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Abstract. Quantum computer architectures place restrictions on the
availability of quantum gates. While single-qubit gates are usually avail-
able on every qubit, multi-qubit gates like the CNOT gate can only be
applied to a subset of all pairs of qubits. Thus, a given quantum cir-
cuit usually needs to be transformed prior to its execution in order to
satisfy these restrictions. Existing transformation approaches mainly fo-
cus on using SWAP gates to enable the realization of CNOT gates that
are not natively available in the architecture. As the SWAP gate is a
composition of CNOT and single-qubit Hadamard gates, such methods
may not yield a minimal solution. In this work, we propose a method
to find an optimal implementation of non-native CNOTs, i.e. using the
minimal number of native CNOT and Hadamard gates, by using a formu-
lation as a Boolean Satisfiability (SAT) problem. While straightforward
representations of quantum states, gates and circuits require an expo-
nential number of complex-valued variables, the approach makes use of
a dedicated representation that requires only a quadratic number of vari-
ables, all of which are Boolean. As confirmed by experimental results,
the resulting problem formulation scales considerably well—despite the
exponential complexity of the SAT problem—and enables us to deter-
mine significantly improved realizations of non-native CNOT gates for
the 16-qubit IBM QX5 architecture.

1 Introduction

Quantum computers [10] promise to have enormous computational power and,
thus, to solve relevant problems significantly faster than their classical counter-
parts. In recent years, large efforts have been put on their development, but while
their mathematical foundations have been widely explored and are mostly quite
well understood, the physical realization currently provides the biggest obstacle
preventing the widespread use of quantum computers.

While more and more powerful quantum computer architectures have been
presented with increasing quantity and quality of the so-called qubits, the basic
computational entities in quantum computing, one of the physical constraints
that all these architectures have in common is the limited availability of quantum
operations/gates. Typically, multi-qubit gates are much harder to realize than
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single-qubit gates and in many cases there is only one multi-qubit gate natively
available, namely the two-qubit controlled-NOT (CNOT) gate. As there are
several universal gate libraries consisting of the CNOT gate and single-qubit
gates only, e.g. the Clifford+T library [6], this still allows to perform arbitrary
quantum computations. However, in various architectures, the CNOT is only
available on a small subset of physically adjacent qubit pairs, which can make
computations that require CNOT operations on distant qubits quite complex.
Fortunately, there are ways to simulate these logical CNOTs at the physical level
and transform a quantum circuit that contains non-native CNOTs to a quantum
circuit containing only native gates and, thus, being ready for the execution on
the targeted quantum architecture.

Many approaches to find efficient CNOT implementations have been sug-
gested, e.g. in [3,4,15,17–19]. The underlying ideas of these solutions are to use
so-called SWAP gates in order to swap the qubits which the CNOT is to be ap-
plied to, with ones that a CNOT is available for in the specific architecture, or to
use templates of pre-computed sequences of native gates. Since the underlying
problem has been shown to be NP-complete in [5], it is not surprising that most
approaches do not aim to provide minimal solutions. In fact, only [17] aims for
solutions with a minimal number of SWAP and Hadamard gates, but SWAP
gates themselves are not elementary gates, but need to be realized as cascades
of CNOT and Hadamard gates.

In contrast, we propose an algorithm that determines an optimal implemen-
tation of arbitrary non-native CNOT gates using any combination of Hadamard
gates and CNOT gates that are native to the underlying architecture. To this
end, we formulate the problem as an instance of the Boolean Satisfiability (SAT)
problem. The algorithm makes use of the planning problem and constructs a
propositional formula which, if satisfiable, provides an implementation for a spe-
cific CNOT gate. While the SAT problem itself is NP-complete and straightfor-
ward representations of quantum states, gates and circuits require an exponential
number of complex-valued variables, the crucial trick here is to make use of a
dedicated representation borrowed from the stabilizer circuit formalism [2] that
requires only a quadratic number of Boolean variables.

Experimental evaluations of some quantum computer architectures show that
the resulting problem formulation scales considerably well—despite the expo-
nential complexity of the SAT problem. Our results indicate that SWAP-based
approaches indeed do not yield such optimal solutions for many CNOT gates, as
the proposed algorithm determined significantly more efficient implementations.

