
Verifying Instruction Set Simulators using
Coverage-guided Fuzzing?

Vladimir Herdt1 Daniel Große1,2 Hoang M. Le1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{vherdt,grosse,hle,drechsle}@informatik.uni-bremen.de

Abstract—Verification of Instruction Set Simulators (ISSs) is
crucial. Predominantly simulation-based approaches are used.
They require a comprehensive testset to ensure a thorough
verification.

We propose a novel coverage-guided fuzzing (CGF) approach
to improve the testcase generation process. In addition to code
coverage we integrate functional coverage and a custom mutation
procedure tailored for ISS verification. As a case-study we apply
our approach on a set of three publicly available RISC-V ISSs.
We found several new errors, including one error in the official
RISC-V reference simulator Spike.

I. INTRODUCTION

In todays design flow Instruction Set Simulators (ISSs) play
an important role in serving as executable specification for
subsequent development steps. Thus, ensuring the correctness
of the ISS is crucial as undetected errors will propagate
and become very costly. The ISS is an abstract SW model
of a processor, typically implemented in C++ to enable a
high simulation performance. Formal methods do not scale to
complete verification and thus simulation-based methods are
employed. They require a comprehensive testset (i.e. stimuli).
Manually writing the testcases is not practical due to the
significant effort required and pure random generation offers
only very limited coverage.

Various approaches have been proposed to improve random
generation of processor-level stimuli. Model-based test gener-
ators use an input format specification to guide the generation
process and can integrate constraints processed by CSP/SMT
solver [1]–[3]. In [4] an optimized test generation framework,
by propagating constraints among multiple instructions in an
effective way, has been presented. [5] proposed to mine pro-
cessor manuals to obtain an input model automatically. Other
notable approaches include coverage-guided test generation
based on bayesian networks [6] and other machine learning
techniques [7].

Since the ISS is a SW model, semi-formal methods based
on dynamic program analysis and constraint solving are appli-
cable. They provide automatic ways to increase code coverage
but are still susceptible to scalability issues [8], [9] or impose

?This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project CONFIRM under
contract no. 16ES0565 and within the project SATiSFy under contract
no. 16KIS0821K, and by the University of Bremen’s Central Research
Development Fund, and by the University of Bremen’s graduate school SyDe,
funded by the German Excellence Initiative.

limitations (wrt. modeling memory access and loops) on the
ISS [10].

Recently, in the SW domain the automated SW testing
technique fuzzing [11] has become a standard in the SW
development flow [12], [13]. Traditional fuzzing methods are
generational, which in spirit are similar to the model-based
generation techniques employed in processor-level verification
and consequently have also been adopted for the verification of
ISSs [14]. More recent fuzzing approaches in the SW domain
employ the so called mutation based technique. It mutates
randomly created data and is guided by code coverage, hence
avoiding the effort to create an input model. Notable represen-
tatives in this Coverage-guided Fuzzing (CGF) category are the
LLVM-based libFuzzer [15] and AFL [16], which both have
been shown very effective and revealed various new bugs [15],
[16].

In this paper we propose to leverage state-of-the-art CGF,
as used recently in the SW domain, for ISS verification. In
addition we propose a novel functional coverage metric (to
complement code coverage) and mutation procedure tailored
specifically for ISS verification to improve the efficiency of
the fuzzer. As a case-study we have implemented our CGF
approach with the proposed extensions on top of libFuzzer
and evaluated it on a set of three publicly available RISC-V
ISSs. We found new errors in every considered ISS, including
one error in the official RISC-V reference simulator Spike.

II. BACKGROUND

A. LibFuzzer: LLVM-based Coverage-guided Fuzzing

LibFuzzer is an LLVM-based coverage-guided fuzzing en-
gine. It aims to create input data (binary bytestreams) in
order to maximize the code coverage of the DUT. Therefore,
the DUT is instrumented by the clang compiler to report
coverage information that is recognized by libFuzzer. Please
note, libFuzzer does not use functional coverage metrics. Input
data is transformed by applying a set of pre-defined mutations
(shuffle bytes, insert bit, etc.) randomly. The input size is
periodically increased.

