
Testability of SPP Three-Level Logic Networks

Valentina Ciriani Anna Bernasconi

Department of Computer Science
University of Pisa
56100 Pisa, Italy

{ciriani, annab}@di.unipi.it

Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
drechsle@informatik.uni-bremen.de

Abstract

Sum of Pseudoproducts (SPPs) are three-level network
structures that give a good compromise between compact
representation and small depth of the resulting circuit. In
this paper the testability of circuits derived from SPPs is
studied. For SPPs several restricted forms can be consid-
ered. While full testability can be proved for some classes,
others are shown to contain redundancies. Experimental
results are given to demonstrate the efficiency of the ap-
proach.

1. Introduction

The standard synthesis of Boolean functions is aimed
at designing circuits of reduced if not minimal cost, ac-
cording to given cost criteria.

Synthesis is often performed with Sum of Products
(SOP) minimization procedures, leading to two-level cir-
cuits. More-than-two-level minimization is much harder,
but the size of the circuits can significantly decrease. In
many cases three-level logic is a good trade-off among
circuit speed, circuit size, and the time needed for the min-
imization procedure.

Several different logic frameworks have been de-
fined and studied, e.g., two-level logic: SOP [7], Reed
Muller [14]; and three level logic: EXSOP [8, 9] (EXOR
of ORs of ANDs). A different three-level form called Sum
of Pseudoproducts (or SPP) was introduced in [13]. SPP
expressions can be seen as a direct generalization of SOP
expressions using EXOR gates. An SPP form consists of
the OR of pseudoproducts, where a pseudoproduct is the
AND of EXOR factors (i.e., EXOR of literals).

Among three-level networks, SPP forms are particu-
larly compact [3, 4]. However SPP forms have two major
disadvantages: (i) they require large computational effort
for the minimization; (ii) they have been originally de-
fined for EXOR gates with unbounded fan-in and, in most
technologies, EXOR gates with many inputs are slow, ex-
pensive and often impractical [17]. Therefore, in recent
studies [6, 5], k-SPP forms with a fixed maximum number
of literals (k) in the EXOR factors have been introduced.

Experimental results show that the size of the k-SPP min-
imal forms is not significantly larger than the one for un-
bounded fan-in, but the computational effort drastically
decreases, especially when k = 2. Thus 2-SPP forms are
reasonable upper bounds of the exact SPP forms, and are
a good trade-off between the compactness of SPP forms
and the efficiency of SOP minimization. Furthermore 2-
SPP forms require a reduced number of different EXOR
gates and are more practicable for the current technology.

Beside the synthesis aspect, testability is a major as-
pect of the design process. Up to 40% of the overall de-
sign costs are due to testing. For this, aspects of testa-
bility should be considered from the very beginning [18].
For several two-level forms detailed studies on testability
have been performed. But for three-level networks testa-
bility has not been considered so far.

In this paper the testability of SPP forms is studied
from a theoretical and practical point of view. Under the
stuck-at fault model it is proved that general SPP net-
works, minimized with respect to the number of literals,
are free of redundancies by construction. Whereas it can
be shown by counter-examples that SPPs, minimized with
respect to the number of products, are not fully testable.
The same result holds for the specific class of 2-SPPs. Ex-
perimental results are given to demonstrate the efficiency
of the approach.

The paper is structures as follows: In Section 2 nota-
tion and definitions are given. The stuck-at fault model is
introduced and basics on SPP networks are reviewed. The
testability results are presented in Section 3. In Section 4
details on the experimental setup and the practical results
are given.

2. Preliminaries

2.1. Fault Model

Let C be any combinational logic circuit over a fixed
library. A fault in the stuck-at fault model [2] causes ex-
actly one input or output pin of a node in C to have a fixed
constant value (0 or 1) independently of the values applied
to the primary inputs of the circuit.

Definition 1 A stuck-at fault with fault location v is a tu-
ple (v[i], ε) or ([i]v, ε). v[i] ([i]v) denotes the i-th input
(output) pin of v, ε ∈ {0, 1} is the fixed constant value.

For brevity, in the following we simply speak of stuck-at-i
(s-a-i) faults, if the context is clear.

Definition 2 An input t to C is a test for a fault F , iff the
primary output values of C on applying t in the presence
of F are different from the output values of C in the fault
free case.