The remainder of this paper is structured as follows. The next section in-
troduces notations and preliminaries needed in this paper. Section 3 discusses
the considered problem and related work, followed by Section 4 presenting our
approach to determining optimal implementations of non-native CNOT gates.
Experimental results are presented in Section 5. Finally, the paper is concluded
in Section 6.
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Fig. 1. Swapping control and target of a CNOT using Hadamard gates.

2 Background and Preliminaries

To keep the paper self-contained, this section briefly introduces the basics of
quantum computation and the SAT problem.

2.1 Quantum States and Circuits

In contrast to classical bits which can only assume two discrete states, qubits
can represent any combination of the classical Boolean values 0 and 1. More
precisely, the state space of a qubit is a 2-dimensional Hilbert space such that
all possible states can be written as |ψ〉 = a|0〉 + b|1〉 =

(
a
b

)
where |0〉, |1〉

denote the computational basis states (associated with the classical Boolean
values) and a, b ∈ C are complex-valued numbers such that |a|2 + |b|2 = 1.
Analogously, the state space of an n-qubit quantum system has 2n basis states
(|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉) and the state of such system can be described
by a 2n-dimensional complex-valued vector.

A quantum circuit is a model of quantum computation representing a se-
quence of quantum operations [10]. Each operation is a unitary transformation
and is represented by a quantum gate. The operation of a quantum gate acting
on n qubits is uniquely determined by a 2n × 2n unitary matrix.

A stabilizer circuit is a quantum circuit consisting entirely of gates from the
Clifford group which contains controlled-NOT (CNOT ), Hadamard (H) and
Phase (S) gates, represented by the following matrices:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
.

A CNOT on two qubits α and β, denoted as CNOT(α, β), performs a NOT
operation on the target qubit β if, and only if, the control qubit α is in the
|1〉-state.

Example 1. The left-hand side of Fig. 1 shows the circuit notation of a CNOT.
Horizontal lines denote the qubits, the control qubit connection is indicated by
a small, filled circle and the target qubit is illustrated by ⊕. As shown on the
right-hand side, control and target of a CNOT can be swapped by applying
Hadamard gates before and after the CNOT gate.

A stabilizer state is any quantum state which can be obtained by applying a
stabilizer circuit to the initial state |0〉⊕n = |0 . . . 00〉. Stabilizer circuits are not
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universal, which means that they cannot conduct all quantum computations.
Nonetheless, stabilizer circuits are used in quantum error-correction and many
other applications (see [10, Section 10.5.1] for more information).

The advantage stabilizer circuits offer is their efficient simulation on a clas-
sical computer, according to the Gottesman-Knill theorem. As shown in [2], a
stabilizer state on n qubits as described above can be represented by n(2n+ 1)
binary values, instead of 2n complex numbers representing the vector which fully
describes a quantum state. It can be visualized by a (2n+ 1)× 2n matrix, called
tableau, containing the Boolean variables xi,j , zi,j , and ri for all i ∈ {1, ..., 2n}
and j ∈ {1, ..., n} (as shown in Fig. 2).



x11 . . . x1n z11 . . . z1n r1
...

. . .
...

...
. . .

...
...

xn1 . . . xnn zn1 . . . znn rn
x(n+1)1 . . . x(n+1)n z(n+1)1 . . . z(n+1)n rn+1

...
. . .

...
...

. . .
...

...
x(2n)1 . . . x(2n)n z(2n)1 . . . z(2n)n r2n


Fig. 2. Tableau representing a stabilizer state [2]

Applications of quantum gates are conducted by updating these tableau en-
tries in polynomial time by means of the following Boolean formulae:

– For a CNOT from control α to target β:

∀i ∈ 1, ..., 2n : ri := ri ⊕ xiαziβ(xiβ ⊕ ziα ⊕ 1);

xiβ := xiβ ⊕ xiα; ziα := ziα ⊕ ziβ

– For a Hadamard gate on qubit α:

∀i ∈ 1, ..., 2n : ri := ri ⊕ xiαziα; xiα := ziα; ziα := xiα

– For a Phase gate on qubit α:

∀i ∈ 1, ..., 2n : ri := ri ⊕ xiαziα; ziα := ziα ⊕ xiα

This simulation is apparently much more efficient than a matrix-vector mul-
tiplication of the state vector with the transformation matrix of the given gate.

