
A Novel LBIST Signature Computation Method for
Automotive Microcontrollers using a Digital Twin

Daniel Tille∗ Leon Klimasch∗ Sebastian Huhn†§

∗Infineon Technologies AG
85579 Neubiberg, Germany

{Daniel.Tille,Leon.Klimasch}@infineon.com

†University of Bremen, Germany
huhn@uni-bremen.de

§Cyber-Physical Systems
DFKI GmbH

28359 Bremen, Germany

Abstract—LBIST has been proven to be an effective measure for
reaching functional safety goals for automotive microcontrollers.
Due to a large variety of recent innovative features, every customer
can adjust LBIST settings in a way that fits their use case. The
downside of these user-defined configurations is the handling of
their golden signatures: Traditionally, they can be computed only
with access to the gate-level netlist. This is typically not possible
for MCU customers because a netlist contains protected IP, which
cannot be disclosed to third parties.

This paper proposes a digital twin of the LBIST functionality
that can overcome this drawback. It is an executable model that
can be delivered together with the product. As a result, for the
first time, a customer can compute a golden signature without
knowledge of the netlist or other support of the supplier. We
prove the efficacy of the digital twin in an industrial environment
on an automotive microcontroller.

I. INTRODUCTION

In the last two decades, the digitization has heavily im-
pacted the automotive industry. Nowadays, the majority of the
functionality is implemented using Microcontrollers (MCUs)
– even safety-critical functions such as airbag control, power
steering, and braking systems. As a consequence, the correct
functionality of these chips is more important than ever since
malfunctions could lead to large collateral damage. It is
not sufficient anymore to just test circuits for defects after
manufacturing. Instead, functional safety standards, such as the
ISO26262 [1], demand so-called in-field tests that regularly
check an MCU for defects (e.g. during each power-up).

Logic Built-In Self-Test (LBIST) is a state-of-the-art struc-
tural in-field test method, which is widely used for automotive
MCUs [2], [3]. This approach applies a deterministic sequence
of pseudo-random test patterns to the circuit logic. The
test responses are continuously compacted into a signature,
which can be evaluated after the end of the test. Since the
circuit behavior is deterministic during LBIST, there is an
unambiguous golden signature for a correct chip for each
specific test sequence. This golden signature can be computed
by Gate-Level Simulation (GLS). Usually, there is a default
LBIST configuration whose golden signature is determined
and provided in the MCU’s datasheet.

At the same time, state-of-the-art automotive MCUs employ
LBIST controllers which are highly configurable. The user can

program various parameters such as the seed of the pseudo-
random sequence, the number of test cycles, or advanced
power reduction measures [4]. Each Electronic Control Unit
(ECU) family, i.e., the system that integrates MCUs, can use
a distinct LBIST configuration in order to satisfy its specific
system requirements (w.r.t. runtime, power, . . .). Since each
configuration yields a different golden signature, this leads to
some practical challenges.

The golden signature for a specific LBIST configuration is
required in order to evaluate the correctness of the test result.
However, MCU customers that program LBIST applications
do not have the capabilities to compute the golden signature
of a user-defined configuration. They do not have access to the
MCU’s gate-level netlist, which is required for executing GLS,
because MCU suppliers cannot disclose it. The protection of
(own and third-party) Intellectual Property (IP) as well as the
need for confidentiality of hardware security implementations
prevent a disclosure.

There are currently three practical possibilities to solve this
dilemma. Firstly, the LBIST execution can be limited to a
small set of default configurations for which the MCU designer
provides the respective golden signatures in the datasheet. This
option was common practice in the past when the LBIST
application was straightforward and affected only a few use
cases. Nowadays, however, there are too many advanced
LBIST functions and too many different application scenarios.
Therefore, MCU customers no longer accept such a limitation.

Secondly, the MCU designer computes and provides golden
signatures for user-defined configurations on demand. While
this was common practice in the past, the growth of the
automotive market with many new customers and the significant
expansion of LBIST applications render this option impractical.

Thirdly, the golden signature can be experimentally deter-
mined on a known good die. This is a practical solution for the
prototyping phase of a product. However, in an environment that
demands high quality, some MCU customers are not satisfied
with this experimental approach. Also, if the product needs
to be certified according to functional safety standards, some
auditors might require the golden signature to be computed
independently.

