
New Directions for Equivalence Checking of
System-Level and SPICE-Level Models of Linear Circuits

Kemal Çağlar Coşkun⋓ Muhammad Hassan⋓,∗ Rolf Drechsler⋓,∗
⋓University of Bremen, Institute of Computer Science, 28359 Bremen, Germany

∗Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
muhammad.hassan@dfki.de {kcoskun,drechsler}@uni-bremen.de

Abstract—In this paper, we present a novel, graph-based
methodology to formally check equivalence between system-level
and SPICE-level representations of Single-Input Single-Output
(SISO) linear analog circuits. To achieve this, we introduce a
canonical representation in the form of a Signal-Flow Graph
(SFG), which is used to functionally map the system-level and
SPICE-level models. We create SFG representations for SPICE-
level models and system-level models, and use graph manipu-
lation techniques to transform the SFG representations into the
canonical representation. We demonstrate the applicability of the
methodology by successfully applying it to complex circuits.

I. INTRODUCTION

The increasing complexity of analog circuits and their inte-
gration into System-on-Chips (SoC) have created a bottleneck
for analog design verification. A major challenge in this regard is
the simulation speed of traditional SPICE-level simulations [1].
Even though these simulations cannot be ignored due to their
better accuracy, an expansion of system-level methodologies
using SystemC AMS would be greatly beneficial. In particular,
the Timed Data Flow (TDF) Model of Computation (MoC)
available in SystemC AMS can provide a speed increase of over
100, 000 times in comparison to SPICE-level simulations [1]
and allows interoperability with digital tools at the system level.

However, a key barrier to the expansion of system-level tools
for analog circuits is the lack of confidence in system-level mod-
els implemented in SystemC AMS. An increase in confidence is
attainable with equivalence checking, which proves the general
functional equality of two implementations of a design. While
equivalence checking methods are well established in the digital
domain [2], analog circuit design flows are lacking formal or at
least formalized verification methodologies [3].

Contribution: In this paper, we present our first-of-its-kind
equivalence checking methodology [4], [5]. Essentially, our
approach transforms the system-level and SPICE-level models
into a canonical representation for comparison.

Summarizing the main contributions of this paper:
• We leverage SFGs as an intermediate, mutual representa-

tion for SPICE-level and system-level models. To create
SPICE-level SFGs, we use linear graph modeling.

• We transform the SFGs of both models to a canonical form
with several graph operations.

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project AUTOASSERT under
contract no. 16ME0117.

• The methodology spans the complete class of complex
SISO linear analog circuits.

• We demonstrate the applicability by applying our method-
ology to a filter model and a linear analog computer.

II. SIGNAL-FLOW DRIVEN EQUIVALENCE CHECKING

A. Proposed Methodology

A block-diagram overview of our methodology for equiva-
lence checking between system-level and SPICE-level models
is seen in Fig. 1. To generate a set of equations, we use the
“Linear Graph Modeling” method [6], then create SFGs with
SFG creators, reduce them to a canonical form with the “SFG
simplifier”, and compare them with the “Equivalence checker”.

A linear SFG [7] is a representation of the equation

xi =
∑
j

ajixj +
∑
k

bkiuk (1)

in the form of a graph, where xi and xj are variables of the
circuit, aji and bki are constants, and uk are inputs.

The system-level SFG is created from a SystemC AMS de-
scription that uses linear operators such as addition, multiplica-
tion by a constant, and Laplace Transfer Functions (LTF). Since
programming code is already written in an explicit form similar
to Equation (1), it can be directly transformed into an SFG.

For the creation of the SPICE-level SFG, a set of linear
explicit algebraic equations in the form of Equation (1) are
obtained with the linear graph modeling method [6], which
consists of two main steps.

First, a normal tree, which is a special type of minimum
spanning tree of the circuit graph, is created. This is done
by the normal tree generator by repetitively adding the edges
of the circuit graph in the following order: Voltage sources,
capacitors, resistors, inductors, and current sources. Secondly,
depending on which components are on the normal tree, explicit

Linear Graph Modeling

Normal tree
generator

SPICE-level 
SFG creator

Equation
generator

SPICE-level model

SFG 
simplifier

System-level model

Simplification
methodsResult

System-level 
SFG creator

Equivalence
Checker

SPICE-level flow System-level flow

Canonical Form

Fig. 1. Overview of the proposed equivalence checking methodology



Removal of a 
non-input node

Reflexive edge
eliminationYes

No

Number of 
nodes = 2?

Simplified
SFG

SFG Parallel edge
unification

Fig. 2. Overview of SFG simplification process

SINE(0 1 0.2 0 0 90)

V1

R11

0.31

L10.89 L21.69

C2
1.38

C3
1.54

1
Vo

2 3

.tf v(Vo) V1

C1

Fig. 3. Analog fifth-order low-pass filter and its highlighted normal tree.

expressions for all variables are generated by the equation
generator through either elemental, compatibility (Kirchhoff’s
voltage law), or continuity (Kirchhoff’s current law) equations.