2.2 SAT and Planning

The Boolean Satisfiability Problem, abbreviated SAT, addresses the following:

Given a Boolean formula φ over n variables, does a mapping v from the vari-
ables to the Boolean truth values {0, 1} exist, such that φ(v) = 1?
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Example 2. Consider the following Boolean formula given in Conjunctive Nor-
mal Form (CNF):

φ = (a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ ¬c

Because of the last clause ¬c, c must be 0 for φ to evaluate to 1. This means that
the third clause is also 1. We are now left with the sub-formula (a∨¬b)∧(¬a∨b),
which is 1 if a 7→ 1 and b 7→ 1, or if a 7→ 0 and b 7→ 0. Thus, φ is satisfiable and
v = {a 7→ 1, b 7→ 1, c 7→ 0} is one mapping that satisfies φ.

SAT is an NP-complete problem, as proven by [7] and many reasoning engines
have been developed in order to solve SAT for arbitrary Boolean formulae. One
application for SAT is the planning problem, which is described in [14]. An
instance π =<A, I,O,G> of the planning problem consists of the set of state
variables A, the initial state I, the operators O and the goal state G. In essence,
the problem is to find a sequence of operators that transform a system from
an initial state to a defined goal state. It can be expressed as a propositional
formula φ(t), so that φ is satisfiable if, and only if, there exists a sequence of
actions of length t, so that the system is transformed from the initial state to its
goal state. This allows us to conveniently solve the planning problem, by testing
φ for satisfiability.

3 Considered Problem

Finding optimal implementations for all CNOT gates of a given quantum com-
puter architecture is essential in order to improve the performance of algorithms
that are run on said hardware, as every additional gate increases execution time
and the probability of errors. If we define the cost of a CNOT gate to be the
number t of gates which are native to the architecture that have to be applied
in order to realize that gate, we can find an optimal implementation for a par-
ticular CNOT by determining the minimum value for t. For available gates like
Hadamard gates and native CNOT gates, this cost will obviously be 1, while oth-
ers will be far beyond that. For instance, the best-known realization of several
CNOTs in the IBM QX5 architecture have a cost of more than 50 gates as de-
termined by [3]. One reason this is an important problem is that native/physical
CNOTs are only scarcely available in many quantum computer architectures.

Considering IBM’s QX5 architecture, which is part of the IBM Q project
available at [1], only 22 CNOTs are native to the architecture, as illustrated in
Fig. 3. More precisely, an arrow between two qubits indicates that the CNOT
gate whose control qubit is at the base of the arrow and whose target qubit is
at the tip of the arrow is natively available. For instance, CNOT(Q1, Q2), i.e. a
CNOT with control on Q1 and target on Q2 is available on QX5, but not vice
versa.

However, there are
(
16
2

)
·2 = 240 logical CNOTs for this 16-qubit system and(

n
2

)
· 2 in the general case of an n-qubit system, which need to be emulated to

implement arbitrary quantum algorithms.
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Fig. 3. IBM QX5 architecture.
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Fig. 4. SWAP gate realized by Clifford group gates.

Existing approaches for the efficient realization of non-native CNOTs have
mainly focused on inserting SWAP gates, which are compositions consisting of
CNOT and Hadamard gates as shown in Fig. 4. To illustrate this idea, consider
the realization of a CNOT(Q3, Q0) in IBM QX5. In order to implement this
non-native CNOT, one could simply swap Q3 with Q2 and Q2 with Q1 using
SWAP gates, transferring the state of Q3 to that of Q1, then apply the native
CNOT(Q1, Q0), and finally undo the SWAPs to restore the original positions
of Q1, Q2, and Q3. However, each SWAP introduces an additional cost of 7
gates (c.f. Fig. 4) resulting in a total cost of 4 · 7 + 1 = 29 gates, but complete
SWAPs may not be required. Almeida et al. [3] identified several movements of
control and target qubits which can be realized with reduced costs—resulting in
a realization of CNOT(Q3, Q0) using only 20 gates (shown in Fig. 5).

