
Towards Reliable Spatial Memory Safety
for Embedded Software by Combining

Checked C with Concolic Testing
Sören Tempel1 Vladimir Herdt1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
tempel@uni-bremen.de, vherdt@uni-bremen.de, drechsler@uni-bremen.de

Abstract—In this paper we propose to combine the safe C
dialect Checked C with concolic testing to obtain an effective
methodology for attaining safer C code. Checked C is a modern
and backward compatible extension to the C programming
language which provides facilities for writing memory-safe C
code. We utilize incremental conversions of unsafe C software
to Checked C. After each increment, we leverage concolic testing,
an effective test generation technique, to support the conversion
process by searching for newly introduced and existing bugs.

Our RISC-V experiments using the RIOT Operating System
(OS) demonstrate the effectiveness of our approach. We uncovered
4 previously unknown bugs and 3 bugs accidentally introduced
through our conversion process.

Index Terms—Checked C, Concolic Testing, Memory Safety,
Embedded Software, Virtual Prototype, RISC-V, RIOT

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), heavily
constrained embedded devices are being deployed in security
critical areas. As per RFC 7228, these devices are severely con-
strained in terms of available resources (e.g. available memory
or computing power) compared to conventional devices (such
as laptops) [1]. For this reason, efficient use of resources is
important in the low-end IoT. Unfortunately, many security
techniques known from conventional devices (e.g. ASLR)
impact these resources and are thus not commonly available
on constrained embedded devices. Language-based security
techniques are considered a mitigation for this pitfall [2].
Unfortunately, the unsafe programming language C remains
a popular choice for heavily constrained embedded devices
[3, Table 1]. Safe C dialects attempt to add language-based
security features to the C programming language to address this
issue. We will refer to standard C as legacy C in the following.

A recent advance in regard to safe C dialects is Checked
C [4] which is under ongoing development by Microsoft and
provides facilities for writing memory-safe C code. These
facilities include new syntactic constructs and thus a custom
compiler is required for Checked C code. Additionally, existing
Software (SW) written in legacy C needs to be converted to
Checked C to make use of these constructs, e.g. for annotating
pointer bounds. This requirement for modifications is a com-
monly cited drawback of safe C dialects. However, compared
to other safe C dialects, Checked C is a fully backward
compatible extension of the C programming language. This

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project Scale4Edge under contract
no. 16ME0127 and within the project VerSys under contract no. 01IW19001.

has the advantage that conversion from legacy C to Checked C
can occur incrementally and on demand. Moreover, incremental
conversions enable developers to selectively convert critical
parts to Checked C first, thereby easing applicability to larger
programs. While Checked C developers are actively working
on tooling for partially automating the conversion process, this
tooling is intended for “simple cases” and programmers still
need to annotate bounds manually [5, p. 78]. As such, the
conversion process relies on manual effort which is susceptible
to errors and thus requires cross-validations. We refer to
errors introduced during the conversion process as conversion
bugs. While these bugs do not lead to potentially exploitable
undefined behavior they may still result in spurious crashes,
thereby impacting reliability.

The majority of these accidentally introduced conversion
bugs are hopefully discovered through existing unit tests. How-
ever, especially when considering bugs caused by incorrectly
specified pointer bounds, preexisting test cases may not be
sufficient to check all relevant edge cases. Recent advances
in concolic testing have made it possible to partially automate
unit testing [6]. As concolic testing attempts to find new paths
based on collected path constraints, we consider this technique
promising for finding paths to failing bounds checks which
were inserted by the compiler of Checked C.
Contribution: In order to address conversion bugs, we propose
to combine Checked C with concolic testing to obtain an effec-
tive methodology for finding paths to failing Checked C bounds
checks. This combination is capable of uncovering real memory
safety violations which would lead to potentially exploitable
undefined behavior without Checked C and conversion bugs1

which impact reliability in a production environment. We
also discuss the benefits and limitations of this combination.
On the implementation side, we leverage Virtual Prototypes
(VPs) as an accurate simulation environment for embedded
SW binaries and integrate a Concolic Testing Engine (CTE)
with the VP-based simulation. We refer to this combination
as VP-CTE2. Our RISC-V based experiments using the RIOT
Operating System (OS) demonstrate the effectiveness of our
approach. Concolic testing has been beneficial in safeguarding
the Checked C conversions of existing RIOT code and also
allowed us to find 4 previously unknown bugs in the network
stack of RIOT.