A fault is testable, iff there exists a test for this fault. The
goal of any test pattern generation process is a complete
test set for the circuit under test, i.e., a test set that contains
a test for each testable fault.

The construction of complete test sets requires the de-
termination of the faults which are not testable (= redun-
dant), even though it is easy to see that in general the de-
tection of redundancies is coNP-complete. Redundancies
have further unpleasant properties: they may invalidate
tests for testable faults and often correspond to locations
of the circuit where area is wasted [2]. For this, synthe-
sis procedures which result in non-redundant circuits are
desirable. A node v in C is called fully testable, if there
does not exist a redundant fault with fault location v. If
all nodes in C are fully testable, then C is called fully
testable.

For example consider the circuit in Figure 1. A s-a-
0 fault at input x2 can be tested by setting inputs x3 and
x4 to 1. This is needed to ensure the propagation along
the upper AND-gate. Since the EXOR of x3 and x4 then
becomes 0, the output of the lower AND-gate becomes
also 0, ensuring the propagation of the faulty value along
the OR-gate at the output. The test is independent of the
value of input x1.

2.2. 2-SPP Networks

In a Boolean space {0, 1}n described by n variables
x1, x2, . . ., xn, a 2-EXOR factor is an EXOR with at
most 2 variables, one of which possibly complemented
(an EXOR with just one literal corresponds to the lit-
eral itself). Given two Boolean variables x1, x2, all the
possible 2-EXOR factors are essentially x1, x1, x2, x2,
(x1 ⊕ x2) and (x1 ⊕ x2) (in fact, x1 ⊕ x2 = x1 ⊕ x2, and
x1 ⊕ x2 = x1 ⊕ x2).

Definition 3 A 2-pseudoproduct is a product of 2-EXOR
factors; and a 2-SPP form is a sum of 2-pseudoproducts.

A 2-pseudoproduct P of a Boolean function f is prime iff
no other 2-pseudoproductP ′ of f exists such that P ⊆ P ′.

Definition 4 A set of points whose characteristic func-
tion can be represented as a 2-pseudoproduct is a 2-
pseudocube.

This is a generalization of the concept of cubes. In par-
ticular, a SOP form is a particular 2-SPP form where each
EXOR factor contains only one literal.

X2

X3

X4

00

01

11

10

 00 01 11 10

11 0

0

0 0 00

0

0

1 0 1 0

10

X3 X4

X1 X2

X1
X3

X4

Figure 1. Karnaugh map of function f with 2-SPP
cover x2x3x4 + x1(x3 ⊕ x4), and its 2-SPP circuit rep-
resentation

In the space {0, 1}n the number of different 2-EXOR
factors with exactly 2 literals is 2 ·

(

n

2

)

= n(n − 1).
Thus in the worst case, 2-SPP forms require a quadratic
number of different 2-EXOR gates. The 2-SPP synthe-
sis problem can be stated as: given a set of points in the
Boolean space {0, 1}n, find its minimal cover composed
of 2-pseudocubes, where a minimal cover is represented
by a sum of 2-pseudoproducts with minimal number of
literals or with minimal number of 2-pseudoproducts.

For example, the function f represented by the
Karnaugh map in Figure 1, has the following 2-SPP
cover minimal with respect to both literals and 2-
pseudoproducts: x2x3x4+x1(x3⊕x4). The 2-SPP circuit
representation is on the right side of the figure. A minimal
SOP form of such function is x2x3x4+x1x3x4 + x1x3x4.

We can observe that a 2-pseudoproduct corresponds to
a system of linear equations, and a 2-pseudocube corre-
sponds to the set of solutions of such a system. For exam-
ple, the 2-pseudoproduct

x2 · (x1 ⊕ x3) · (x3 ⊕ x5) · x6 · (x7 ⊕ x8)

in {0, 1}9 corresponds to the system

x2 = 1
x1 ⊕ x3 = 1
x3 ⊕ x5 = 1

x6 = 1
x7 ⊕ x8 = 1

=

x2 = 1
x1 ⊕ x3 = 1
x3 ⊕ x5 = 0

x6 = 0
x7 ⊕ x8 = 1

When the 2-pseudocube is actually a cube, the system
has only one variable in each equation. For example, the
product x1 ·x2·x4·x6 in {0, 1}9, corresponds to the system