As proven in [5], the underlying problem, like SAT, is NP-complete, which
lead the authors of [17] to propose a SAT-based approach for determining the
minimal number of SWAP and Hadamard gates given that the Hadamard gates
are only used within SWAP gates or to invert the direction of a native CNOT.
On the one hand, this limitation simplifies the problem to a purely classical-
combinatorial problem and eliminates all aspects of quantum computations. On
the other hand, the optimized movements in [3] suggest that it is likely to obtain
further reductions if one allows for an unrestricted use of Hadamard and CNOT
gates. However, this generalization significantly increases the search space which
then also includes quantum circuits realizing true quantum operations and, thus,
poses severe obstacles to their representation and the formulation as a SAT
problem.

Luckily, CNOT and Hadamard gates do not unleash the full power of quan-
tum computation that would require exponentially large complex-valued vectors
and matrices to be dealt with, but only give rise to stabilizer circuits for which the
polynomial size tableau representation can be employed that consists of Boolean
variables only. As we will describe in the next section, this allows to use the plan-
ning problem as convenient way to express a quantum circuit as a propositional
formula φ(t) to be solved for satisfiability.
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Fig. 5. Realization of CNOT(Q3, Q0) in IBM QX5 according to [3].

4 SAT Formulation

To determine optimal implementations for non-native CNOTs, we formulate an
instance π =<A, I,O,G> of the planning problem and then convert it into
a propositional formula φ(t) for a given number t, as explained in [14]. This
formula shall be satisfiable if, and only if, there is a sequence of t native CNOT
and Hadamard gates that realizes the desired non-native CNOT.

In the context of the considered stabilizer circuits, the initial state I of the
planning problem is an arbitrary stabilizer state |ψ〉, an operator o ∈ O repre-
sents a single quantum gate and the goal state G is the state |ψ〉 is transformed
to after the application of the non-native CNOT for which we want to find an
optimal implementation. The set A of state variables contains all Boolean vari-
ables that make up the tableau for a stabilizer state as reviewed in Section 2.1,
namely xij ,zij , and ri for i = 1, . . . , 2n and j = 1, . . . , n.

With the knowledge of how π can represent a stabilizer circuit in mind, we
can now construct φ by considering I, O and G individually.

Constructing the initial state I The initial state is simply encoded as the con-
junction over A0 in the initial state of the system:

∧
a∈A0 a. Note that the number

in the superscript represents the number of operators which have been applied
to the system so far, so A0 represents the initial state, where no operators have
been applied yet, while An represents the state after exactly n operators have
been applied. For our purposes, the standard initial tableau as defined in [2]
is used as the initial state, where x0ij = 1 if i = j and 0 otherwise, z0ij = 1 if

i− n = j and 0 otherwise and all r0ij = 0 (c.f. Figure 6a for the case n = 2).


1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
0 0 0 1 0


(a) Initial tableau


1 1 0 0 0
0 1 0 0 0

0 0 1 0 0
0 0 1 1 0


(b) Goal state for CNOT(1,2)

Fig. 6. Tableaus for initial and goal state for n = 2 [2].
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Constructing the operators O The operators are identified by the effect they have
on a given state A to transform it into the successor state A′. These operators
are the gates which are natively available in the specific architecture to be used,
so while Hadamards may be used on all qubits, only some CNOTs are available.
According to [14], any operator o is represented as follows:

τo = p ∧
∧
a∈A

[(EPCa(o) ∨ (a ∧ ¬EPC¬a(o)))↔ a′]

where p represents the operator’s precondition, which needs to be 1 in order for
the operator to be applicable.

For our purposes, the only condition is that a single quantum gate is to be
applied by each action. In order to eliminate the possibility of two operators
being applied at the same time, let the precondition p of an operator o be
σo ∧

∧
q∈{O\{o}} ¬σq, where the variable σo can later be used to identify which

operators have been used, if φ is satisfiable.
EPCa(o) is the effect precondition of o on the state variable a. It corresponds
to the formula which, if it evaluates to 1, sets the value of the literal a to
1. Since in our case the operators set a given state variable a to the binary
value they evaluate to, we can prove that ¬EPC¬a(o) = EPCa(o). To this end,
consider the effect the Hadamard gate on a qubit α has on the state variable ri:
∀i ∈ {1, ..., 2n} : ri := ri ⊕ xiαziα.

