-Chip, pages 124–127, 2009.

[15] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder,
and J. Torrellas. Patching processor design errors with pro-
grammable hardware. Microelectroics Journal, 27(1):12–25,
2007.

[16] M. Schölzel and S. Müller. Combining hardware- and software-
based self-repair methods for statically scheduled data paths. In
International Symposium on Defect and Fault Tolerance in VLSI
Systems, pages 90–98, 2010.

[17] I. Wagner and V. Bertacco. Caspar: Hardware patching for
multicore processors. In Design, Automation and Test in Europe,
pages 658–663, 2009.

[18] I. Wagner, V. Bertacco, and T. Austin. Using field-repairable
control logic to correct design errors in microprocessors. IEEE
Transactions on Computer Aided Design of Circuits and Systems,
27(2):380–393, 2008.

[19] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. The
RISC-V instruction set manual, volume i: Base user-level ISA.
EECS Dept., UC Berkeley, Tech. Rep. UCB/EECS-2011-62, 2011.

[20] A. R. Weiss. Dhrystone benchmark. History, Analysis, “Scores”
and Recommendations, ECL/LLC, 2002.

[21] M. Xu, R. Bodik, and M. D. Hill. A "flight data recorder"
for enabling full-system multiprocessor deterministic replay. In
International Symposium on Computer Architecture, pages 122–
133, June 2003.