In this paper, we overcome this challenge by introducing a
digital twin of the LBIST functionality. It is an executable979-8-3503-4630-5/23/$31.00 ©2023 IEEE

model that already integrates all relevant circuit information.
That means, the novelty over existing simulation approaches
is that no separate netlist is required because it is already
an integral part of the program itself. The digital twin can
be provided together with the product. Consequently, for the
first time, MCU customers can compute golden signatures of
their user-defined LBIST configurations without further infor-
mation or support from the MCU supplier. This significantly
improves turn-around time of ECU development and gives the
customer a higher degree of freedom when choosing an LBIST
configuration.

The contribution of this paper includes
• a novel concept of a digital twin that emulates the LBIST

functionality without possession of the gate-level netlist,
• a fully-automated framework for extracting and compiling

a digital twin from an arbitrary circuit,
• a prototype implementation of the extraction method, and
• an experimental evaluation on an automotive MCU bench-

mark.
The remainder of the paper is structured as follows. The

next section presents the concept of the digital twin. Sec-
tion III shows how the digital twin is automatically generated.
Afterwards, Section IV gives an overview of our prototype
implementation. Experimental results are reported in Section V.
Finally, conclusions are drawn in Section VI.

II. NOVEL DIGITAL TWIN

In this section, we propose the new digital twin concept. The
main idea of our approach is to provide an executable model
that “emulates” the LBIST functionality. (For more details of
LBIST, we refer to [5].) In particular, a C++ program computes
all relevant LBIST steps like they are executed on a chip. This
includes the pseudo-random pattern generation using the Linear
Feedback Shift Register (LFSR), shift and capture operations,
and the determination of the signature in the Multiple-Input
Shift Register (MISR). The input of the program is an arbitrary
LBIST configuration which then controls and influences its
concrete execution by providing the content of Special Function
Registers (SFRs), such as the number of shift cycles. The output
is the golden signature for this specific configuration.

The key factor of such a model is the correct program
architecture. This is because a C++ program executes all
instructions sequentially, whereas in hardware, all operations
are performed simultaneously. In the following, we describe
how such a model can be obtained.

A. Combinational Logic

Representing the combinational part of a circuit in C++
instructions is quite straightforward. Each combinational sub-
circuit with n inputs and m outputs computes a Boolean
function1

f : Bn → Bm. (1)

1For the sake of simplicity, we only consider Boolean logic in the following.
An enhancement to a multi-valued logic (e.g. including X and Z values)
increases the complexity but is possible through a Boolean encoding [6].

Figure 1: Example circuit

TABLE I: Overview of the variables stored for each FF

Variable Description

FF_Q current value
FF_D next value from D-input
FF_TI next value from TI-input
FF_TE indicates active scan-enable signal
FF_CLK indicates clock pulse
FF_R indicates reset pulse

Since a combinational circuit has on gate-level a zero-delay
timing and does not contain (combinational) feedback loops,
it is relatively easy to find a C++ statement that computes its
Boolean function. Figure 1 gives an example of a circuit with
three inputs and one output. The associated C++ statement is
as follows

out = (in1 || in2) && !in3; (2)

where in1, in2, in3, and out are Boolean variables.
(Variables will be explained in the next section). That means
the output value is determined by Boolean operations – the
same operations as given in the gate-level netlist – applied to
the input values. In the case of a combinational sub-circuit
with m outputs, there will be m such statements.

B. Sequential Elements

In hardware, Flip Flops2 (FFs) store values from one clock
cycle to the next one. We use Boolean variables to implement
this behavior in our C++ program. Table I gives an overview
of all information that is stored for each FF. The current value
of a FF is stored in the variable FF_Q. The next value, which
is propagated through the combinational logic to the D-input,
is stored in FF_D. For Scan FFs (SFFs), there are two further
inputs, TI and TE, which represent the scan-in and scan-enable
input, respectively. The variables that implement the clocking
scheme are explained in the next section.