x1 = 1
x2 = 0
x4 = 0
x6 = 1

A 2-pseudocube can be represented with different 2-
pseudoproducts corresponding to different linear systems.
For example, the three 2-pseudoproducts x1 · x1 · (x2 ⊕
x3) · (x2 ⊕ x4), x1 · (x2 ⊕ x3) · (x2 ⊕ x4) · (x3 ⊕ x4),
and x1 · (x2 ⊕ x3) · (x2 ⊕ x4) represent the same set of
points (i.e., 2-pseudocube): {1011, 1100}. Of course the

most convenient representation is the third one. The cor-
responding linear systems are:

x1 = 1
x1 = 1

x2 ⊕ x3 = 1
x2 ⊕ x4 = 1

=

x1 = 1
x2 ⊕ x3 = 1
x2 ⊕ x4 = 1
x3 ⊕ x4 = 0

=

x1 = 1
x2 ⊕ x3 = 1
x2 ⊕ x4 = 1

Observe that only the third system has maximum rank,
i.e., its equations are linearly independent, and indeed
it corresponds to the smaller 2-pseudoproducts. There-
fore minimal 2-SPP forms are sums of 2-pseudoproducts
whose systems have maximum rank.

In [6] a 2-SPP minimization algorithm is proposed.
As in the Quine-McCluskey approach the generation of
prime 2-pseudoproducts is performed in steps by succes-
sive unions of 2-pseudoproducts. A minimal 2-SPP form
is generated by choosing a minimal subset of prime 2-
pseudoproducts that covers the original function (this is
the classical set covering step of Quine-McCluskey opti-
mization).

The SPP forms, proposed and studied in [3, 13], are
a direct generalization of 2-SPP expressions, where the
EXOR factors can have an unbounded number of literals.

3. Testability

In this section we study the testability of 2-SPP and
general SPP networks.

As observed in Section 2.2 there exist two different no-
tions of cost function for the minimization of 2-SPP (SPP)
forms:

1. the cost function is the total number of 2-
pseudoproducts (pseudoproducts) in the form;

2. the cost function is the total number of literals in the
form.

In both cases, the minimal forms are prime and irre-
dundant. The full testability property of 2-SPP and SPP
forms is guaranteed only in the second case, as proved be-
low, while forms minimized with respect to the number of
pseudoproducts are not in general fully testable.

3.1. Testability of 2-SPP Networks

3.1.1. Non-Testability of 2-SPP Networks for Product
Minimization

We consider 2-SPP forms minimal w.r.t. the number of 2-
pseudoproducts.

Theorem 1 2-SPP forms minimal with respect to the
number of 2-pseudoproducts are not fully testable.

Proof. We provide a counter-example. Consider the func-
tion f = {0101, 0111, 1001, 1010, 1101, 1110}. There
are three prime 2-pseudoproducts for f : (x1 ⊕ x2)(x3 ⊕
x4), x2(x3 ⊕ x4), and x1(x3 ⊕ x4). The sum of any cou-
ple of them provides a 2-SPP form, prime and irredundant,
minimal w.r.t. the number of 2-pseudoproducts.

Let us choose the form f = (x1 ⊕ x2)(x3 ⊕ x4)+
x2(x3 ⊕ x4). Suppose that there is a s-a-0 at the input
x2 of the gate (x1 ⊕ x2). In this case the output of the
2-pseudoproduct (x1 ⊕ x2)(x3 ⊕ x4) is identical to the
output of x1(x3 ⊕ x4). Therefore the faulty network is
equivalent to x1(x3 ⊕ x4) + x2(x3 ⊕ x4), that is exactly
the original function f .

3.1.2. Testability of 2-SPP Networks for Literal Mini-
mization

We now consider 2-SPP forms minimal w.r.t. the number
of literals. We first need a preliminary result. Recall that
2-SPP networks are composed of three levels of logic: a
level of 2-EXORs whose inputs are the variables; a level
of ANDs whose inputs are the outputs of the EXOR layer;
and an OR among the outputs of the AND layer.

Lemma 1 All possible values can be applied to the inputs
of the AND layer of a minimal 2-SPP network.