The “SFG simplifier” reduces the SFGs from the system-level
and SPICE-level implementations to canonical forms as given in
Fig. 2. The simplification rules [8] used during this process are:

a) Removal of a non-input node: A non-input node nx

may be removed after creating edges from its ancestors (ax) to
its descendants (dx). These new edges (ax, dx) are created with
weights w((ax, dx)) equal to w((ax, nx)) · w((nx, dx)).

b) Parallel edge unification: According to the distributive
law for parallel edges, these can be merged into a single edge by
summing their weights.

c) Reflexive edge elimination: A reflexive edge with
weight w can be removed by dividing the weight of every
incoming edge to its node by 1− w.

B. Illustration

We illustrate our methodology on a single-input (V1) single-
output (Vo) analog fifth-order passive low-pass filter (Fig. 3)
taken from [9]. Its system-level model is given as

1.009

s5 + 3.226s4 + 5.252s3 + 5.249s2 + 3.26s+ 1.009
(2)

and is implemented in SystemC AMS, which provides an LTF
solver.

As the first step of our methodology, we obtain the circuit’s
normal tree, highlighted in Fig. 3. Then, we use this normal tree
to get the explicit equations. For example, the equations for C1
are given as VC1 = 1

0.31sIC1 and IC1 = IR1 − IL1.
Since these equations are in the form of Eq. 1, the SFG given

in Fig. 4a can be created directly. This SFG is then reduced
according to the rules given in Section II-A. An intermediate
result during this reduction is given in Fig. 4b. 12 nodes are

(a)

-1 1

1

1 -1 1

1.12
s

-1

0.592
s

-1 1

3.23
s

-1 1

0.725
s

-1 1

0.649
s

VC1VR1V 1 VC2VL1 VC3VL2

IR1IV 1 IC1 IL1 IC2 IL2 IC3

(b)
− 0.81

s2 -1

0.43
s2

− 0.59
s

1
0.65
s

3.6
s2+3.2s

− 3.6
s2+3.2s

V 1 VC3IL1 IC2 IL2

Fig. 4. The initial (a) and an intermediate (b) SFG for the low-pass filter.

∫∑

∫∑

-

∫

-

-

Fig. 5. System-level block diagram of the analog simulator for a particle in
a magnetic field.

Fext mddx

ddx

dxmudx qBzdx mddy

ddydy

y
mudyqBzdy

1
1
m

1
s

−µ −Bzq

1

1
1
m

1
s

1
s

−µBzq
1

1

Fig. 6. Initial system-level SFG of the analog simulator for a particle in a
magnetic field.

removed in total. It is concluded that the models are equal, since
the final SFG is equal to the system-level LTF seen in Eq. 2.

III. EXPERIMENTAL EVALUATION

We consider the analog computing circuit, from [10], which
simulates the behavior of a charged particle under a magnetic
field. As input, we add an external force (Fext) and use the y
position of the particle as output. The SystemC AMS implemen-
tation corresponds to the system-level block diagram in Fig. 5.

The SPICE-level model of the circuit is implemented by using
template circuits that act as inverting summers, integrators, and
gains. The initial SPICE-level SFG was obtained with 85 nodes
and 132 edges and reduced to canonical form. The LTF of this
final form was obtained as

− 1

s3 + 2 · 109s2 + 2 · 1018s (3)

The SystemC AMS code resulted in the system-level SFG in
Fig. 6. After the simplification process and after substituting
numeric values, the canonical form with the same transfer
function given in Eq. 3 is obtained. Therefore, it is concluded
that both representations are equal.

The total run time for this example was 4.9 s.
Future Work: In future, we plan to extend the method

to multi-input multi-output systems and analyze systems with
external noise input.

REFERENCES

[1] M. Barnasconi, “SystemC AMS Extensions: Solving the Need for Speed,” DAC
Knowledge center, May 2010.

[2] R. Drechsler, Formal System Verification. Springer, 2018.
[3] M. H. Zaki, S. Tahar, and G. Bois, “Formal verification of analog and mixed signal

designs: A survey,” Microelectronics Journal, vol. 39, no. 12, pp. 1395–1404, Dec.
2008.

[4] K. Ç. Coşkun, M. Hassan, and R. Drechsler, “Equivalence Checking of System-
Level and SPICE-Level Models of Linear Analog Filters,” in Design and Diag-
nostics of Electronic Circuits and Systems (DDECS), Prague, 2022.

[5] K. Ç. Coşkun, M. Hassan, and R. Drechsler, “Equivalence Checking of System-
Level and SPICE-Level Models of Linear Circuits,” Chips, vol. 1, no. 1, pp. 54–71,
Jun. 2022.

[6] D. Rowell and D. N. Wormley, System Dynamics: An Introduction. Upper Saddle
River, NJ: Prentice Hall, 1997.

[7] L. P. A. Robichaud, Signal Flow Graphs and Applications. Englewood Cliffs,
N.J. :, 1962.

[8] F. R. Rasim and S. M. Sattler, “Analysis of Electronic Circuits with the Signal
Flow Graph Method,” Circuits and Systems, vol. 8, no. 11, pp. 261–274, Nov.
2017.

[9] P.-M. Lin, “Signal Flow Graphs in Filter Analysis and Synthesis,” in Circuit
Analysis and Feedback Amplifier Theory. CRC Press, 2006.

[10] B. Ulmann, Analog and Hybrid Computer Programming. Walter de Gruyter
GmbH & Co KG, Jun. 2020.