Technically libFuzzer is linked with the DUT, hence per-
forms so called in-process fuzzing, and allows to pass inputs to
the DUT as well as receive coverage information back through
specific interface functions. Thus, libFuzzer will call the input
interface function defined in the DUT (interface shown in



1 extern "C" int LLVMFuzzerTestOneInput(const
uint8_t *Data, size_t Size) {

2 // allows to run some initialization code
once, first time this function is called

3 static bool initialized =
do_initialization();

4
5 // ... process the input ...
6
7 // tell libFuzzer that the input has been

processed
8 return 0;
9 }

Fig. 1. Interface function that the DUT provides and that is repeatedly called
by libFuzzer (many) times during the fuzzing process.

Fig. 1) and the instrumentation performed by clang will call
these coverage functions.

B. RISC-V

RISC-V is an open and free Instruction Set Architecture
(ISA). The ISA consists of a mandatory base integer instruc-
tion, denoted RV32I, RV64I or RV128I with corresponding
register widths, and various optional extensions denoted as
single letters, e.g. M (integer multiplication and division), A
(atomic instructions), etc. Thus, RV32IMA denotes a 32 bit
core with M and A extensions. For the RV32IMA core all
instructions are 32 bit width and have at most two source
register RS1 and RS2, and one destination register RD. Control
and Status Registers (CSRs) are registers serving a special
purpose. For example the mtvec (Machine Trap-Vector Base-
Address) CSR stores the address of the trap/interrupt handler.
For a comprehensive description of the RISC-V ISA please
refer to the official specifications [17], [18].

III. COVERAGE-GUIDED FUZZING FOR ISS VERIFICATION

This section presents our proposed CGF approach and our
fuzzing extensions tailored for ISS verification: functional cov-
erage metric (definition in Section III-B and instrumentation
to measure it in Section III-C) and a specialized mutator
(Section III-D). Functional coverage complements code cov-
erage and improves the thoroughness of the testset especially
in detecting computational errors (which depend on operand
values and structure). The use-case for our mutator is to
introduce specific instruction pattern into the fuzzing process,
further guiding the fuzzer and allowing the fuzzer to re-use
those pattern in its own mutations and cross-over operations.
We start with an overview.

A. Overview

An overview of our CGF approach for ISS verification is
shown in Fig. 2. Essentially, it consists of two subsequent
steps: First a testset is generated by the fuzzer (upper half of
Fig. 2), then the testset is used to verify the functionality of the
ISS under test (ISS-UT, lower half of Fig. 2) by comparing the
execution results with other reference ISSs (can be multiple).
In the following we describe both steps in more detail.

Bytestream 
(Instructions) 

ELF 
(Testcase) 

Fuzzer 

ELF Template 
(Exec. Frame) 

ISS-UT 
(under Test) 

ELF 
(Testcase) 

ELF 
(Testcase) 

ELF 
(Testcase) 

Testset ISS-UT 
(under Test) 

ISS 
Reference 

Result-1 

Result-2 

Check for 
Equality 

Execution 
Feedback 

load 
and 
exec. 

(Tracing) 

report mismatches 
including crashes 

collect 
Testcase 
on new 
Coverage 

Fuzzer: Update Coverage 
based on Feedback 

inject 
into ELF 
Template 

instrumented 
with tracing Total 

Coverage 

Step 1: Fuzzing Loop (CGF) 

Step 2: Testset Evaluation and selected memory content 
register values 

Fig. 2. Overview on coverage-guided fuzzing (CGF) for ISS verification

1) Fuzzing Loop (CGF): The fuzzer starts with an empty
coverage and empty testset. The fuzzer iterates until the
coverage goal or the specified time limit is reached. In each
step the fuzzer generates a (binary) bytestream. We interpret
this bytestream as a sequence of instructions for the ISS
under test (ISS-UT). Every such bytestream is transformed
into an (ELF-)testcase, by embedding the bytestream into a
pre-defined ELF-template1.

