
ComPRIMe: A Compiler for Parallel and Scalable
ReRAM-based In-Memory Computing

Steffen Frerix∗, Saeideh Shirinzadeh†, Saman Fröhlich∗, Rolf Drechsler ∗†
∗Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
Email: {frerix, froehlich, drechsler}@uni-bremen.de, Saeideh.Shirinzadeh@dfki.de

Abstract—In-memory computing is a promising solution for
the issue of memory bottleneck in current computing systems.
ReRAM is a non-volatile memory technology which natively im-
plements basic logic operations and therefore enables to perform
computational tasks. This allows to realize post von Neumann
computer architectures with merged memory and processor. In
this paper, we propose a fully automated compiler using and-
inverter graphs (AIGs) for a conventional in-memory computer
architecture which supports parallel computation within regular
ReRAM crossbar arrays. The proposed synthesis scheme opti-
mizes crossbar mapping to increase parallelism and lower the
number of memory reads and allocated ReRAM devices which
results in considerable reductions in latency and area of in-
memory implementations. Experimental results reveal minimum
speed-ups of factor 2 compared to recent works while consuming
a fraction of the ReRAM devices.

I. INTRODUCTION

Today’s von Neumann based computer architectures suffer
from a large gap in performance of memory and processor
due to substantially different improvement rates [1]. This
condition known as memory wall is the primary issue in
the performance of current computing systems challenged by
applications dealing with big amounts of data. In-memory
computing alleviates this problem by abolishing the need to
the power hungry and time consuming communication process
between memory and processor as the storage, computation,
and updating are all performed in the same unit.

The intrinsic abrupt switching capability of non-volatile
memory technology devices such as resistive random access
memory (ReRAM) [2] is a promising candidate for realizing
in-memory computing architectures within standard memory
arrays. ReRAM is a nano-scale two-terminal memristive de-
vice [3] whose internal resistance can be switched between two
high and low states designating binary states. Computation
within ReRAM devices has been performed by means of
different primitive logic operations. In [4], it was shown that
material implication can be used in memristive devices to
execute Boolean functions. Logic design within ReRAM ar-
rays is also performed using memristor aided-logic (MAGIC)
NOR gates with an arbitrary number of input variables which
are each stored as a resistance value [5]. In [6], a majority
operation of three with negation, i.e. RM3 = 〈x, ȳ, z〉, was
shown to be natively executable in ReRAM based on the
logical states of its terminals and internal resistance. RM3 is
used as the basic memristive operation in this work as it can be

exploited efficiently on ReRAM crossbar arrays by applying
appropriate voltage levels to bitlines and wordlines.

Besides non-volatility and resistive switching property,
ReRAM provides high scalability, zero standby power, and
CMOS compatibility. This allows implementation of massively
parallelized hybrid in-memory architectures where computa-
tional tasks are performed within banks of regular memory
arrays each corresponding to an independent processing unit.
However, computing a function in such in-memory architec-
tures is performed through sequences of instructions which
have to be executed within a number of cycles. This is in
contrast to conventional CMOS circuits where a combinational
task is carried out by electrical interaction of components
causing only a propagation delay. This makes it critical to
manage computational and read instructions in an efficient
manner by maximizing parallelism and therefore reducing the
length of the instruction set, which is the motivation behind
this paper.

In this paper, we propose an efficient automated compiler for
an in-memory computer architecture based on regular resistive
crossbar arrays. The proposed approach translates arbitrary
Boolean functions represented by and-inverter-graphs (AIGs)
into logic-in-memory instruction sets which are executable by
applying appropriate voltage levels to bitlines and wordlines
of a standard ReRAM crossbar. The proposed compilation
procedure allows execution of bit-level parallel computational
instructions and lowers the number of required reads consid-
erably. Comparisons with the state-of-the-art show significant
improvements with respect to latency and area of the resulting
implementations.

II. PRELIMINARIES

A. Graph-Based Representations

Graph-based representations of Boolean functions play an
important role in synthesis. AIGs are a state-of-the-art struc-
ture for synthesis of Boolean functions used in this work.
In order to keep this paper self-contained, we also briefly
introduce MIGs.

1) AIGs: AIGs [7] are representations of Boolean networks.
The edges represent wires between two input AND gates
which correspond to the nodes. Additionally, the edges can
be complemented to represent inverters between the nodes.
Each terminal node of an AIG corresponds to an input of the
boolean network, while each output node corresponds to an



Sense amplifiers

Column decoders

R
ow

de
co

de
rs

. . .