Figure 2 shows the netlist of the previous example where the
inputs and output of the combinational circuit are modeled with
FFs. The output of FF3 is fed back to one of the combinational
circuit’s inputs. The corresponding C++ statement is as follows:

FF3_D = (FF3_Q || FF1_Q) && !FF2_Q; (3)

That means, the value of the output-FF in the next clock
cycle, i.e., its D-input-value, is computed through a series
of Boolean operations applied to the current values of the
input-FFs, i.e., their Q-output-values.

2In this work, we consider only flip flops as sequential elements due to the
advantages of full-scan designs for LBIST. However, modeling other elements,
such as latches and memories, is possible with this approach.

Figure 2: Example circuit with sequential elements

Figure 3: Example for a clock signal controlled by a clock
gate

The sequence of the statements for all FFs in a circuit is
irrelevant since all values are stable and a D-value depends
on the logic in its fan-in cone only, as given within one clock
cycles in this abstraction level. Furthermore, the scan path is
modeled according to the same principles: The FF_TI values
are determined based on the FF_Q values of the preceding
SFFs.

Primary Inputs (PIs) to the chip are also modeled by
variables. Since inputs are constrained to a constant value
in an LBIST context (otherwise, there would be no stable
signature), the corresponding variables are also assigned a
constant value.

Finally, also the LFSR and the MISR are modeled using
Boolean variables.

C. Clocking Scheme

In hardware, a FF takes over the value at its D-input with a
rising clock edge. However, our program does not explicitly
model the “continuous” clock signal. Instead, we abstract and
just encode the following essential information.

Firstly, within one clock cycle, all values are stable and the
actual timing information is irrelevant to the LBIST context.
Therefore, we always take into account a complete clock
cycle as one discrete entity. In the program context, this is
accomplished as one loop iteration where the C++ statements
explained above are all executed. Secondly, we model the clock-
enabling conditions for each FF using the FF_CLK variable.
This is done during each clock cycle, i.e., at the beginning of
each loop. That means FF_CLK is true if, and only if, the FF
receives a clock edge in this specific cycle.

Figure 3 shows an example. We see a FF whose clock input
is connected to a clock source that provides a scan clock. As it
is common practice, the clock input is not directly connected
to the source, but there is a clock gate that can block the clock
signal. The enable pin is connected to some arbitrary enabling

logic. The clk_en1 and clk_en2 inputs that we see in this
example are an abstraction. This enabling logic can usually
be complex or even depend on one specific parameter of the
user-defined LBIST configuration.

In our approach, we only model the enabling logic when
computing the FF_CLK, which means for this example:

FF1_CLK = clk_en1 && clk_en2; (4)

The clk_src input is used to identify the clock domain. The
signal itself can be disregarded. In the case of a hierarchical
instantiation of clock gates, the complete enabling logic cone
is taken into account for the computation of the FF_CLK.

The scan-reset network is generated similarly. Due to page
limitations, we will not discuss details here.

D. Program Architecture

This section gives a brief and high-level overview of the
architecture of the C++ program. We abstract from most
implementation details in order to maintain readability.

Algorithm 1 presents an outline of the main function of
the C++ program. During init(), all parameters are read
and variables that reflect SFRs (such as the number of LBIST
cycles) as well as PIs are set. The outer for-loop (line 3) realizes
an LBIST cycle of shift and capture. The number of iterations
can be specified through the program parameters. Each iteration
of the inner for-loops (lines 4 and 12) corresponds to one clock
cycle where one shift or one capture cycle, respectively, is
being emulated. At the end of the program, the current state
of the MISR contains the golden signature and is printed.

Algorithm 1: Main function of the C++ program

1 int main(){
2 init();
3 for (i=0;i<SFR.lbist_cycles;i++){
4 for (j=0;j<chain_length;j++){
5 update_lfsr();
6 shift();
7 update_misr();
8 }
9 if (SFR.scan_reset){

10 reset();
11 } else {
12 for (k=0;k<SFR.capture_cycles;k++){
13 capture();
14 }
15 }
16 }
17 print_misr();
18 }

In Algorithm 2, we depict how one capture cycle is modeled
in C++. Firstly, the D-values for all FFs are determined (see
Eq. 3). Secondly, all CLK-values are determined (see Eq. 4).
At the end of the capture cycle, the Q-value is updated for
each FF in the circuit, if it receives a clock-edge.