1Conversion bugs are further classified and discussed in Section IV-B.
2Visit http://www.systemc-verification.org/risc-v to find our most recent

RISC-V related approaches.

http://www.systemc-verification.org/risc-v

II. RELATED WORK

Checked C has previously been applied to conventional
operating systems, such as FreeBSD [7]. We are also aware
of prior work presenting an optional integration of Checked C
for RIOT, allowing compilation of converted code with both
legacy C and Checked C compilers [8]. We consider these
two approaches complementary to our own since they do not
address conversion bugs.

Prior work has also presented alternative safe C dialects
such as Cyclone [9] and Deputy [10]. Contrary to Checked
C, these dialects are either not fully compatible with legacy
C or no longer in active development. Apart from safe C
dialects, existing literature also considers alternative techniques
for achieving memory safety in legacy C code, e.g. [11],
[12]. An initial evaluation done by Checked C developers
indicates that Checked C has a runtime overhead of 8.6%
and an executable size overhead of 7.4% on average [4].
We consider these overheads to be low, compared to other
techniques proposed in prior work, which is why we believe
Checked C to be a promising technique for achieving spatial
memory safety in the embedded domain.

Concolic testing is a technique that has been applied in dif-
ferent domains for verification purposes including intermediate
representations [13] and binary level SW [14]. In this paper we
utilize concolic testing in combination with Checked C.

We are unaware of related work which utilizes other software
validation techniques in combination with Checked C or any
other safe C dialect to improve reliability of converted code.

III. BACKGROUND

The following subsections serve as a brief primer on
Checked C and concolic testing as a SW testing technique.

A. Checked C

Checked C is a backwards-compatible extension of the C
programming language with a focus on extending C with
facilities for writing memory safe C code. For Checked C
developers memory safety has two aspects [4, p. 53]:

Temporal safety is ensured when memory is never
used after it is freed. Spatial safety is ensured when
any pointer dereference is always within the memory
allocated to that pointer.

Checked C only supports the latter. Spatial memory safety
is achieved in Checked C through the addition of new pointer
types (referred to as checked pointers in the following). From
these new pointer types, pointer arithmetic is only allowed
on values of type _Array_ptr which must be associated
with pointer bounds. Bounds are specified through so-called
bounds expressions which describe the memory range that can
be accessed through a given variable [4].

Generally speaking, converting existing legacy C code to
Checked C involves changing raw C pointers to checked
pointer types and annotating pointer bounds through bounds
expressions where necessary. Fully converted code parts can
be marked as checked regions, these regions can be held
“blameless for any spatial safety violation” [4, p. 53], i.e. no
spatial safety violations can arise due to code marked as a
checked regions. Since Checked C extends legacy C with new

Legacy C
Code Parts

Checked C
Code Parts convert

incrementally

VP-CTE

Safe

Bug
w. counterexample

Embedded SW

VP
(normal w/o CTE)

Fix

1. Real Bugs
2. Conversion Bugs

Conversion
Completed

search for

no, continue conversion process

finished?

yes

result
Debug & Classify

3

4

1

2

Fig. 1: Overview on our methodology.

syntactic constructs, a custom compiler is required. We utilize
the clang-based reference from GitHub3.

B. Concolic Testing

Concolic testing is an automated SW testing technique that
continuously generates inputs to explore new paths through
the SW program. It works by tracking (symbolic) constraints
alongside the concrete execution. An SMT solver is utilized to
solve these constraints and thus generate new inputs. Based on
an exploration strategy the next input is selected and executed.
The exploration process continues until all paths have been
explored, some predefined coverage goal has been reached, or
an error is detected.