. . .

. . ...
.

..
.

..
.

. . .

Fig. 1: ReRAM crossbar array

output. Due to their scalability, AIGs play an important role
in logic synthesis.

2) MIGs: MIGs [8] are a graph-based representation of
Boolean functions, where each node represents the three input
majority operation

〈x, y, z〉 = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) .
Edges between nodes represent the connections between ma-
jority operations and can be complemented. MIGs contain
any AND/OR/Inverter graphs including AIGs and allow for
a compact representation.

B. Logic Synthesis with ReRAM
1) Manipulation of ReRAM cells: ReRAM cells are usu-

ally ordered in memory crossbar arrays, where each cell is
connected to a bitline and a wordline. In order to change the
inherent resistive value of a cell, a Voltage V has to be applied
to the corresponding bit- and wordlines.

A memory crossbar array is depicted in Fig. 1. The columns
correspond to bitlines and the rows to wordlines. In order
to change the resistive state of a single ReRAM cell in
such an array, the authors of [9] have introduced a V/2
scheme. To set a ReRAM cell into a low resistive state, the
corresponding bitline is driven to −V/2 and V/2 is applied
to the corresponding wordline using voltage drivers. In order
to not change the resistive state of any other ReRAM cell in
the crossbar array, all other bitlines and wordlines are driven
to GND. This way, the voltage difference between the bitline
and the wordline of the other cells is below V and thus not
high enough to change their state. Putting a cell into a high
resistive state can be done in a similar fashion by applying
V/2 to the bitline and −V/2 to the wordline. V/2 and −V/2
can be interpreted as logic values 1 and 0, respectively.

2) Resistive Majority Operation RM3: A single ReRAM
cell can be seen as a two terminal device with the terminals P
and Q and the internal resistance state Z. A low resistance
state is identified with logic value 1, while a high resistance
state is identified with logic value 0. In order to perform
a resistive majority operation, logic values are applied as
voltages to P and Q. This results in the computation of
RM3(P,Q,Z) = 〈P, Q̄, Z〉 and the result being stored as the
new resistive value Zres = RM3(P,Q,Z) of the same cell
(c.f. [6]). When placed in a crossbar array, the bitline is
connected to Q and the wordline is connected to P. The device
performing the computation is called host cell.

Being able to implement RM3 allows ReRAM crossbar
arrays to compute any given function since the RM3 operation

is universal. Of particular importance is the direct assignment
of the value X to a ReRAM cell Y and the inversion of
X into Y . Both can be performed by two RM3 operations,
respectively:

Inversion Assignment
Y ← RM3(1, 0, Y ) //Y = 1 Y ← RM3(1, 0, Y ) //Y = 1
Y ← RM3(0, X, Y ) //Y = X Y ← RM3(X, 1, Y ) //Y = X

III. RELATED WORK

This section studies some of the state-of-the-art approaches
for synthesis and optimization of in-memory computing sys-
tems using resistive crossbars.

A Programmable Logic-in-Memory (PLiM) computer archi-
tecture was proposed in [6]. PLiM is a fully-programmable
in-memory computing system, which uses ReRAM as both
memory and computational unit. It utilizes a lightweight con-
troller which manages the operations performed on ReRAM
arrays which are all implemented in majority-oriented logic
(i.e. using RM3 and complement operations).

In [10], an MIG-based compiler for the PLiM architecture is
introduced. Since MIGs are not canonical, different MIGs for
the same Boolean function result in different PLiM programs.
The compiler proposed in [10] uses MIG rewriting techniques
and a translation algorithm to optimize the PLiM program
with respect to the expected number of PLiM instructions
and required ReRAM cells. As the PLiM can handle only a
single instruction at each cycle, the length of instruction set is
strongly affected by the number of MIG nodes. Accordingly,
the synthesis procedure in [10] first optimizes the target
MIGs [11] and then selects a node traversal order to lower
the costs in terms of latency and number of required devices.
The compiler only considers computational instructions and
does not aim at reducing the reads.