Proof. Recall that a 2-pseudoproduct can be seen as
a linear system. In a minimal 2-SPP form each 2-
pseudoproduct contains a number of 2-EXOR factors
equal to the rank of its system. In other words the equa-
tions in the corresponding system are linearly indepen-
dent. This means that the outputs of the EXOR gates are
independent, i.e., the inputs to the AND layer have all the
possible values.

We can now prove the full testability of minimal 2-SPP
networks.

Theorem 2 2-SPP forms minimal with respect to the
number of literals are fully testable.

Proof. Since 2-SPP forms are prime and irredundant, the
proof of the full testability for AND and OR gates is the
same as for SOP forms. In fact, as proved in Lemma 1, the
inputs to the AND gates are directly controllable, i.e., all
possible values can be applied. We are then left only with
the case of s-a-fault at inputs of EXOR gates. We prove
by contradiction that any fault can be tested.

Let (xi ⊕ xj) · p + s be a representation of f in 2-
SPP form minimal w.r.t the number of literals, where p is
a 2-pseudoproduct and s is the rest of the minimal 2-SPP
form.

Let us consider the case xi ≡ 0, i.e., s-a-0 in xi. Then
the network computes the faulty function fF = xj · p+ s,
By contradiction suppose that fF ≡ f , then

xj · p + s ≡ (xi ⊕ xj) · p + s

xjxi · p + xjxi · p + s ≡ xjxi · p + xjxi · p + s

xjxi · p + s ≡ xjxi · p + s .

Since xjxi · p ∩ xjxi · p = ∅, we have that xjxi · p ⊆ s
and xjxi · p ⊆ s, which implies that xi · p ⊆ s. Therefore
f contains (xi ⊕ xj) · p and xi · p. We now show that
xi · p + (xi ⊕ xj) · p = xi · p + xj · p. In fact we have

xi · p + (xi ⊕ xj) · p = xjxi · p + xjxi · p + xjxi · p

= xi · p + xj · p .

Therefore we reach a contradiction to the minimality w.r.t.
the number of literals of the 2-SPP form for f . In fact the
minimal 2-SPP form for f would be xj · p + s instead of
(xi ⊕ xj) · p + s.

The case of negated variables is identical. The same
proof holds for a s-a-1 fault.

3.2. Testability of General SPP Networks

SPP networks have an unbounded number of literals in
the EXOR gates. If we consider forms minimal w.r.t. the
number of products, then we have the same result as for
2-SPP networks, since the counter-example given in the
proof of Theorem 1 still holds.

Consider now SPP forms minimal w.r.t. the number of
literals.

The result is analogous to the one for 2-SPP forms:

Theorem 3 SPP forms minimal with respect to the num-
ber of variables are fully testable.

Proof. Following the proof for 2-SPP forms we have now
to prove the testability of general EXOR gates. Let (xi ⊕
h) · p + s be a representation of f in SPP form minimal
w.r.t the number of literals, where h is an EXOR factor,
not including xi, p is a pseudoproduct and s is the rest of
the minimal SPP form.

Let us consider the case xi ≡ 0, i.e., s-a-0 in xi. Then
the network computes the faulty function fF = h · p + s,
By contradiction suppose that fF ≡ f , then

h · p + s ≡ (xi ⊕ h) · p + s

hxi · p + hxi · p + s ≡ hxi · p + hxi · p + s

hxi · p + s ≡ hxi · p + s .

Since hxi · p ∩ hxi · p = ∅, we have that hxi · p ⊆ s
and hxi · p ⊆ s, which implies that xi · p ⊆ s. Therefore
f contains (xi ⊕ h) · p and xi · p. We now show that
xi · p + (xi ⊕ h) · p = xi · p + h · p. In fact we have

xi · p + (xi ⊕ h) · p = hxi · p + hxi · p + hxi · p

= xi · p + h · p .

Therefore we reach a contradiction to the minimality w.r.t.
the number of literals of the SPP form for f . An analogous
proof holds for the s-a-1 fault.