A standard approach for concolic testing is to implement
a Dynamic Symbolic Execution (DSE) methodology, which
randomly flips branch condition constraints (collected during
execution) to generate new inputs. Concolic testing also allows
to apply concretization, i.e. fixing a symbolic expression to a
concrete value, to simplify the reasoning process. A common
strategy is to employ Address Concretization (AC) in case
of symbolic memory indices. Due to concretization strategies,
concolic testing is usually unable to provide complete safety
proofs. DSE and AC are further described in a publication by
Baldoni et al. [15].

IV. METHODOLOGY

This section presents our methodology on combining
Checked C with concolic testing to attain more reliable spatial
memory safety for embedded SW. Fig. 1 provides an overview
of the methodology. The starting point is an embedded SW
written in legacy C that is converted to Checked C (box 1
in Fig. 1, top). We expect this process to occur incrementally
based on logical software modules, as a full conversion at once
is deemed difficult and may not be achievable. For this reason,
the embedded SW will typically consist of both Checked C
and legacy C code parts. After each increment the newly
converted module is tested using VP-CTE (box 2 in Fig. 1,
left). Essentially, VP-CTE follows a standard concolic testing
methodology (as described in Section III-B) at the SW binary
level to search for inputs that will cause an execution error (e.g.
a failed Checked C bounds check). Additional implementation
details will be described in Section V.

3https://github.com/microsoft/checkedc-clang

https://github.com/microsoft/checkedc-clang

This approach enables us to discover two kinds of bugs in
the (partially) converted SW binary:

1) Real spatial memory safety violations which were al-
ready present in the unmodified original legacy C code
base and can result in undefined behavior without
Checked C.

2) Conversion bugs which were introduced when converting
the legacy C code base to Checked C, i.e. crashes which
cannot be reproduced with the original unmodified legacy
C code base.

The latter are closely related to Checked C bounds expres-
sion which are used to specify pointer bounds to achieve spatial
memory safety in Checked C.

For each bug VP-CTE returns a counterexample, i.e. a test
case to reproduce the bug (box 3 in Fig. 1, right). Based on the
test case, a debugging process can be started using the normal
VP (which provides comprehensive debugging capabilities).
This allows developers to classify the bug accordingly and
provide a fix for the embedded SW.

The conversion process continues incrementally until no
more bugs are found and all required SW modules have been
converted (box 4 in Fig. 1, bottom).

In the following, we present an example to illustrate the
conversion process and conversion bugs (Section IV-A), then
we provide a classification of conversion bugs (Section IV-B).

A. Conversion Bug Example

The central distinction between real spatial memory safety
violations and conversion bugs is best illustrated using an
example. We believe spatial memory safety violations (e.g.
buffer overflows) to be well understood and described in
existing literature [16]. The following example will instead
focus on Checked C conversion bugs, it will also illustrate
modifications required to convert existing legacy C code to
Checked C. We must stress that the example is kept simple for
clarity, thus the path leading to the included conversion bug
would be discovered by a proper unit test. However, similar
bugs may arise in paths that are difficult to reach under specific
conditions and thus not covered by existing unit tests.

Consider a parser for an input of the form foo.bar or
foo,bar where foo is some kind of key and bar is some
kind of value. An exemplary implementation of such a parser
is presented in Fig. 2. The figure contains both, the original
legacy C implementation (on the left-hand side of Fig. 2) and
a version converted to Checked C (on the right-hand side). The
two versions are similar and use the same line numbers but the
Checked C version uses checked pointer types with bounds
expressions for Checked C _Array_ptr types on which
pointer arithmetic is performed. Furthermore, the Checked C
function is marked as a checked region in Line 2 using the
_Checked keyword. Both implementations start by skipping
given input until a period or comma character is encountered
(Line 7 - Line 11). If no such character is found, false
is returned (Line 12 - Line 13). Afterwards, key (Line 16)
and value (Line 17) variables are declared, the Checked
C implementation constrains the bounds of these variables
according to the parser format. Lastly, the separation character
is again consulted (relative to the value variable) in Line 20
to determine whether the extracted value should be further

processed with the parse_period or the parse_comma
function.