The ELF-template contains prefix and suffix code (execution
frame) that is supposed to be executed before and after the
actual sequence of instructions. The prefix is responsible to
initialize the ISS into a pre-defined initial state. This includes
initializing all registers to pre-defined values to ensure that
all ISS implementations start in the same state. The suffix is
responsible to collect results and stop the simulation. It will
write all register values into a pre-defined region in memory
(can contain additional content beside the register values)
to enable dumping the result of the execution to a file (an
ISS typically provides an operation to dump specific memory
regions), which can be compared.

The testcase is then executed on the ISS-UT. The ISS-UT
generates execution feedback by tracing relevant information.
The tracing functionality need to be instrumented into the ISS-
UT. The fuzzer will analyze the execution feedback and update
its coverage metrics accordingly. We consider structural and
functional coverage. As already mentioned, we present our
functional coverage metrics and the instrumentation to trace
it in Section III-B and Section III-C, respectively. In case the
coverage is increased by executing the testcase, the testcase is
added to the fuzzer testset.

2) Testset Evaluation: After the testset has been generated,
every testcase is executed one after another on the ISS-UT and
other reference ISSs. The results are compared and mismatches
reported. Please note, not all mismatches are necessarily bugs.
The reason is that the fuzzer is not constrained to specific well-
defined subsets of the instruction set but considers all possible
instructions and sequences of instructions (including illegal in-
structions). This behavior is intended to check specifically for

1 Technically, we use a linker script that generates an empty section in the
ELF-template. Then we use objcopy utility with the –update-section argument
to overwrite the empty section with the (binary) instruction bytestream.



uncommon (error-) cases. A common source for mismatches
are differences in configuration. For example the memory
size can be different or some peripheral mapped into the
address space (which can not always be easily changed without
intrusive modifications). A load/store instruction might then
succeed for one ISS and fail for the other. We do not consider
such mismatches to be bugs. Thus, mismatches need to be
analyzed to check if they relate to bugs in the corresponding
ISS.

B. Functional Coverage Metric

We define generic functional coverage metrics for registers
and immediates that are applicable to a large set of ISAs. In
the following we introduce functional metrics that 1) reason
about the instruction structure, and 2) the operand values:

1) Structure Metrics: A testset satisfies the coverage met-
ric R2 iff for every instruction with one source (RS1) and
destination register (RD) at least once the case RD = RS1
and at least once the case RD 6= RS1 is observed. The
coverage metric R3 extends R2 to instructions operating on
three registers (another source register RS2 is used). For R3,
each of the four following cases should be observed for every
such instruction:

• RS1 = RD ∧ RS2 = RD
• RS1 6= RD ∧ RS2 6= RD ∧ RS1 6= RS2
• RS1 = RD ∧ RS2 6= RD
• RS1 6= RD ∧ RS2 = RD
R3 can be further extended for ISAs involving more source

and/or destination registers.
2) Value Metrics: The metrics V(Rx) and V(Ix) require that

the Rx register and Ix immediate are assigned at least once to
each special value in {MIN, -1, 0, 1, MAX}, where MIN and
MAX are the smallest and largest possible value of Rx and Ix,
respectively. For immediates, that are interpreted as unsigned
values, e.g. shift amount, the negative values are omitted from
the value set. Both metrics are applicable to every instruction
having the Rx and Ix parameter, respectively. For example
V(RD), V(RS1) and V(I imm) are applicable for the RISC-V
ADDI instruction (addition of register with immediate).

C. Instrumentation for Tracing Functional Coverage

An ISS typically consists of an execution loop that will
fetch the next instruction, decode it, and then execute it. We
instrument the execution step to call begin-fcov-trace and end-
fcov-trace function (before/after the actual execution). Both
trace functions take three arguments: 1) the instruction fetched
from memory, 2) the decoded operation, and 3) a snapshot
of the register values (read-only). Using two trace functions
allows to capture the register state before (source register
values) and after the instruction execution (destination register
value). Please note, immediate values are also captured since
they are encoded in the instruction itself.