A synthesis approach for a very long instruction word
(VLIW) architecture using crossbar ReRAM called ReVAMP
was proposed in [12]. ReVAMP uses the RM3 operation simi-
larly to PLiM. ReVAMP supports both read and computational
instructions and allows parallel execution of computations
sharing one operand which have to be performed in the same
wordline. Accordingly, a larger crossbar dimension with a
higher number of columns/bitlines can potentially speed up
the resulting in-memory operations. However, a large number
of bitlines is not always useful as the maximum possible
parallelization is limited by the number of concurrent shared
operands. This effect has been studied in [12] for an MIG-
based delay-focused crossbar mapping in which the latency is
lowered by allocating sufficient area and number of ReRAM
devices.

A framework for synthesis and in-memory mapping of logic
execution (SIMPLE) was proposed in [13] which performs
computations through MAGIC NOR gates [5]. MAGIC pro-
vides stateful logic and hence does not need read instructions.
The latency in this case is only caused by computational steps.
SIMPLE starts with an optimized netlist for NOR gates repre-
senting the target Boolean function and maps it to a memristive



(a) Wordline (b) Bitline (c) Mixed

Fig. 2: Examples for three kinds of parallel computation.
Active devices are highlighted in red.

crossbar considering location and timing constraints optimally
such that the latency is minimized. As this approach uses an
exact algorithm, it has very low scalability so that the runtime
for functions with less than 10 input variables is reported to
take several days [14].

Most recently, MAGIC has been utilized in a heuristic
design methodology which aims at latency, area and layout
optimization [14]. The input and output devices for each gate
are placed in the same column. Computation proceeds from the
bottom right of the crossbar array to the upper left corner while
trying to lower copy operations. In this case, mapping forms a
semi-staircase placement of gates on the crossbar. This leaves
a large number of spare devices. Although the approach aims
at keeping the crossbar dimensions close to a square shape, it
fails to efficiently use the allocated space.

IV. PARALLEL IN-MEMORY COMPUTING

A. Types of Parallelism

Parallel computations may be performed on a ReRAM array
by addressing multiple wordlines or bitlines simultaneously.
We say that a computation is wordline parallel if it uses one
wordline and multiple bitlines; we call it bitline parallel if it
uses one bitline and multiple wordlines; and we call it mixed
parallel if it uses multiple wordlines and multiple bitlines.

Fig. 2 shows an example for each type of parallelism. Row
and column drivers are represented by triangles; active devices
are shown in red and slightly enlarged. The ReRAM cells in
which a computation takes place are highlighted in red.

Mixed parallel computation has to deal with data distortion;
even the small computation in Fig. 2c cannot be performed
if only one of the six activated cells contains a value that
must not be overwritten. Since the problem becomes more
severe as more lines are activated, it is unfeasible to make
efficient use of this parallelism in general. Bitline parallel
computation cannot deal with inversions efficiently, which are
central to most logic representations. While wordline parallel
computation cannot directly parallelize assignment operations,
it can parallelize inversion. Assignment can then be realized
by double inversion. Since it offers the most versatility, we
focus on enabling wordline parallelism in this paper.

B. Target Architecture

We target a generic in-memory computing architecture that
is capable of performing wordline parallel computations. Fig. 3
illustrates the core components. We use a ReRAM array with
wordsize w for data storage and computations as well as ρ

ReRAM
Array

W
or

d
li
n

e
d

ec
o

d
er

Bitline decoder

Sense amplifier

Read
Select

Control

Bitline
Select

Registers

w

ρ

ρ

w

Fig. 3: Generic architecture for wordline parallelism

many registers to keep values that are read from the array.
The architecture is able to perform two actions;

1) Read from the array: We access the bits of a whole
word in one array access. The Read Select circuitry directs
required bits to specified registers. In this way, one may
accumulate information with multiple reads before engaging
in computation.

2) Perform computation: The logical values stored in the
registers are applied as voltages to the bitlines. Bitline Select
chooses which bitlines are activated and which register con-
tents are applied to them. In contrast to previous in-memory
computation schemes, we only apply logical constants to the
wordlines; therefore, we do not need circuitry to connect the
wordlines to registers.

We deliberately abstract over the way that the instructions
representing these actions are stored, fetched and managed.
One may store instructions on the same array that is used
for computation, as is done by PLiM [6]; or one may use a
dedicated instruction memory that enables pipelining for better
overall performance, as is done by ReVAMP [12]. Both the
instruction size and the hardware cost of such an architecture
are comparable to that of ReVAMP.