The legacy C code in Fig. 2 does not contain any spatial
memory safety violations. However, during the conversion
to Checked C a conversion bug was introduced: The code
in Line 20 for accessing the separation character causes a
bounds violation as value - 1 is one character outside of
the specified bounds for the value variable. Reconsider the
initial input example foo.bar, here the variable key would
be constrained to the first three characters while the variable
value would be constrained to the last three characters. As
such, accessing the period character as “the character before
the first value character” (as done in Line 20) constitutes
an out-of-bounds access. Fortunately, this access is still within
the bounds of the input buffer and thus does not constitute
a memory safety violation in the legacy C implementation.
However, in the Checked C implementation the access will
result in program termination due to a failing bounds check.
This spurious crash can be fixed either by widening the pointer
bounds of the value variable or by accessing the separation
character as *buf in Line 20.

Even though the example illustrates that converting existing
legacy C code to Checked C is comparatively straightforward, it
also demonstrates that subtle bugs can be introduced during the
conversion process. These bugs may even occur in lines which
have not been modified and are therefore easy to miss during
manual code review. If undetected, such bugs impact reliability
in a production environment by causing spurious crashes.

B. Conversion Bug Classification

We distinguish the following classes of conversion bugs:
1) Narrowing bugs can occur when narrowing pointer

bounds. They occur because either a) a pointer bound
was set too narrow, or b) existing code has not been
properly adjusted to respect the newly introduced pointer
bounds (the latter was demonstrated by the example
in Section IV-A).

2) Widening bugs occur when pointer bounds have been set
too wide. The Checked C compiler already integrates
static analysis techniques to detect such bugs. Through
so-called subsumption checks Checked C ensures cor-
rectness of specified pointer bounds. These checks allow
assignments to narrow down—but not to widen—pointer
bounds thereby preventing widening bugs, but not nar-
rowing bugs [4, p. 57].

3) Functional bugs refer to bugs that change the functional
behavior and are not detected by Checked C (because
they have no impact on spatial memory safety). Func-
tional bugs can occur when code is rewritten to handle
present limitations of Checked C, e.g. the same variable
cannot have different bounds at different points in the
program [4, p. 57].

In this paper we focus on the detection of narrowing bugs.
Narrowing is explicitly encouraged by Checked C to allow
programmers to divide and constrain accessible data as they
desire. As an example, the key variable in Figure 2 narrows
the bounds of the input variable. Detection of narrowing
bugs is ultimately concerned with finding a path where an
access, which violates the defined pointer bounds, is performed.

1 bool parse(char *input, size_t len)
2 {
3 char *end = input + len;
4 char *buf = input;
5
6 // Advance buf til separation character is found
7 while (buf < end) {
8 if (*buf == ’.’ || *buf == ’,’)
9 break;

10 buf++;
11 }
12 if (buf == end)
13 return false;
14
15 // Extract key and value relative to buf
16 char *key = input;
17 char *value = buf + 1;
18
19 // Consult separation character for further parsing
20 if (*(value - 1) == ’.’)
21 return parse_period(/* ... */);
22 else
23 return parse_comma(/* ... */);
24 }

1 bool parse(_Array_ptr<char> input : count(len), size_t len)
2 _Checked {
3 _Array_ptr<char> end = input + len;
4 _Array_ptr<char> buf : bounds(input, end) = input;
5
6 // Advance buf til separation character is found
7 while (buf < end) {
8 if (*buf == ’.’ || *buf == ’,’)
9 break;

10 buf++;
11 }
12 if (buf == end)
13 return false;
14
15 // Extract key and value relative to buf
16 _Array_ptr<char> key : bounds(input, buf) = input;
17 _Array_ptr<char> value : bounds(buf + 1, end) = buf + 1;
18
19 // Consult separation character for further parsing
20 if (*(value - 1) == ’.’)
21 return parse_period(/* ... */);
22 else
23 return parse_comma(/* ... */);
24 }

Fig. 2: Implementation of an exemplary input parser in legacy C (left side) and Checked C (right side).