D. Custom Mutations

A mutation is applied on a bytestream (i.e. instructions
inside a testcase) and returns a modified bytestream. We

propose an additional mutator tailored for ISS verification.
Our mutator starts at the beginning of the bytestream and
proceeds forward, applying local mutations, until the end of
the bytestream is reached. In each step one of the following
two mutations is performed (randomly selected):

1) Select a random instruction and inject its opcode bits at
the current position into the bytestream, overwriting existing
data. This ensures that a legal instruction is used, but the
parameters (source registers, destination register, immediate
values, etc.) are not modified (still randomized by the fuzzer).
For example the ADDI instruction of the RISC-V ISA consists
of 32 bit (4 bytes) where the bits [11,7], [19,15] and [31,20]
encode the parameters of ADDI: the destination register
(stores the addition result), source register (first operand) and
immediate (second operand), respectively. All remaining ten
bits [14,12] and [6,0] encode the opcode (a fixed value) of
ADDI and hence would be injected in case ADDI is selected.
Optionally, a randomly selected special immediate value can
also be injected into the instruction.

2) Select a random constrained sequence of instructions
and inject it into the bytestream, overwriting existing data.
A sequence is a list of concrete instructions with some
parameters constrained to fixed values and others randomized.
A common sequence is to use two instructions to load a large
constant value into a register by loading the lower and upper
half separately (because typically only small immediates can
be encoded in one instruction). In this case the destination
register is constrained to be the same for both instructions,
but the actual value is randomized (or selected from a set
of special values). Sequences are defined by the verification
engineer and can be specialized for each instruction set.

IV. CASE-STUDY: RISC-V ISS VERIFICATION

As a case study we built our CGF approach on top of
libFuzzer and verify the RV32IMA ISS extracted from the
publicly available RISC-V Virtual Prototype (VP) [19]2. We
denote this ISS as ISS-UT . As reference we use the following
two ISS:

1) Spike, the official RISC-V ISA reference simulator [23].
2) Forvis, an ISS implemented in Haskell aiming to be a

formal specification of the RISC-V ISA [24].
We have found errors in ISS-UT as well as both reference

ISSs. We first describe the evaluation setting and libFuzzer
integration. Then we show our detailed evaluation results.

A. Evaluation Setting and LibFuzzer Integration

We have instrumented ISS-UT with the clang compiler
to trace branch coverage information. We manually (can be
automated by an LLVM pass) added a call to the begin-
fcov-trace and end-fcov-trace function to trace functional

2The VP is implemented in standard-compliant SystemC and TLM-2.0 [20],
[21] and is designed as extensible and configurable platform with a generic
bus system [22]. It integrates a RISC-V RV32IMA core and a PLIC-based
interrupt controller together with an essential set of peripherals. The VP is
available under MIT licence. Visit www.systemc-verification.org for our most
recent VP-based approaches.

www.systemc-verification.org


TABLE I
EVALUATION RESULTS - ALL EXECUTION TIMES ARE REPORTED IN SECONDS - [V1..V7] MEANS ALL 7 ERRORS V1 TO V7 HAVE BEEN FOUND.

Tests / Generator Time
Coverage (measured by instrumenting ISS-UT) Errors found in ISS

(sec.)
Branch Functional Cov.