While the skeleton of the program is independent of the
actual circuit, the functions which compute the D- and CLK-
values (along with the scan-chains in the shift function, which

Algorithm 2: Capture function of C++ program

1 void capture(){
2 compute_D_values();
3 compute_CLK_values();
4 for (i=0;i<FF.size();i++){
5 if (FF[i].CLK){
6 FF[i].Q = FF[i].D;
7 }
8 }
9 }

are not reported here) implement actual circuit behavior. This is
how the program incorporates netlist knowledge into the digital
twin. Therefore, such a program determines the signature for
one specific MCU product. For a new design (even if it is
just a minor change in the netlist functionality), a new C++
program is required.

E. Advanced LBIST Features

Due to page limitations, we can only briefly mention that our
model is compliant with all major advanced LBIST features.
Power reduction measures, both for shift and capture, are
present in the circuit structure and are therefore taken into
account during the generation of the model. The same is true
for Q-gating [7] and observe scan technology [8].

Re-seeding [9] or bit-flipping techniques [10] can be imple-
mented by enhancing the update_lfsr() function. More
sophisticated methods such as full-scan LBIST [11], that stores
a set of LBIST seeds in an MCU’s memory, can be realized as
well: an external file containing this set of seeds is processed
during init() and provides this data for re-seeding.

The application of at-speed LBIST makes the clocking
scheme more complex, especially if there are several different
clock domains. However, it is generally possible to enhance
the model accordingly.

X-tolerant LBIST [12] and X-canceling MISRs [13] are
not implemented by the current model. However, with an
enhancement to a multi-valued logic containing X-values and
the fact that all masking logic is part of the circuit and, hence,
part of the program, the integration of such techniques is
generally feasible.

III. AUTOMATIC MODEL EXTRACTION

In this section, we show how the C++ model can be auto-
matically generated for an arbitrary netlist. The fundamental
idea of our extraction algorithm is, first, to have a library of
primitive Boolean functions that represent the functions of
all possible gate types in C++. Secondly, a structural circuit
traversal method recursively generates C++ statements based
on these primitive functions.

A. Gate Library Construction

In practice, a gate-level netlist is synthesized based on the
gates contained in a standard cell library. The first step of our

TABLE II: Examples of gate library functions

Gate Function

and bool AND2(bool a,bool b){return a&&b;}
or bool OR3(bool a,bool b,bool c){return a||b||c;}
not bool NOT(bool a){return !a;}
mux bool MUX(bool a,bool b,bool s){return (s)?b:a;}

extraction method is to generate a Boolean function description
for each of the individual gate types in such a library.3

Table II presents a few illustrative examples of functions in
the library. The function AND2 receives the two inputs of an
AND gate as a parameter and returns their conjunction. The
next two functions show that it is also possible to implement
functions with more respectively fewer than two inputs. The
final example presents the Boolean function of a multiplexer
which returns the value of b if the s input is true, and a
otherwise.

Some standard cell libraries contain special gates with more
than just one output. Their Boolean function is represented by
multiple library functions – one for each output. Full adder
gates are an example: There are two corresponding library
functions, one computing the sum-output and one computing
the carry-out-output.

B. Netlist Conversion
The generation of the actual C++ model is explained in

the following. The conversion algorithm works on the gate-
level netlist and has as output C++ statements. In order to
accomplish this, we follow the basic principles explained in
Section II-B.

As a first step, all FFs and PIs are assigned Boolean variables
(see Table I). In order to generate a C++ statement that
computes the FF_D value of a FF, a recursive circuit traversal
procedure is called for its predecessor gate. An abstract pseudo
code4 is presented in Algorithm 3. When the recursion reaches a
terminal gate, i.e., a FF or a PI, it prints the associated variable.
Otherwise, it prints the primitive Boolean function introduced
above and calls itself recursively for each predecessor gate in
order to determine the function’s parameters. This way, the
C++ statement is created that computes the next value of a FF
depending on the current values of the FFs in its input cone.