Contrary to widening bugs, this is difficult to detect via static
analysis, as it requires reasoning about performed accesses, not
about the bounds expressions themselves.

An undetected narrowing bug will cause a bounds check
failure at runtime and thus impact reliability of the embedded
SW. As such, detection of narrow bugs is no different from
detection of real spatial memory bugs. They only differ in
regards to the bug source. Contrary to real bugs, narrowing
bugs are introduced during the conversion process and cannot
occur in the original SW. By combining Checked C with
concolic testing, we can detect both. We further distinguish
and demonstrate these two use-cases in Section V. We leave
the detection of functional bugs for future work, but we believe
that concolic testing is a suitable foundation for this use-case.
This issue is further discussed in Section VI.

V. EVALUATION

We evaluate our described approach by applying it to the
low-end IoT OS RIOT4, which is considered by Hahm et al.
as the “most prominent open source OS” in this domain [3,
p. 732]. Apart from being open source, RIOT also provides a
modular software architecture, thereby allowing an incremental
conversion of the existing source code to Checked C on a
per-module basis. Moreover, RIOT employs a code quality
management process thereby putting a strong emphasis on code
quality and thorough testing [17, p. 4438]. The OS provides an
extensive feature set and support for different architectures. As
a case-study we consider the RISC-V architecture. RIOT itself
is further described in a publication by Baccelli et al. [17].

We implemented VP-CTE by integrating a CTE with the
open source RISC-V VP [18] which is available on GitHub5.
The CTE itself implements standard concolic testing using
the DSE and AC techniques (see Section III-B). We have
already described the VP-CTE implementation in prior work
[19]. This prior work executes arbitrary RISC-V instructions
symbolically, thereby allowing us to adapt it for concolic
testing of compiled Checked C software. For the evaluation we

4https://www.riot-os.org/
5https://github.com/agra-uni-bremen/riscv-vp

use the HiFive1 platform of the RISC-V VP, which corresponds
to the HiFive1 board from SiFive and is supported by RIOT.

In the following we provide more details on our test setup
(Section V-A) and present our obtained results (Section V-B).

A. Setup
In our evaluation we consider the network stack of RIOT,

which is a crucial and central component of every IoT system.
In particular, we focus on core network modules, including
IPv6, ICMPv6, DNS, and utility libraries such as URI parsers.
Following our methodology, we incrementally converted these
modules to Checked C. In accordance with prior research, our
analysis focused on input handling routines of the network
stack, which receive input from a network connection, since
these are deemed most vulnerable to spatial violations such as
buffer overflows (which potentially allow for remote code exe-
cution) [20]. In total we incrementally converted 53 functions
in 6 different RIOT modules.

We employed a two step methodology for testing the incre-
mental conversion process using VP-CTE. In a first step we
created specialized unit tests which target specific functions
and modules. Essentially, we therefore created a respective
test driver (which is a piece of C code) that calls the software
under test with symbolic input values. In a next step we utilized
the existing RIOT applications for more extensive integration
testing by introducing symbolic input values directly into the
network stack using the SLIP (Serial Line Internet Protocol)
interface. SLIP is a network protocol for the transmission of
IP packets over a serial line. In our setup we pack symbolic
data into an IPv6 packet at the VP-CTE side, encapsulate it
in a SLIP packet, and pass it through a UART into the RIOT
SLIP network driver. The driver unpacks the IPv6 packet and
forwards it to the network stack. Since the RIOT network stack
awaits new packets indefinitely, we added a switch to ensure
termination after one packet has been processed.

We register a custom abort handler in RIOT to notify VP-
CTE about detected errors. The abort handler is called if a
Checked C bounds check fails at runtime but also if existing
RIOT assertions fail. Based on the concrete input emitted by
VP-CTE, we can create a test case to reproduce and debug the
source of an error, and thereby classify the bug kind (i.e. real

https://www.riot-os.org/
https://github.com/agra-uni-bremen/riscv-vp

TABLE I: Real (spatial) memory bugs (M1-M2), real logic
bugs (L1-L2) and conversion bugs (C1-C3) that we found in
different RIOT components.