ISS-UT Spike Forvis
Cov. R1 R2 R3 V(RS1) V(RS2) V(RD) V(I imm) V(I shmt)

T1: RISC-V ISA Tests 2 90.24% 58.57% 61.70% 50.00% 14.29% 2.70% 7.55% 8.33% 100.00% [V1..V3] / /

T2.1: RISC-V Torture 1000 5280 74.30% 2.17% 66.67% 69.23% 58.82% 91.43% 52.17% 9.09% 100.00% V1,V2 / H2
T2.2: 5000 26108 74.30% 2.17% 66.67% 69.23% 58.82% 91.43% 56.52% 18.18% 100.00% V1,V2 / H2
T2.3: 10000 52168 74.30% 2.17% 66.67% 69.23% 58.82% 91.43% 56.52% 63.64% 100.00% V1,V2 / H2

T3: Cov.-guided Fuzzing 32492 100.00% 100.00% 100.00% 100.00% 98.21% 100.00% 81.13% 100.00% 100.00% [V1..V7] S1 H1,H2

if ((op == ADDI) && (instr.RD() == instr.RS1()))
features.add(1);

if ((op == ADDI) && (instr.RD() != instr.RS1()))
features.add(2);

if ((op == ADDI) && (regs[instr.RS1()] == REG_MAX))
features.add(3);

if ((op == ADDI) && (instr.I_imm() == 0))
features.add(4);

// etc ...

Fig. 3. Concept of mapping functional coverage trace information to features.

coverage information before/after executing one instruction,
respectively. The branch coverage information is already rec-
ognized and collected by libFuzzer, and is internally mapped
to unique features (i.e. integer values identifying the coverage
information). We have extended libFuzzer to also support the
proposed functional coverage information, carefully making
sure to generate unique features, i.e. not interfere with the
branch coverage collection3. Conceptually, we implement it
as a chain of consecutive if-blocks matching the cases of the
functional coverage metrics and mapping each case to a unique
feature for every instruction, as shown in Fig. 3.

We generate this code automatically from a python script
based on the RISC-V ISA specification. We also use a slightly
optimized representation based on a switch-case construct to
distinguish different opcodes more efficiently.

We integrated our custom mutator into libFuzzer in a way
to be randomly selected with the same probability as any of
the existing mutators. As discussed in Section III-D we define
instruction sequences to load a random or special value into a
register and also allow to inject special immediate values.

In addition to the metrics defined in Section III-B, we
propose the RISC-V specific metric R1. R1 requires that every
instruction with a destination register (RD) is executed with
the case RD=0 and with the case RD 6=0. This metric is useful
to check that the hardwired zero register is not erroneously
overwritten for some instruction. The metrics V(I imm) and
V(I shmt) cover immediates used in computational operations.

We integrate the official RISC-V ISA tests [25] and the
RISC-V Torture testcase generator [26] in the comparison to
further evaluate the effectiveness of our fuzzing approach. All

3Technically, we essentially added a new tracing collector class and
extended the size of the feature representation data type. This step required
adapting the fuzzer core to use sparse data structures, instead of fixed sized
arrays, due to the increased feature state space.

experiments are performed on a Linux system with an Intel
Core i5 processor with 2.4 GHz and 32 GB RAM.

B. Evaluation Results and Discussion

Table I shows the results. The table is separated into four
main columns. The first column (Tests/Generator) reports
which testset is used or how it has been obtained, respectively.
The second column (Time) shows the time in seconds to
generate (9h timeout for our fuzzer) and execute the respective
testcases. Please note, the RISC-V ISA tests are directed tests
that are hand-written and thus do not require a generation step.
The third column shows the branch- and functional coverage
obtained by running the respective testset. The coverage is
measured based on the instrumented ISS-UT. The fourth and
last column shows which (and how many) errors have been
found by each approach. Table II lists and describes the errors
we have found in some more detail.

Already the RISC-V ISA tests can be very effective in
detecting errors (Table I, row T1). The testset revealed three
errors (V1, V2 and V3) in ISS-UT. Furthermore, the testset
is very compact and thus can be executed very fast. However,
being hand-written, the testset is susceptible to miss relevant
behavior, which is also reflected by the obtained coverage
values. Furthermore, significant manual effort is required in
order to create the testset.