This means that for an arbitrary but fixed i, we have EPCri(o) = ri⊕xiαziα
and EPC¬ri(o) = ¬(ri ⊕ xiαziα). We can deduce that:

¬(EPC¬ri(o)) = ¬(¬(ri ⊕ xiαziα))

= ri ⊕ xiαziα
= EPCri(o)

This obviously also holds for all combinations of operators and state variables
other than a Hadamard on qubit α and ri. With this knowledge we can simplify
the formula for τo:

τo = p ∧
∧
a∈A

[(EPCa(o) ∨ (a ∧ ¬EPC¬a(o)))↔ a′]

= p ∧
∧
a∈A

[(EPCa(o) ∨ (a ∧ EPCa(o)))↔ a′]

= p ∧
∧
a∈A

EPCa(o)↔ a′

Note that for all state variables a which are unaffected by an operator o, EPCa(o)
simply corresponds to a, making the given sub-formula for a: a↔ a′.
Inserting our precondition p, an arbitrary operator o may be encoded as:

τo = (σo ∧
∧

q∈{O\{o}}

¬σq) ∧ (
∧
a∈A

EPCa(o)↔ a′)
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For any given step, the formula for choosing an operator to apply to a state
A is represented as:

T (A,A′) =
∨
o∈O

τo

Constructing the goal state G The goal state is again encoded as the conjunction
over At:

∧
a∈At a. This is the tableau state which is created by applying the

CNOT to be implemented to the standard initial tableau. Since most entries are
0 in the initial tableau, this reduces to updating

xtαβ := x0αβ ⊕ x0αα = 0⊕ 1 = 1 and

zt(n+β)α := z0(n+β)α ⊕ z
0
(n+β)β = 0⊕ 1 = 1

for a CNOT gate on control qubit α and target qubit β. Figure 6b shows the
goal state tableau for the realization of a CNOT on control qubit 1 and target
qubit 2 for the standard initial tableau from Fig. 6a.

With all these representations defined, the complete propositional formula is
of the following form:

φ(t) = A0 ∧
t−1∧
i=0

T (Ai, Ai+1) ∧At

where the operators and state variables are super-scripted with the step i they
belong to. φ(t) is satisfiable if, and only if, there is an implementation for the
given CNOT using t gates. The operators used are identified by the variables
σ; as for each i ∈ {1, . . . , t} there is only exactly one σo

i for which σo
i =

1, the operator used for step i can be identified unambiguously. This means
that if φ(t) is satisfiable, there is a sequence of operators o1, ..., ot which is an
implementation of the CNOT using t quantum gates. In order to determine
the cheapest implementation, the minimum value for t such that φ(t) is still
satisfiable has to be found.

A naive approach for finding a minimum t would be to start at t = 1 and
increment t until φ(t) is satisfiable. Alternatively, one may take previously sug-
gested minima as an upper bound and decrement t until φ(t) is no longer satisfi-
able. In fact, showing that no solution exists for some t implies that no solution
exists for any smaller t. This is because the Hadamard and CNOT gates are
self-inverse such that two consecutive gates on the same qubit(s) cancel out and
do not have an effect to the entire circuit functionality. Thus, proving that no
solution exists for t steps directly implies that there is no solution for t−2, t−4,
t− 6 steps and so on. In order to also cover the remaining cases t− 1, t− 3, etc.,
we allowed an identity operator in the last time step which has no effect to the
state tableau.
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Table 1. Feasibility Study

Boolector Z3
Control Target t Result Run-time Result Run-time

Q1 Q3 3 UNSAT 9.2 UNSAT 1.2
Q1 Q3 4 SAT 14.5 SAT 2.0
Q1 Q4 7 UNSAT 24.2 UNSAT 7.2
Q1 Q4 8 SAT 29.3 SAT 10.0
Q0 Q2 8 UNSAT 28.5 UNSAT 4.0
Q0 Q2 9 UNSAT 37.5 UNSAT 10.7
Q0 Q2 10 SAT 45.0 SAT 16.3
Q0 Q4 17 UNSAT 429.1 UNSAT 141.3
Q0 Q4 18 SAT 355.3 SAT 36.6
Q8 Q13 23 UNSAT 774.0 UNSAT 716.0
Q8 Q13 24 SAT 564.2 SAT 149.8

5 Experimental Results

The algorithm above has been implemented in C++. It takes the number of
qubits of the considered architecture, a list of natively available CNOTs, and
the CNOT to be implemented as inputs and outputs the resulting instance of
the planning problem in the SMT-LIB v2 format [13] which can then be given
to any compatible SMT solver. We implemented direct interfaces to Boolector
3.2.1 [12] and Z3 4.8.8 [8]. All experiments were conducted on an Intel Core
i5-7200 machine with 32 GB of main memory running Linux 4.15.