However, in practice the SPP networks are defined
once a variable ordering is fixed. In this case the above
theorem, which refers to SPP forms minimal with re-
spect to any possible variable ordering, does not hold any
more. Moreover, as shown below, the SPP forms min-
imal w.r.t. a fixed variable ordering are no more fully
testable. Let us consider minimal SPP forms depending
on a variable ordering (for more details on SPP networks,
see [3, 13]). For example, consider the Boolean function
f = {0011, 0100, 1000, 1111}, and the variable ordering
o = x1 < x2 < x3 < x4. The function f is indeed a pseu-
docube, and its minimal SPP network, w.r.t. the variable
ordering o, is (x1 ⊕ x2 ⊕ x3)(x1 ⊕ x2 ⊕ x4). Meanwhile

if we choose the variable ordering x3 < x1 < x2 < x4,
then a minimal SPP form is (x3 ⊕ x1 ⊕ x2)(x3 ⊕ x4),
which contains less literals than the former form. In the
case of 2-SPP networks, the number of literals in the mini-
mal forms is instead independent of the variable ordering,
see [6] for more details. For this reason the testability the-
orem holds in any case.

If we fix an ordering, then the proof of testability
given above cannot be applied anymore, as the follow-
ing counter-example shows. Consider the function f =
{00011, 00100, 00110, 01001, 01011, 01110, 10001,
10011, 10110, 11011, 11100, 11110}. Once the variable
ordering o = x1 < x2 < x3 < x4 is fixed, there are
eleven prime pseudoproducts for f . A minimal form for
f in the variable ordering o is:

f = (x1 ⊕ x2 ⊕ x3 ⊕ x4)(x3 ⊕ x5) + x4(x3 ⊕ x5) .

Suppose that there is a s-a-0 at the input x4 of the gate
(x1 ⊕ x2 ⊕ x3 ⊕ x4). In this case the faulty function is:

fF = (x1 ⊕ x2 ⊕ x3)(x3 ⊕ x5) + x4(x3 ⊕ x5) .

It is easy to verify that f ≡ fF but the pseudoproduct
pF = (x1 ⊕ x2 ⊕ x3)(x3 ⊕ x5) is not represented in
the order o. Therefore it is not in the set of eleven prime
pseudoproducts used to form the minimal expression. In
this case the fault cannot be detected because f is in-
deed in minimal form w.r.t. the variable ordering o and
f ≡ fF . Of course, if we do not fix a variable ordering
then (x1 ⊕ x2 ⊕ x3 ⊕ x4)(x3 ⊕ x5) + x4(x3 ⊕ x5) is not
a minimal form for f .

Therefore we can formally state the following

Theorem 4 SPP forms minimal with respect to the num-
ber of literals in a fixed variable ordering are not fully
testable.

4. Experimental Results

All methods described above have been implemented
in C. The experiments have been run on a Pentium III
450MHz CPU with 128 MByte of main memory. The
three-level forms have been optimized using the tools
described in [6] and the generated networks have been
written as BLIF files. The correctness of the synthe-
sis process and the testability analysis have been car-
ried out in SIS [15]. The benchmarks are taken from
LGSynth93 [19].

In a first series of experiments the quality of SPP forms
(optimized by different criteria) are compared to two-level
approaches. By this, an impression on the quality of
the approaches is provided for a set of benchmarks. To
this end we count the number of literals and gates (AND
and EXOR) of an expression. In the multi-level con-
text the cost function is the total number of literals in all
gates (see [10, 12]). The problem is that in many tech-
nologies EXOR and OR (or AND) gates have different
costs. In [12] the authors consider a 2-input EXOR gate

Table 1. Costs for benchmark functions in 2-SPP, SOP and SPP forms
2-SPP SOP SPP

name µ #E µ′ µ/µ′ µ′′ #E µ/µ′′

9sym 168 18 588 0.29 188 30 0.89
addm4 694 34 1407 0.49 * * *
adr4 105 5 415 0.25 118 10 0.89
clip 402 26 769 0.52 * * *
dist 471 26 879 0.54 636 50 0.74
f51m 232 19 402 0.58 243 23 0.95
life 180 16 756 0.24 180 16 1.00
m4 735 28 1214 0.61 835 48 0.88
max512 620 35 1032 0.60 * * *
mlp4 500 25 869 0.58 524 32 0.95
newcond 161 11 239 0.67 * * *
radd 105 5 415 0.25 118 10 0.89
rd53 64 6 175 0.37 66 7 0.97
rd73 212 11 903 0.23 187 15 1.13
root 281 21 376 0.75 366 31 0.77
squar5 101 6 120 0.84 112 8 0.90
xor5 24 2 96 0.25 18 1 1.33
z4 91 6 311 0.29 100 10 0.91