Torture tests reveal one additional error in Forvis (Table I,
rows T2.X). It can be observed that gradually increasing the
testset from 1,000 (Table I, row T2.1) to 10,000 (Table I, row
T2.3) randomly generated tests does only slightly increase the
coverage. The reason is that Torture receives no execution
feedback, hence every test is generated independent of the
previous ones.

Our fuzzer is able to detect all previously shown errors
and finds six additional errors (4 in ISS-UT, 1 in Spike and
1 in Forvis), see (Table I, column ”Errors found in ISS”,
row T3). Most of these errors relate to dealing with different
forms of illegal instructions in different steps of the execution
process. Besides being coverage-guided, a major benefit of our
fuzzer is being not constrained to some specific instruction
subset, as for example Torture (and hence could not detect the
errors our fuzzer did, independent of the number of testcases
generated). In particular the fuzzer operates on the binary
level, thus it can be used to check for errors that might even
be masked by a compiler/assembler (as they do not generate



TABLE II
DESCRIPTION OF ALL ERRORS WE HAVE FOUND IN EACH ISS.

ISS Error description

Spike S1: Decoder error, which allows illegal instructions to be interpreted as FENCE or FENCE.I instruction. The
reason is that not all opcode bits are present in the decoding mask.

Forvis H1: Erroneously allows to access CSRs, representing counters for hardware performance monitoring (e.g. cycle
CSR), from a lower privileged execution mode without first enabling the access (by setting the mcounteren and
scounteren CSR).
H2: The REMU instruction, which computes the remainder of a division, fails because it performs a 64 bit
operation even though the ISS is configured to run in 32 bit mode.

ISS-UT V1: Multiplication erroneously dropping the upper 32 bit of the multiplication result for large operands due to
working on 32 instead of 64 bit operands.
V2: Overwriting the hardwired zero register with a non-zero value (i.e. instruction with destination register RD=0
and non-zero result). Such an instruction is normally not generated by a compiler and thus can be easily missed.
V3: CSR access instructions fail to update the CSR in case the source (RS1, contains value to be loaded into
CSR) and destination (RD, will receive current value of CSR) register is the same, because in this case RS1=RD
is overwritten before it is read.
V4: Undetected misaligned branch instruction due to not four byte aligned immediates. Again, the compiler will
not generate such branches and thus this error can easily be missed.
V5: Illegal CSR instruction has side-effects. A CSR access instruction reads the current CSR value into register
RD and then writes the RS1 register value into the CSR. In case of a read-only CSR the write access fails and
RD is not allowed to be modified.
V6: Illegal jump instruction has side-effects. The jump instruction safes the current program counter into register
RD before taking the jump. However, in case the jump target address is misaligned, RD is not allowed to be
modified.
V7: Various incomplete decoder checks similar to the error found in Spike. The reason is that ISS-UT only
checks the instruction opcodes as far as necessary to uniquely identify each instruction (which is revealed by
random mutations on the opcode bits).

illegal instructions). This also enables to thoroughly check the
instruction decoder unit, which even revealed an error (S1
in Table II) in the RISC-V reference simulator Spike.

It can be observed that our fuzzer maximizes most coverage
metrics to 100% (Table I, row T3). Besides V(RS1), which is
close to 100%, only the V(RD) metric is below at 81%. The
reason is that the value of the destination register depends
on the operand values and the operation. Some result values
might even be impossible for some operations. We believe that
formal methods are required to fully maximize the V(RD)
metric. In total our fuzzer generates a testset with 5,160
testcases. The smallest test consists of 1 instruction and the
largest of 23 instructions with an average of 3 instructions.

V. DISCUSSION AND FUTURE WORK

In our experiments we observed that our CGF approach has
been very effective in finding various errors in the considered
ISSs and maximized most coverage metrics to 100%. One
exception is the V(RD) metric, which is below at 81%. It
depends on the input parameters and thus can be very difficult
to reach with simulation-based methods. To close this remain-
ing coverage gap, we plan to investigate formal (verification)
techniques at the abstraction level of VPs, e.g. [27], [28], to
automatically identify inputs that will cover the missing parts
or infer that the missing parts are indeed unreachable (some

result values may not be possible in combination with some
specific operations).