For simplicity, we will assume that the number of registers ρ
is equal to the wordsize w in the remainder of this paper. This
ensures that we do not have to worry about register limitations;
we are prepared for the limit case in which the contents of w
different ReRAM cells are read out and applied to the bitlines.

V. COMPILATION

A. Enabling parallelism

Synthesis for RM3-based in-memory computing has made
ample use of MIGs for both sequential as well as parallel
architectures [10], [12]. When computing two MIG-nodes in
parallel within a wordline we have to respect four constraints:

1) All children of both nodes must be computed. In partic-
ular, there must not be any data dependencies between
the nodes.



2) The nodes must share a wordline operand.
3) The host cells of the nodes must be placed in the same

wordline.
4) Since it is overwritten, the content of the host cells must

not be necessary for any other computations.
While the first constraint can be dealt with by levelization, the
last three constraints severely hinder parallelization efforts for
general MIGs. We therefore propose the compiler ComPRIMe
that focuses on enabling parallel computation by accommodat-
ing these constraints.

Every AIG can be represented as an MIG where each
node has a constant zero child. This is an ideal situation for
parallelization, since it completely alleviates Constraint 2. In
contrast to previous approaches, ComPRIMe uses AIGs as
logic representation for the synthesis of parallelly computed
logic. When computing an AIG node, we always apply logical
zero to the wordline.

Each node of the AIG is associated with a ReRAM cell
on the crossbar which holds its content. In order to avoid
initialization of a new device, previous approaches tried to
reuse these cells as hosts to a computation. However, this reuse
introduces sequential dependencies even within one level of
an AIG in the form of Constraint 4. Moreover, the placement
of a single node may determine the placement of nodes in
several later levels that inherit its position. This inheritance
obstructs satisfaction of Constraint 3. In general, while reusing
cells as hosts is important to reduce copy operations, it is
detrimental to enabling parallelism. Therefore, we abandon
such reuse altogether. Instead, ComPRIMe allocates a new cell
for each computation and initializes it with the necessary host
value. In this way, we have full control over the placement of
all computations and alleviate Constraint 4 completely.

This comes at the cost of extra work since we need to
transfer the data of each host node into a new ReRAM
cell. As was explained in Section IV-A, multiple inversions
can be performed in parallel within a wordline. Therefore,
ComPRIMe uses inversion as initialization operation.

B. Host and Bitline Operands
Each AIG node has two outgoing, possibly complemented

edges. One of them will be used as host operand, i.e. loaded
into the ReRAM cell which will perform the computation, and
one will be used as bitline operand, i.e. applied as a voltage to
the bitline. Since we use inversion as initialization operation,
complemented edges are preferred as host operands. On the
other hand, since resistive majority naturally inverts its bitline
operand, it is beneficial for the second operand to be inverted
as well; ideally all operands are inverted. Since this cannot
be assumed for a general AIG, we need to perform extra
computations to obtain the inverted values. Fortunately, these
computations are inversions and can therefore be parallelized
efficiently. Moreover, ComPRIMe takes care that each inverse
value is computed at most once.

The decision which outgoing edge is used as host operand
and which is used as bitline operand does not affect the number
of computations but only the number of reads. As we focus
on computations in this paper, we simply make this decision

before any instruction is generated. The decision is made in an
arbitrary fashion; as we are faced with a symmetric situation
in which both host and bitline operands need to be read out,
simple heuristics do not yield any benefit.

C. Managing Allocations
We wish to keep the number of required ReRAM cells as

low as efficient parallelism allows. To this end, ComPRIMe
keeps track of whether the content of a cell is still needed
and frees the cell if possible. We call the set of free cells in
a word a hole. The cells in a hole can be reused instead of
allocating new ones. However, filling a small hole in a word
is computationally inefficient since we forsake the opportunity
to perform the computations in parallel with others. Therefore,
we introduce a parameter h to the compilation; ComPRIMe
will only try to reuse holes that are not smaller than h.

D. Placing Nodes
Each node in our logic representation (and potentially its

inverse value) must be assigned to a ReRAM cell on the
crossbar once it is to be computed. These placements majorly
influence the efficiency of the computation; all nodes placed
in the same word may be computed in parallel. Moreover, by
placing nodes in the same word whose host operands reside on
the same wordline, we reduce the read cost for initializations
since their host operands can be read simultaneously.