as x ⊕ y = xy + xy. Thus the cost in literals of a 2-
input EXOR gate is 4, while the cost of the 2-input OR
and AND gates is 2. This is also proportional to the num-
ber of transistors used for the CMOS technology mapping
(i.e., 4 transistors for AND/OR gates and 8 transistors for
the EXOR gate). More in general, by the associative prop-
erty of the EXOR operator, we can always see a k-input
EXOR gate as the composition of k − 1 2-input EXOR
gates. Therefore, we can use a function µ where a k-input
EXOR gate costs 4(k − 1), and k-input OR/AND gates
cost k. This cost function corresponds to the CMOS cost
described in [10].

Table 1 compares the costs of minimal 2-SPP, SOP and
SPP forms (2-SPP and SPP networks are minimized with
respect to the number of literals in the expressions). In
the first column the name of the benchmark is given. In
the next column the costs are given for 2-SPP, SOP and
SPP forms. Here, µ is the cost for the 2-SPP network,
while µ′ is the cost for the SOP network. The cost for
the SPP network is µ′′. #E is the number of different
EXOR gates in 2-SPP and SPP forms. The star * indicates
that the SPP algorithm did not terminate after 172800 sec-
onds (corresponding to 2 days). The minimization algo-
rithms are designed for exact synthesis of 2-SPP and SPP
forms. Indeed the set of prime 2-pseudoproducts (pseu-
doproducts) is exactly computed. Since we used some
heuristics [11, 16] in solving the set covering problem,
the number of literals in the expressions in Table 1 are
upper bounds for the minimal solutions. The correspond-
ing minimization times are given in Table 2. We note that
2-SPP and SPP forms are much more compact than the
corresponding SOP expressions, 2-SPP minimization is
also faster than SPP minimization with the exceptions of

9sym and xor5. This is due to the fact that the SPP min-
imization algorithm takes advantage of some regularities
of functions (see [1]), which cannot be exploited by the
2-SPP synthesis.

For all forms, the number of redundancies under the
stuck at fault model are given in Table 3. If SOPs are
minimized, i.e., they are prime and irredundant, the corre-
sponding networks are also fully testable. But compared
to 2-SPP forms they are significantly larger in size (see
above). Corresponding to the theoretical results in Sec-
tion 3, it can be observed that 2-SPPs are fully testable
(see Theorem 2), while SPPs may contain redundancies.
Indeed the redundancies in SPP networks are due to the
heuristic used for their synthesis, and to the fact that the
variable ordering in the minimization algorithms is fixed
(see Theorem 4).

In summary, the experiments have shown that 2-SPP
forms provide a very good compromise between compact
representation, complexity of the minimization process
and testability. Beside being more efficient than SOP re-
garding number of literals, they are so far the only three-
level form that ensures full testability of the resulting cir-
cuit by construction.

5. Conclusion

Several approaches for three-level synthesis have re-
cently been proposed. The resulting circuits have small
delay but are more compact than two-level forms. The al-
gorithmic complexity of the minimization algorithms are
moderate. This makes them a promising candidate for
synthesis.

In this paper we studied for the first time the testabil-

Table 2. Minimization times (in seconds)
name 2-SPP SOP SPP
9sym 242.67 5.32 147.58
addm4 50.96 0.87 *
adr4 6.69 0.10 88.22
clip 1662.27 0.38 *
dist 924.10 0.14 8196.00
f51m 64.00 0.23 443.00
life 120.40 0.03 262.00
m4 890.94 0.67 9929.40
max512 341.24 0.53 *
mlp4 339.51 1.62 1423.74
newcond 1485.01 0.01 *
radd 15.20 0.08 144.00
rd53 0.10 0.01 0.20
rd73 24.10 0.03 114.00
root 272.32 0.08 1597.70
squar5 0.42 0.01 0.64
xor5 0.05 0.01 0.02
z4 5.30 0.04 6.75

ity of the resulting networks. For specific classes, i.e. 2-
SPPs and SPPs minimal w.r.t. the number of literals in any
variable ordering, full testability has been proved, while
for other classes counter-examples were provided. Ex-
perimental results demonstrated the efficiency of the ap-
proach.