Let us revisit Figure 2 for an illustrative example. In order
to generate the statement that computes FF3_D, the trace
procedure is called for the AND gate. This prints the primitive
function AND2 and calls the procedure recursively for the OR
gate. Again, the corresponding primitive function is printed and
the procedure is recursively called for FF3. This time we meet
the termination criterion and the variable FF3_Q is printed.
The program continues with the next calls until all terminal
nodes are finally reached. The final statement looks as follows:

FF3_D=AND2(OR2(FF3_Q,FF1_Q),NOT(FF2_Q));

3There are usually multiple standard cells for each gate type, e.g., represent-
ing different driver strengths. We only consider one representative Boolean
function for the complete equivalence class of gates of the same type.

4We explain here only basic functionality and do not consider all necessary
measures to produce syntactically correct code, e.g., correct parentheses.

Algorithm 3: Netlist traversal procedure (Tcl script to
generate C++ program)

1 proc trace (gate){
2 if (gate.type == TERMINAL){
3 print gate.var_Q
4 } else {
5 print gate.primitive_function
6 foreach pred_gate in gate.inputs
7 trace (pred_gate)
8 }
9 }

Due to its recursive nature, this implementation of the C++
statement looks different than the one presented in Eq. 3.
However, when resolving the functions, it is easy to see that
they are functionally equivalent.

The tracing algorithm is applied to all FFs in the circuit.
This creates the compute_D_values() function from
Algorithm 2. Similar techniques are applied to the input cones
of all other input-pins (see Table I) in order to generate
statements that compute the complete circuit functionality,
including scan chains, clock control, and the reset network.

C. Conversion Improvement

The recursive algorithm explained above scales with the
number of paths in the circuit. This can be squared in the
number of gates in the worst case. In order to decrease this
complexity, we propose an optimization. Each time a Fanout-
Free Region (FFR) is traversed for the first time, the resulting
sub-statement is stored. This is easily possible due to the
recursive nature of the traversal algorithm. When the FFR is
re-visited, the sub-statement can be returned immediately. This
reduces the complexity such that the algorithms scales linearly
with the number of gates.

IV. PROTOTYPE IMPLEMENTATION

The proposed method has been implemented in Infineon’s
environment. This work’s focus has been on providing a proof-
of-concept for a realistic scenario. That means, in the current
stage, reaching an optimal runtime was not our priority.

The construction of the gate library (see Section III-A)
is straightforward and accomplished using a Python script.
This script traverses the relevant standard cell library files and
translates the description of the Boolean functions into C++
functions.

The generation of the C++ model (see Section III-B) follows
a two-step approach: firstly, since the skeleton of the program
is independent of the actual netlist, it can be obtained from a
pre-generated template. Secondly, the actual netlist-dependent
functions, such as compute_D_values(), are generated
through a netlist traversal as explained in Algorithm 3. For the
sake of simplicity, we decided to implement these algorithms
on top of a commercial simulation tool. This is only to prove
general feasibility – a final product does not require such a
third-party tool.

TABLE III: Benchmarks

Benchmark gates chains max chain length

LEON3 55,416 20 85
TriCore 1,016,308 650 101

TABLE IV: Generation of Digital Twin

Benchmark runtime [m:s] file size [kB]

generation compile source binary

LEON3 3:48 6:45 6,042 4,429
TriCore 45:00 78:32 26,569 2,482

A. Proof-of-Concept

We executed the prototype on two benchmarks: the publicly
available LEON3 processor [14] and a TriCore CPU core which
is part of Infineon’s AURIX automotive MCU [15] (details
will be reported in the next section). Both benchmarks were
synthesized using state-of-the-art automotive CMOS technology.
The LBIST scheme consists of one clock domain with one
synchronous scan clock. The designs are designed to be X-free,
i.e., they can be modeled using Boolean logic only.

We generated the digital twin for both benchmarks and
determined their golden signatures for four different shift cycle
configurations. Afterwards, we compared them to the simulation
results and validated the signature match.