Another promising direction to complement CGF is to em-
ploy constrained random (CR) techniques. CR techniques [29]
have been very effective for various system-level use cases
covering both functional as well as non-functional aspects,
see for example [30], [31]. It is also possible to integrate
CR techniques with the fuzzer, by using the CR generated
testcases as input seeds for the fuzzer. This might help to guide
the fuzzer towards generating longer test sequences (without
illegal instructions) and at the same time reducing the number
of false-mismatches, i.e. where two ISSs report a difference
which is due to a configuration mismatch as briefly discussed
in Section III-A24. However, the fuzzer still retains the ability
of generating completely random instructions (guided by the
state-of-the-art fuzzing heuristics) hence the ability to cover
rare corner- and error-cases (which has been very effective
in our experiments) that might even be masked by a compil-
er/assembler. For example, the RISC-V Torture test generator
only generates valid instruction sequences and thus would

4We currently use automated debug scripts in case of a result mismatch that
splits the input instruction sequence and repeatedly generates and executes a
new ELF file on both ISSs adding one instruction after another. This allows us
to pin-point the precise location of the mismatch, which in turn greatly reduces
the effort to debug/analyze mismatches (in particular for longer instruction
sequences).



not be able to detect some of the errors that our fuzzer did,
independent of the number of testcases generated by Torture.

Ideas from [32], to cover the values of output operands,
might also be applicable in this context and help in maximizing
our functional V(RD) metric. Also, recently there has been
a lot of interest in integrating machine learning techniques
into the fuzzing process, e.g. [33], [34], which seems very
promising to investigate in our application area.

Another important direction for future work is to evaluate
the effectiveness of stronger coverage metrics. Path coverage
and cross-coverage of functional metrics can be very effective
but at the same time very challenging metrics and often
impractical due to the large feature state space. Therefore, we
plan to consider selective path coverage and (functional) cross-
coverage. These are only applied to selected code regions, e.g.
consider all evaluation paths for each instruction separately in
the ISS but not across instructions, and input operand values.
This can further improve the verification result while still
maintaining scalability.

Finally, we plan to broaden the scope of our evaluation to
integrate further architectures and instruction sets, as well as
apply our CGF approach to analyse the whole platform instead
of limiting the analysis to the ISS component.

VI. CONCLUSION

In this paper we proposed to leverage state-of-the-art Cover-
age Guided Fuzzing (CGF) for ISS verification. We integrated
a novel functional coverage metric (to complement code
coverage) and mutation procedure tailored specifically for ISS
verification. Our extensions complement the code coverage
metric used by CGF and thus improve the efficiency of the
fuzzing process. We have implemented our CGF approach
with the proposed extensions on top of the LLVM-based
libFuzzer and in a case-study evaluated it on a set of three
publicly available RISC-V ISSs. We observed that our fuzzer
has been very effective in maximizing most coverage metrics
and in finding various errors. Fuzzing is particularly useful to
trigger and check for corner- as well as error-cases and can
complement other testcase generation techniques. We found
new errors in every considered ISS, including one error in the
official RISC-V reference simulator Spike. In our discussion
we sketched various directions for future work to further
improve and complement our CGF.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: innovations in test program generation for
functional processor verification,” D&T, pp. 84–93, 2004.

[2] B. Campbell and I. Stark, “Randomised testing of a microprocessor
model using SMT-solver state generation,” in Formal Methods for
Industrial Critical Systems, F. Lang and F. Flammini, Eds., 2014, pp.
185–199.

[3] R. Emek, I. Jaeger, Y. Naveh, G. Bergman, G. Aloni, Y. Katz,
M. Farkash, I. Dozoretz, and A. Goldin, “X-gen: a random test-case
generator for systems and socs,” in HLDVT, 2002, pp. 145–150.