It is focus of current work to study more complex fault
models, like path-delay faults or bridging faults.

References

[1] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli. Fast
Three-Level Logic Minimization Based on Autosymme-
try. In ACM/IEEE 39th Design Automation Conference
(DAC), pages 425–430, 2002.

[2] M. Breuer and A. Friedman. Diagnosis & reliable design
of digital systems. Computer Science Press, 1976.

[3] V. Ciriani. Logic Minimization Using Exclusive OR
Gates. In ACM/IEEE 38th Design Automation Conference
(DAC), pages 115–120, 2001.

[4] V. Ciriani. Three-Level Logic Synthesis: Algebraic Ap-
proach and Minimization Algorithms. PhD thesis, Dipar-
timento di Informatica, University of Pisa, 2003.

[5] V. Ciriani. Synthesis of SPP Three-Level Logic Networks
using Affine Spaces. IEEE Transactions on TCAD, Octo-
ber 2003.

[6] V. Ciriani and A. Bernasconi. 2-SPP: a Practical Trade-Off
between SP and SPP Synthesis. In 5th International Work-
shop on Boolean Problems (IWSBP2002), pages 133–140,
2002.

[7] O. Coudert. Two-Level Logic Minimization: an overview.
INTEGRATION, 17:97–140, 1994.

[8] D. Debnath and T. Sasao. Multiple–Valued Minimization
to Optimize PLAs with Output EXOR Gates. In IEEE
International Symposium on Multiple-Valued Logic, pages
99–104, 1999.

Table 3. Number of redundancies
name original 2-SPP SOP SPP
9sym 0 0 0 0
addm4 24 0 0 *
adr4 24 0 0 0
clip 0 0 0 *
dist 0 0 0 0
f51m 56 0 0 0
life 0 0 0 0
m4 22 0 0 3
max512 4 0 0 *
mlp4 24 0 0 2
newcond 0 0 0 *
radd 0 0 0 0
rd53 0 0 0 0
rd73 0 0 0 0
root 0 0 0 1
squar5 12 0 0 1
xor5 0 0 0 0
z4 12 0 0 0

[9] E. Dubrova, D. Miller, and J. Muzio. AOXMIN-MV: A
Heuristic Algorithm for AND-OR-XOR Minimization. In
4th Int. Workshop on the Applications of the Reed Muller
Expansion in circuit Design, pages 37–54, 1999.

[10] M. Eggerstedt, N. Hendrich, and K. von der Heide. Min-
imization of Parity-Checked Fault-Secure AND/EXOR
Networks. In IFIP WG 10.2 Workshop on Applications of
the Reed-Muller Expansion in Circuit Design, pages 142–
146, 1993.

[11] M. S. Fiorenzo-Catalano and F. Malucelli. Parallel Ran-
domized Heuristics For The Set Covering Problem. Inter-
national Journal of Computer Research, 10(4), 2001.

[12] G. Hachtel and F. Somenzi. Logic Synthesis and Verifica-
tion Algorithms. Kluwer Academy Publishers, 1996.

[13] F. Luccio and L. Pagli. On a New Boolean Function
with Applications. IEEE Transactions on Computers,
48(3):296–310, 1999.

[14] T. Sasao. AND-EXOR Expressions and their Optimiza-
tion. In T. Sasao, editor, Logic Synthesis and Optimization.
Kluwer Academic Publisher, 1993.

[15] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential
circuit synthesis. Technical report, University of Berkeley,
1992.

[16] J. Tebboth and R. Daniel. A Tightly Integrated Modelling
and Optimisation Library. Annals of Operations Research,
104:313–333, 2001.

[17] N. Weste and K. Eshraghian. Principles of CMOS VLSI
Design. Addison-Wesley Publishing Company, 1993.

[18] T. Williams and K. Parker. Design for Testability - A Sur-
vey. IEEE Transactions on Computers, 31(1):2–15, 1982.

[19] S. Yang. Synthesis on Optimization Bench-
marks. User guide, Microelectronic Cen-
ter, 1991. Benchmarks available at
ftp://ftp.sunsite.org.uk/computing/general/espresso.tar.Z.