B. Safety and Security Discussion

From a functional safety point of view, there are no relevant
safety violations to consider. If the digital twin provides a wrong
golden signature, the mismatch will be apparent immediately.
The likelihood that an incorrect golden signature will mask a
defect in an MCU is negligible: for the implemented 32-bit
MISR, it is equal to 2−32. This is the same probability that is
usually accepted, e.g., for aliasing [16].

Security considerations and protection of intellectual property
are of serious concern – after all, this is the reason why the
netlist cannot be provided to the customer in the first place.
Our approach, however, does not pose any relevant threat:
firstly, the C++ model is a very coarse abstraction of the MCU.
It covers only the LBIST functionality. The mission mode,
especially its timing information, is not extracted. Secondly,
for critical circuit parts, such as hardware implementations
of encryption logic, there is the possibility of applying code
obfuscation [17] during a post-process. This can effectively
prevent reverse engineering [18].

V. EXPERIMENTAL EVALUATION

Table III reports details of the used benchmarks. We
conducted our experiments on a Linux machine with 2.6 GHz
and 512GB RAM. We used the gcc compiler in version 4.8.5.

For our experiments, we used a state-of-the-art automotive
CMOS standard cell library. It contains 159 different gate types
in total; this is also the number of functions in our gate library.
The generation of this library requires a runtime of about one
second and is a one-time effort.

TABLE V: Execution of Digital Twin

Benchmark
runtime [s]

shift cycle capture cycle LBIST cycles

100 1,000 10,000

LEON3 ∅ 6.25e-5 ∅ 0.063 6.4 94.0 1,080.0
TriCore ∅ 2.8e-3 ∅ 0.025 1.7 21.1 210.3

Table IV presents information about the generation of the
C++ program. Columns generation and compile give the
runtimes required for the complete generation of the C++ file
and for compiling it, respectively. Columns source and binary
report the file size of the C++ source file and the resulting
binary, respectively. We enabled full compiler optimization. If
code obfuscation is employed, the compile time and resulting
file size will increase.

The fact that we use a commercial tool as the back-end for
our generation framework has a significant negative impact
on the runtime required for generating the model. A native
implementation with data structures that are optimized for this
specific use case would yield significantly better results. At
the same time, although a low runtime for the C++ program
generation is obviously desirable, it is not crucial. Firstly, this
generation has to be executed only once for a product. Secondly,
this step is not on the critical path of the project: it can be
started directly after tape-out, but has to be finished only when
customer samples are shipped (which is usually in the order
of months after tape-out).

Table V reports the experimental results of executing the
digital twin. It gives the average runtimes for one single
shift and capture cycle, i.e., the time required for executing
the shift() and capture() functions, respectively. Af-
terwards, it presents the runtime required for the complete
program run for different numbers of LBIST cycles.

Since the program is executed on the customer side, a low
runtime matters. This can be achieved through further optimiza-
tion: The current implementation employs a straightforward
translation of the gate-level logic into C++ statements. The
number of operations, and with this the required runtime, can
be reduced by optimizing the circuit logic. There are multiple
optimization approaches available that potentially achieve such
an optimization of the circuit logic, e.g., [19], [20].

VI. CONCLUSIONS

In this paper, we presented a novel digital twin that allows
for emulating an LBIST run. This enables MCU customers, for
the first time to independently compute the golden signature
for their user-defined LBIST configurations without access
to the gate-level netlist or requiring additional support from
the supplier. Furthermore, we provided a proof-on-concept of
our method demonstrating its feasibility for state-of-the-art
automotive MCUs.

Several conceivable directions exist in which the digital twin
model could be enhanced. Currently, customers do not have
any knowledge about the fault coverage of their user-defined
configuration. However, this information is invaluable during

the preparation of the safety case. A new fault simulation
technique using the digital twin could provide an estimation.
Another application could be the LBIST diagnosis. Our model
can be enhanced with techniques such as [21]–[23]. The
resulting approach could significantly speed up the search
for a failure in an ECU when an LBIST run fails in a car.
MCU customers that employ such a diagnostics method would
have a significant advantage over their competition.

REFERENCES

[1] “ISO26262: Road vehicles functional safety-part 5,” 2018.
[2] F. Reimann, M. Glaß, J. Teich, A. Cook, L. Rodríguez Gómez, D. Ull, H.-J.