Id Component Test #Paths Time
M1 uhcp UNIT 282 64.50 s
M2 sock_dns UNIT 5 1.28 s
L1 gnrc_nib SLIP 75 52.37 s
L2 gnrc_netif SLIP 67 47.95 s
C1 gnrc_icmpv6 SLIP 66 45.31 s
C2 uri_parser UNIT 196 40.00 s
C3 clif UNIT 17 3.84 s

spatial memory bug, Checked C conversion bug introduced by
our conversion process, or other logic bug). Please note, that we
target the RISC-V architecture in this evaluation (and hence the
low-level routines in the RIOT code, such as context switching,
use RISC-V specific code), but the higher-level network stack
routines themselves are written in platform independent C
code. As RIOT supports executing high-level application code
as a native x86 Linux binary, we can utilize conventional
development tools for detecting spatial violations which are
not available on bare-metal RISC-V (e.g. Valgrind [21] or
AddressSanitizer [22]) to classify discovered bugs. This is
achieved by evaluating whether a generated concrete input also
results in the detection of a spatial or logic bug using these tools
with an unmodified version of RIOT. If not, this serves as an
indication that the bug was introduced during the conversion.

B. Results

Table I lists all errors that we have found in network-related
RIOT modules. It has five columns that show in order: 1) the
bug id (column: Id), 2) the RIOT component where the bug has
been found (column: Component), 3) the type of test (UNIT
test or using the SLIP interface) that led to the detection, 4)
the number of (symbolic) execution paths explored by VP-CTE
until the bug was found (column: #Path), and 5) the overall
execution time in seconds of VP-CTE to find the bug (column:
Time). All experiments have been conducted on a Linux system
with an Intel Xeon Gold 6240 processor.

In total we found 7 unique errors, four of these being real
bugs, which are further classified in spatial memory (M1-M2)
and logic bugs (L1-L2), and three being conversion bugs (C1-
C3). Logic bugs constitute failing C assertions and can also
be detected without Checked C, all other bugs are specific to
Checked C. All real bugs (M1,M2,L1,L2) that we detected have
been previously unknown and have already been confirmed by
the RIOT developers. This demonstrates the effectiveness of
our combined testing approach. Moreover, to trigger certain
bugs, specific input parameters are required which we deem
difficult to discover using other techniques. VP-CTE has also
been beneficial to support the Checked C conversion procedure.
Despite being careful in the conversion process we detected
three conversion bugs using VP-CTE. We would like to point
out that, due to the manual conversion process, such kind of
bugs can be easily added by accident. Undetected, they would
result in a runtime check failure and thus abort the embedded
software application thereby impacting reliability. Table II
provides a more detailed description on each of the 7 bugs,

for real bugs it also contains a reference to the corresponding
issue in the RIOT bug tracker6.

VI. DISCUSSION AND FUTURE WORK

Our experiments demonstrate the effectiveness and potential
of our approach in combining Checked C with concolic testing
to provide more reliable spatial memory safety for real-world
embedded SW applications. Nonetheless, there is still room for
improvement which we discuss in the following.

Due to concretization strategies, concolic testing is generally
unable to guarantee the absence of errors because the complete
state space is not fully covered. Therefore, it is rather a bug
hunting technique. While our experiments demonstrated its
capabilities in this regard, we cannot prove complete absence
of failing checked C bounds checks. Checked C itself avoids
spatial violations leading to potentially exploitable undefined
behavior, but undiscovered reachable failing bounds checks
can still impact reliability. To further improve reliability, we
plan to investigate complete proof techniques, e.g. by avoiding
concretization in the CTE.