Assume we are given a set N of nodes to be placed and
further assume that their children have already been placed on
the crossbar. We split N into equivalence classes N1, . . . , Nn,
where all members of Nk have host inputs that reside on the
same wordline. These are then again split into groups of size
at most w. Next, we inspect holes on the crossbar. If a hole
is larger than h, we try to fill it. A hole is filled greedily
with fitting groups, where larger groups are considered before
smaller ones. All groups that remain are placed on newly
allocated words (with the same filling algorithm).

We assume that the primary inputs to the function we com-
pute are present in the memory array that we are computing
on. As we never reuse a ReRAM cell as host, computation
of a function does not destroy its inputs. Therefore, primary
inputs do not have to be copied. However, if they are not
tightly packed into words, the number of reads may increase
since the inputs cannot be read in parallel. It may then pay
off to rearrange them into words. Assuming the worst case,
in which each input must be read sequentially, the cost for
this operation is I + 5

⌈
I
w

⌉
, where I is the number of primary

inputs; we need to spend one array access on reading each
input as well as four computations and one read per w many
inputs on double inversions.

This preprocessing step is superfluous when processing
wordlevel data, in particular with arithmetic functions. The
output level of a function can be written into words again with-
out additional cost, allowing us to chain multiple wordlevel
functions without data movement.

E. Computing an AIG
The AIG levels are computed successively by following

three steps for each one. First, place and compute the inverted



c

f

ba

e

h blh bl

g

d

h bl

Fig. 4: Example AIG

a b c

d1

0 0

a b c

d 1 10

b c

a b c

d b c

1

0 0 0

a b c

d b c

1 1 10

a b c
a b c

d b c

a b c0

b c d
a b c

d b c

e f g

rd b, c

rd a
rd b, c

rd c
rd d, b

Fig. 5: Computation of the function in Fig. 4.

values necessary for this level. Second, place the nodes of
the level and initialize the cells with the corresponding host
operands. Third, compute the nodes themselves by scheduling
the computations that have host cells in the same word in
parallel. Reads are scheduled as required by the computations.

Example. We demonstrate the computation of an AIG level
with an example. Consider the AIG in Fig. 4. We compute the
upper level. To the left of each edge it is indicated whether
the edge is used as host operand (h) or as bitline operand
(bl). Fig. 5 illustrates the computation on a 3x3 ReRAM array
by displaying the six intermediate states. Operands applied
to bitlines and wordlines are indicated outside of the array.
We start the computation on the top left, where the lower
level of Fig. 4 is already present. The three steps discussed in
Section V-E are indicated by the background colours green,
blue and orange respectively.

1) Compute inverted values: The inverted values necessary
for this level are b and c. They will be placed in the second
word. Logical one is written to the respective cells. Then we
read out (rd) the values of b and c from the first word to write
their inverses.

2) Initialize host cells: The three nodes to be computed will
be placed in the third word, to which we write logical one.
Then we read out the values of a, b and c before applying
them to the bitlines. Since the operands are spread across two
words, we need to spend two read operations.

3) Compute level: The bitline operands b, c and d are read
out with two reads and and applied to the bitlines.

VI. EXPERIMENTAL RESULTS

All results shown use wordsize w = 16 and hole parameter
h = 12, unless stated otherwise. We evaluate instruction sets
generated by ComPRIMe in terms of delay and area. Delay
(D) is expressed as the total number of array accesses, which

may be computations (C) or reads (R). Area is expressed
as total number of ReRAM devices needed by the program
(Z). We compare our results with ReVAMP [12] as well as
with a state-of-the-art synthesis approach using MAGIC [14].
Subscripts are used to indicate which approach produced a
result, where c represents ComPRIMe, r represents ReVAMP
and m represents the synthesis approach using MAGIC. To
ensure a fair comparison we report D∗

c , which is the total
delay produced by ComPRIMe increased by the worst case
input arrangement cost discussed in Section V-D.

A. Comparison with ReVAMP

We evaluate ComPRIMe on benchmarks provided by EPFL1

and compare with ReVAMP that ran the same benchmarks
in [12]. Table I shows the results. AIG versions were included
in the benchmarks and could be readily used for instruction
generation with ComPRIMe. We achieve a significant speedup
of factor 4.79 regarding computations and a speedup of 1.70
regarding reads. Taking input placement into account, the
solution generated by ComPRIMe is faster by a factor of 2.32
while at the same time taking only about a third of the area.
It is worth noting that while ReVAMP does take the cost
for arranging inputs on the array into account, it does not
account for the time it takes to read these values in the first
place. These results further corroborate that the MIG, which
is used by the ReVAMP synthesis as logic representation, fails
to enable the parallel computational power that is provided by
ReRAM array computing. Moreover, we see that the dynamic
ReRAM allocation used by ComPRIMe provides significant
area benefits over the static allocation used by ReVAMP.