5.1 Feasibility Studies

To start with, we performed some feasibility studies to check whether the con-
structed instances of the planning problem are solvable in reasonable run-time
and verify that the obtained quantum circuits indeed realize the desired non-
native CNOTs. For this purpose, we used the IBM QX5 architecture and some
non-native CNOTs for which a realization with less than 30 native gates was
known. The results are provided in Table 1 where the first two columns denote
the control and target qubit of the considered non-native CNOT, t denotes the
number of steps and the remaining columns denote the outcome (SAT or UN-
SAT) and run-time in CPU seconds for the two considered SMT solvers Boolector
and Z3.

The numbers indicate that for smaller values of t the run-time does not
much depend on the result (SAT or UNSAT). For larger values of t, both solvers
require significantly more run-time to prove that no solution exists for t steps
than to determine one of the possible solutions. But still, the results clearly
demonstrate the power of the proposed approach since the search space contains
(22+16)t different possible realizations of native gates to be ruled out in the case
of UNSAT. Overall, Z3 solver performed much quicker than Boolector and was
solely used for future runs. To verify the correctness of the determined stabilizer
circuits, we performed equivalence checking based on QMDDs [11].
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Table 2. Experimental results for IBM QX5

Qubit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 – 5 10 14 18 28 32 38 54 44 34 30 24 20 10 5
1 1 – 1 4 8 18 22 28 38 54 32 28 22 18 8 10
2 10 5 – 1 4 14 18 24 34 38 28 24 18 14 4 5
3 14 8 5 – 1 10 14 20 30 34 24 20 14 10 1 8

4 18 12 8 5 – 5 8 14 24 28 18 14 8 5 10 12
5 24 18 14 10 1 – 5 10 20 24 14 10 5 10 14 18
6 28 22 18 14 4 1 – 1 10 14 4 1 10 14 20 22
7 38 32 28 24 14 10 5 – 5 8 1 10 14 20 24 32

8 44 38 34 30 20 16 10 1 – 5 4 14 18 24 28 38
9 40 42 38 34 24 20 14 4 1 – 1 10 14 20 24 34

10 34 42 32 28 18 14 8 5 8 5 – 5 8 14 18 28
11 30 32 28 24 14 10 5 10 14 10 1 – 5 10 14 24

12 20 22 18 14 4 1 10 14 18 14 4 1 – 1 4 14
13 16 18 14 10 1 10 14 20 28 24 14 10 5 – 1 10
14 10 12 8 5 10 14 24 28 32 28 18 14 8 5 – 5
15 1 10 1 4 8 18 22 28 38 34 24 20 14 10 1 –

5.2 Non-native CNOTs on IBM Q architectures

Having confirmed the general feasibility and correctness of the proposed ap-
proach, we turned to the problem of determining optimal implementations of
non-native CNOTs on IBM Q architectures.

For the 16-qubit QX5 architecture, we took the results from [3] as the starting
point and iteratively decremented the number of steps until the solver returned
UNSAT for some t which, as discussed at the end of Section 4, implies that there
is no realization with k ≤ t gates.

Tables 2 and 3 show the results for all CNOTs in QX5. In both tables,
the rows denote the control qubit and the columns denote the target qubit of
the CNOT. Each entry in Table 2 represents the cost of the implementation as
defined earlier, i.e., the total number of native gates required in order to realize
the CNOT, while Table 3 shows the absolute improvement over the best-known
constructions from [3]. Note that our cost metric differs from the one used in [3],
which expresses the overhead introduced by the implementation, making it less
by one in all cases. This difference has been accounted for in Table 3, but should
also be considered when comparing Table 2 to the results from [3].