Wunderlich, U. Abelein, and P. Engelke, “Advanced diagnosis: SBST and BIST
integration in automotive E/E architectures,” in Design Automation Conference,
2014.

[3] T. McLaurin, “Periodic online LBIST considerations for a multicore processor,” in
IEEE International Test Conference in Asia, 2018, pp. 37–42.

[4] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer, “Low
power scan shift and capture in the EDT environment,” in IEEE International Test
Conference, 2008, pp. 1–10.

[5] V. D. Agrawal, C. R. Kime, and K. K. Saluja, “A tutorial on built-in self-test. I.
principles,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 73–82, 1993.

[6] R. K. Brayton and S. P. Khatri, “Multi-valued logic synthesis,” in International
Conference on VLSI Design, 1999, pp. 196–205.

[7] X. Lin and J. Rajski, “Test power reduction by blocking scan cell outputs,” in
IEEE Asian Test Symp., 2008, pp. 329–336.

[8] N. Mukherjee, D. Tille, M. Sapati, Y. Liu, J. Mayer, S. Milewski, E. Moghaddam,
J. Rajski, J. Solecki, and J. Tyzer, “Time and area optimized testing of automotive
ICs,” IEEE Transaction on VLSI Systems, vol. 29, no. 1, pp. 76–88, 2021.

[9] S. Venkataraman, J. Rajski, S. Hellebrand, and S. Tarnick, “An efficient BIST
scheme based on reseeding of multiple polynomial linear feedback shift registers,”
in International Conference on CAD, 1993, pp. 572 – 577.

[10] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in International Conference
on CAD, 1996, pp. 337 – 343.

[11] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer, “Full-scan
LBIST with capture-per-cycle hybrid test points,” in IEEE International Test
Conference, 2018, pp. 1 – 9.

[12] P. Wohl, J. A. Waicukauski, G. A. Maston, and J. E. Colburn, “XLBIST: X-tolerant
logic BIST,” in IEEE International Test Conference, 2018, pp. 1–9.

[13] J.-S. Yang and N. A. Touba., “X-canceling MISR architectures for output response
compaction with unknown values,” IEEE Transaction on CAD of Integrated Circuits
and Systems, vol. 31, no. 9, pp. 1417–1427, 2012.

[14] “LEON3 processor,” https://www.gaisler.com/index.php/products/processors/leon3.
[15] “AURIX™ TriCore™,” https://www.infineon.com/aurix.
[16] T. W. Williams, W. Daehn, M. Gruetzner, and C. W. Starke, “Aliasing errors in

signature analysis registers,” IEEE Design & Test of Computers, vol. 4, no. 2, pp.
48–57, 1987.

[17] C. S. Collberg, C. D. Thomborson, and D. W. K. Low, “Obfuscation techniques
for enhancing software security,” US patent no. 6668325B1, 1998.

[18] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static and dynamic
reverse engineering,” in Information Hiding, ser. Lecture Notes in Computer Science,
vol. 6958, 2011, pp. 270–284.

[19] N. Eén, A. Mishchenko, and N. Sörensson, “Applying logic synthesis for speeding
up SAT,” in International Conference on Theory and Applications of Satisfiability
Testing, 2007, pp. 272–286.

[20] D. Tille, S. Eggersglüß, R. Krenz-Bååth, J. Schloeffel, and R. Drechsler, “Improving
CNF representations in SAT-based ATPG for industrial circuits using BDDs,” in
IEEE European Test Symp., 2010, pp. 176–181.

[21] I. Pomeranz and S. M. Reddy, “On dictionary-based fault location in digital logic
circuits,” IEEE Transaction on Comp., vol. 46, no. 1, pp. 48–59, 1997.

[22] A. Cook, M. Elm, H.-J. Wunderlich, and U. Abelein, “Structural in-field diagnosis
for random logic circuits,” in IEEE European Test Symp., 2011, pp. 111–116.

[23] D. Tille, B. Gottinger, U. Pfannkuchen, H. Graeb, and U. Schlichtmann, “On
enabling diagnosis for 1-pin test fails in an industrial flow,” in ASP Design
Automation Conference, 2018, pp. 233–238.