B. Comparison with Staircase Synthesis using MAGIC

The results of evaluating ComPRIMe on the combinational
functions of the ISCAS benchmark suite [15] are shown in
Table II. The benchmarks were optimized with ABC [16]
before instruction generation. We compare ComPRIMe with
a state-of-the-art synthesis approach using MAGIC [14]. Each
MAGIC operation takes two array accesses; one for initializing
the output device and one for the actual computation. We
report the total delay Dm in terms of array accesses. We can
observe a speedup of factor 2.13 while using less than 1

6 of
the number of devices. This ratio only considers the ReRAM
devices taking part in the computation. However, the Staircase
synthesis has to allocate an area that can be more than an order
of magnitude larger than the number of utilized ReRAM cells
in order to compute the benchmarks [14]. Furthermore, it does
not account for the cost of arranging inputs in the exact needed
place on the array.

C. Scalability

Fig. 6 compares the performance of ComPRIMe for differ-
ent wordsizes w and hole parameters h. The numbers shown
are total delay D∗

c and total number of ReRAM devices
Zc needed for all benchmarks of Table I combined. The
results show that ComPRIMe can be scaled up to achieve

1http://lsi.epfl.ch/mig



TABLE I: Comparison with ReVAMP

Benchmark Cc Cr speedup Rc Rr speedup D∗
c Dr speedup Zc Zr improv.

pci spoci ctrl 300 1523 507% 868 1328 152% 1283 2851 222% 656 1360 207%
revx 2639 14575 552% 7366 14004 190% 10035 28579 284% 512 9776 1909%

sqrt32 1414 4216 298% 1785 3948 221% 3241 8164 251% 240 2720 1133%
square 5125 30988 604% 17472 29880 171% 22681 60868 268% 6992 23264 332%

des area 1356 5971 440% 2875 5639 196% 4714 11610 246% 1904 4880 256%
ac97 ctrl 2572 8803 342% 5579 7520 134% 11111 16323 146% 7392 14928 201%
hamming 986 3603 365% 2205 3450 156% 3456 7053 204% 624 2880 461%

tv80 2245 11219 499% 6696 10368 154% 9434 21587 228% 2912 9248 317%
mem ctrl 2698 9497 352% 7709 8405 109% 11980 17902 149% 4128 10000 242%

i2c 306 1450 473% 754 1247 165% 1257 2697 214% 768 1328 172%
ss pcm 114 313 274% 151 257 170% 406 570 140% 336 496 147%

usb phy 118 538 455% 303 460 151% 574 998 173% 400 592 148%
max 1209 4431 366% 1527 4184 274% 3408 8615 252% 1536 5024 327%

spi 928 4615 497% 1960 4301 219% 3252 8916 274% 1504 4272 284%
sasc 183 602 328% 350 514 146% 711 1116 156% 560 912 162%

div16 1854 8375 451% 4741 7825 165% 6637 16200 244% 544 5472 1005%
MAC32 2642 15980 604% 8190 15363 187% 10958 31343 286% 3600 12544 348%

pci bridge32 4393 23826 542% 11225 21914 195% 20237 45740 226% 9440 24736 262%
MUL32 2459 14047 571% 6220 13389 215% 8763 27436 313% 2384 12496 524%

systemcdes 712 3312 465% 1826 3090 169% 2952 6402 216% 1072 3120 291%
comp 6703 32297 481% 17450 31293 179% 24522 63590 259% 5600 18912 337%

systemcaes 2742 11100 404% 5836 10229 175% 9803 21329 217% 4720 11536 244%
simple spi 227 930 409% 534 794 148% 959 1724 179% 560 1200 214%
usb funct 3719 16054 431% 11649 14269 122% 17813 30323 170% 7840 16912 215%∑

47644 228265 479% 125271 213671 170% 190187 441936 232% 66224 198608 299%

TABLE II: Staircase comparison

Benchmark D∗
c Dm speedup Zc Zm improv.