Exact minima have been determined for all CNOTs of the QX5 architecture.
Overall, there are 67 CNOTs between qubits with a maximum distance of 4
for which the constructions from [3] are indeed optimal, while for 50 CNOTs
our approach determined that they can be improved by at least 12 gates. For
instance, Fig. 7 shows an optimal realization of CNOT(Q3, Q0) requiring only
14 gates as compared to the realization from Fig. 5 using 20 gates which was
discussed in Section 3.
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Table 3. Improvements compared to [3]

Qubit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 – 0 1 0 2 2 8 14 8 12 12 12 6 1 1 0
1 – – – 0 2 2 8 14 14 8 22 14 8 2 2 1
2 1 0 – – 0 0 6 12 12 18 18 12 6 0 0 0
3 6 0 0 – – 1 6 12 12 12 12 12 6 1 – 0

4 8 2 0 0 – 0 0 6 6 6 6 6 0 0 1 2
5 12 8 6 1 – – 0 1 1 0 0 1 0 1 0 6
6 18 12 6 0 0 – – – 1 0 0 – 1 0 6 12
7 18 12 6 0 0 1 0 – 0 0 – 1 6 4 12 12

8 24 18 12 6 6 7 1 – – 0 0 0 6 12 18 18
9 18 24 18 12 12 6 0 0 – – – 1 6 12 12 12

10 12 12 12 6 6 6 0 0 0 0 – 0 0 6 6 6
11 6 12 6 0 0 1 0 1 6 1 – – 0 1 0 0

12 6 12 6 0 0 – 1 0 6 0 0 – – – 0 0
13 7 8 6 1 – 1 6 4 6 0 0 1 0 – – 1
14 1 2 0 0 1 6 6 6 12 6 6 6 0 0 – 0
15 – 1 – 0 2 2 8 14 14 12 12 12 6 1 – –

Q0

Q2

Q3

Q15

H

H H H H

H

Fig. 7. Implementation of CNOT(Q3, Q0) as calculated by our algorithm.

For the 20-qubit Q20 architecture [1], where all CNOTs are available in both
directions, we were able to prove the minimality of the construction proposed
in [9] using 4 ·(d−1) CNOTs where d is the distance between control and target.

5.3 Effect on Circuit Transformation

In order to evaluate the impact of the determined improvements on quantum
circuit transformation, we considered a suite of benchmarks taken from [16] and
the naive qubit mapping which maps i-th qubit of the circuit to qubit Qi in the
QX5 architecture.

The results are shown in Table 4. Here, the first two columns describe the
benchmark in terms of its name (ID) and its number of qubits (L). The next
two columns denote the overhead using the original constructions from [3] and
the improved/optimal CNOT implementations determined by the proposed ap-
proach. The last column lists the relative improvement which is in the range
between 10% and 20%.
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Table 4. Circuit Transformation for IBM QX5

Benchmark Transformation Overhead
ID L [3] Proposed ∆

sym6 316 14 3015 2409 -20.10 %
rd53 311 13 3174 2507 -21.01 %
hwb5 53 6 6140 5240 -14.66 %
wim 266 11 6195 5049 -18.50 %
f2 232 8 6319 5198 -17.74 %
rd53 251 8 8976 7134 -20.52 %
cm42a 207 14 9045 7619 -15.77 %
dc1 220 11 10523 8891 -15.51 %
cm152a 212 12 15228 11610 -23.76 %
sym6 145 7 19688 16058 -18.44 %
z4 268 11 23280 18549 -20.32 %
hwb6 56 7 38747 30779 -20.56 %

6 Conclusions

In this work, we proposed a method to determine optimal implementations of
non-native CNOTs based on a formulation as a SAT problem. This formulation
only becomes possible, since the considered gates (CNOT and Hadamard) are
part of the Clifford group library for which a dedicated tableau representation
can be employed that only requires O(n2) Boolean variables. While we restrict
to CNOT and Hadamard gates, the approach can steadily be extended to sup-
port all Clifford group gates. As confirmed by experimental results, the resulting
problem formulation scales considerably well and enabled us to determine sig-
nificantly improved realizations of non-native CNOT gates for the 16-qubit IBM
QX5 architecture, while for Q20 the known construction could be proven to be
minimal.
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