[4] Y. Katz, M. Rimon, and A. Ziv, “Generating instruction streams using
abstract CSP,” in DATE, 2012, pp. 15–20.

[5] W. Ma, A. Forin, and J. Liu, “Rapid prototyping and compact testing
of CPU emulators,” in RSP, 2010, pp. 1–7.

[6] S. Fine and A. Ziv, “Coverage directed test generation for functional
verification using bayesian networks,” in DAC, 2003, pp. 286–291.

[7] C. Ioannides, G. Barrett, and K. Eder, “Feedback-based coverage
directed test generation: An industrial evaluation,” in Hardware and
Software: Verification and Testing, S. Barner, I. Harris, D. Kroening,
and O. Raz, Eds., 2011, pp. 112–128.

[8] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” SIGPLAN Not., pp. 213–223, 2005.

[9] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” SIGSOFT Softw. Eng. Notes, pp. 263–272, 2005.

[10] H. Wagstaff, T. Spink, and B. Franke, “Automated ISA branch cov-
erage analysis and test case generation for retargetable instruction set
simulators,” in CASES, 2014, pp. 1–10.

[11] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, pp. 32–44, 1990.

[12] “Oss-fuzz - continuous fuzzing for open source software,” https://github.
com/google/oss-fuzz, 2018.

[13] “Microsoft security development lifecycle,” https://www.microsoft.com/
en-us/sdl/process/verification.aspx, 2018.

[14] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing CPU
emulators,” in ISSTA, 2009, pp. 261–272.

[15] “libFuzzer - a library for coverage-guided fuzz testing,” https://llvm.org/
docs/LibFuzzer.html, 2018.

[16] “american fuzzy lop,” http://lcamtuf.coredump.cx/afl/, 2018.
[17] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual; Vol-

ume I: User-Level ISA, SiFive Inc. and CS Division, EECS Department,
University of California, Berkeley, 2017.

[18] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2017.

[19] “RISC-V virtual prototype,” https://github.com/agra-uni-bremen/
riscv-vp.

[20] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2011.

[21] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer,
2010.

[22] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and
configurable RISC-V based virtual prototype,” in FDL, 2018, pp. 5–16.

[23] “Spike RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim.
[24] “Forvis: A formal RISC-V ISA specification,” https://github.com/

rsnikhil/RISCV-ISA-Spec.
[25] “RISC-V ISA tests,” https://github.com/riscv/riscv-tests.
[26] “RISC-V torture test generator,” https://github.com/ucb-bar/

riscv-torture.
[27] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Verifying SystemC us-

ing intermediate verification language and stateful symbolic simulation,”
TCAD, 2018, (early access).

[28] ——, “Compiled symbolic simulation for SystemC,” in ICCAD, 2016,
pp. 52:1–52:8.

[29] J. Yuan, C. Pixley, and A. Aziz, Constraint-based Verification. Springer,
2006.

[30] F. Haedicke, H. M. Le, D. Große, and R. Drechsler, “CRAVE: An
advanced constrained random verification environment for SystemC,”
in SoC, 2012, pp. 1–7.

[31] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Towards early vali-
dation of firmware-based power management using virtual prototypes:
A constrained random approach,” in FDL, 2017, pp. 1–8.

[32] M. Aharoni, S. Asaf, L. Fournier, A. Koifman, and R. Nagel, “Fpgen -
a test generation framework for datapath floating-point verification,” in
HLDVT, 2003, pp. 17–22.

[33] “Neural fuzzing: applying DNN to software security testing,” https://
www.microsoft.com/en-us/research/blog/neural-fuzzing/.

[34] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning
for input fuzzing,” 2017, pp. 50–59.

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/riscv/riscv-isa-sim
https://github.com/rsnikhil/RISCV-ISA-Spec
https://github.com/rsnikhil/RISCV-ISA-Spec
https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture
https://www.microsoft.com/en-us/research/blog/neural-fuzzing/
https://www.microsoft.com/en-us/research/blog/neural-fuzzing/