c2670 955 1102 115% 464 1513 326%
c6288 2521 7502 297% 544 6369 1170%
c1355 311 472 151% 192 1035 539%
c7552 2002 4364 217% 720 4461 619%
c880 446 854 191% 208 889 427%

c3540 1090 2870 263% 416 2764 664%
c499 311 484 155% 192 1021 531%

c1980 449 1034 230% 192 1087 566%
c432 306 450 147% 112 405 361%

c5315 1831 2722 148% 640 3553 555%∑
10222 21854 213% 3680 23097 627%

(16, 12) (32, 24) (64, 48)

1 · 105

2 · 105 D∗
c

Zc

Fig. 6: Performance of ComPRIMe for
different values of (w, h).

additional speedup, while the necessary number of ReRAM
devices changes only insignificantly. All compilations ran in
less than half a second per benchmark on an Intel Core i7-
8550U processor with 24GB of RAM.

VII. CONCLUSION

This paper proposes ComPRIMe, a novel AIG-based com-
piler for ReRAM-based in-memory computing. The proposed
compilation approach is highly scalable, supports parallel exe-
cution of computations, and efficiently maps them to ReRAM
crossbar addressing both latency and area. We have identified
three major constraints that reduce potential parallelism and
have presented solutions to alleviate them to a large extend.
Comparison of results with two state-of-the-art approaches
with bit-level parallel computing ability shows significant
speed and area improvements to both.

VIII. ACKNOWLEDGEMENT

This work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG) under contract number DR 287/35-1 and
by the University of Bremens graduate school SyDe, funded
by the German Excellence Initiative.

REFERENCES

[1] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the
1st Conference on Computing Frontiers, ser. CF ’04, 2004, pp. 162–167.

[2] H. . P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T.
Chen, and M. Tsai, “Metaloxide RRAM,” Proceedings of the IEEE, vol.
100, no. 6, pp. 1951–1970, June 2012.

[3] L. O. Chua and S. M. Kang, “Memristive devices and systems,”
Proceedings of the IEEE, vol. 64, no. 2, pp. 209–223, Feb 1976.

[4] J. Borghetti, G. S. Snider, P. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[5] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC–memristor-aided logic,” IEEE
Trans. Circuits Syst. II, vol. 61, no. 11, pp. 895–899, Nov 2014.

[6] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chat-
topadhyay, and G. De Micheli, “The programmable logic-in-memory
(PLiM) computer,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2016, pp. 427–432.

[7] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, pp. 1377–1394, 2002.

[8] L. Amar, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Design Automation Conference (DAC), 2014, pp. 1–6.

[9] Y.-C. Chen, C. F. Chen, C. T. Chen, J. Y. Yu, S. Wu, S. L. Lung,
and R. L. and, “An access-transistor-free (0T/1R) non-volatile resistance
random access memory (RRAM) using a novel threshold switching, self-
rectifying chalcogenide device,” in IEEE International Electron Devices
Meeting 2003, 2003, pp. 37.4.1–37.4.4.

[10] M. Soeken, S. Shirinzadeh, P. Gaillardon, L. G. Amar, R. Drechsler,
and G. De Micheli, “An MIG-based compiler for programmable logic-
in-memory architectures,” in 2016 53nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), 2016, pp. 1–6.

[11] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Logic
synthesis for rram-based in-memory computing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1422–1435, 2017.

[12] D. Bhattacharjee, Y. Tavva, A. Easwaran, and A. Chattopadhyay,
“Crossbar-constrained technology mapping for ReRAM based in-
memory computing,” CoRR, vol. abs/1809.08195, 2018. [Online].
Available: http://arxiv.org/abs/1809.08195

[13] R. B. Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple magic:
Synthesis and in-memory mapping of logic execution for memristor-
aided logic,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2017, pp. 225–232.

[14] A. Zulehner, K. Datta, I. Sengupta, and R. Wille, “A staircase struc-
ture for scalable and efficient synthesis of memristor-aided logic,” in
Proceedings of Asia and South Pacific Design Automation Conference,
2019, pp. 237–242.

[15] F. Brglez, “A neutral netlist of 10 combinatorial benchmark circuits and
a target translator in FORTRAN,” in Int. Symposium on Circuits and
Systems, Special Session on ATPG and Fault Simulation, June 1985,
1985, pp. 663–698.

[16] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in International Conference on Computer Aided Ver-
ification. Springer, 2010, pp. 24–40.