Another interesting research direction is to optimize the
number and placement of runtime checks generated by
Checked C to reduce code size and lessen the runtime perfor-
mance impact imposed by Checked C. The reference compiler
for Checked C already employs static analysis techniques to
prove spatial memory safety of certain operations at compile
time and thus avoid generation of runtime checks [4, p. 53].
We envision to utilize concolic testing (and potentially other
formal techniques) to prove that certain runtime checks are
not necessary (concolic testing can provide such a proof in
case no concretization occurs). An incremental approach that
starts with isolated functions and combines the results in a
compositional way seems promising. Moreover, it would be
interesting to investigate the strengthening of the static analysis
employed by the Checked C compiler with guarantees on the
enumerated paths provided via symbolic execution techniques.

Yet another important direction is to investigate dedicated
techniques for detection of functional bugs which may be in-
troduced by the Checked C conversion process. We believe that
concolic testing is a suitable foundation to develop effective
bug hunting techniques to find such bugs efficiently as well.
It can be complemented with complete proof techniques to
enable equivalence proofs of the converted Checked C SW
with the legacy C SW. While prior work has already utilized
symbolic execution for the purpose of equivalence checking,
limitations with regard to scalability still remain [23]. An
incremental approach, that performs the equivalence proofs
in a compositional way module by module (following the
incremental Checked C conversion process), might be a viable
solution to tackle this problem.

VII. CONCLUSION

In this paper we proposed to combine Checked C with
concolic testing to attain more reliable spatial memory safety
for embedded SW. We employ concolic testing to safeguard
the incremental conversion process from legacy C to Checked
C. Beside conversion bugs, our approach enables to detect
spatial memory bugs which have been present in the original

6https://github.com/RIOT-OS/RIOT/issues

https://github.com/RIOT-OS/RIOT/issues

TABLE II: More detailed description of all real- and conversion bugs which we found with our approach.

Type Bug description
Real Memory Bug M1 [#15353]: Buffer overflow during parsing of the IPv6 network prefix. The uhcp module contained a memset

invocation with an incorrect length parameter, resulting in a stack-based buffer overflow.
M2 [#15345]: A bounds check performed in the RIOT DNS implementation was incorrect. This allowed for a
two byte out of bounds buffer access during DNS response parsing.

Real Logic Bug L1 [#15171]: The RIOT Neighbour Information Base (NIB) implementation for IPv6 contained a failing assertion.
This assertion could only be reached when using a SLIP network interface.
L2 [#15221]: Failure to release a mutex on return. The RIOT gnrc_netif module, which provides an
abstraction for network interfaces, contained a path where a mutex was locked but not unlocked on return.
Reaching this specific path resulted in a deadlock (detected via a timeout mechanism).

Conversion Bug C1: The RIOT ICMPv6 implementation parses protocol headers by casting packed structs on pointers. Most of
these casts require a dynamic Checked C bounds check. In one instance, RIOT performed a bounds check after
casting the pointer, thereby resulting in a failing Checked C bounds check.
C2: RIOT provides a non-destructive parser for URI references. The parser splits the URL into different parts
(scheme, host, port, etc.) but in one instance accesses data outside the host part. However, this access was still
within the bounds of the underlying URL buffer and did thus not constitute a real memory safety violation. This
is conceptually similar to the issue described in Section IV-A.
C3: The RIOT clif module provides a parser which increments a uint8_t pointer contiguously. This causes
the pointer bounds to be narrowed on each increment, at one point the previous pointer value was accessed after
performing an increment thus resulting in a spurious bounds violation.

embedded SW. The effectiveness of our approach was demon-
strated by applying it to real-world RIOT code for the RISC-V
architecture. We found 4 previously unknown bugs in the RIOT
network stack, which have been confirmed and fixed by RIOT
developers, and 3 conversion bugs added by accident which
otherwise would have caused a spurious runtime check failure.

REFERENCES

[1] C. Bormann, M. Ersue, and A. Keränen, “Terminology for Constrained-
Node Networks,” RFC 7228, May 2014. [Online]. Available: https:
//rfc-editor.org/rfc/rfc7228.txt

[2] J. Wetzels, “Internet of Pwnable Things: Challenges in Embedded
Binary Security,” USENIX ;login:, vol. 42, no. 02, pp. 73–77,
2017. [Online]. Available: https://www.usenix.org/publications/login/
summer2017/wetzels

[3] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems
for Low-End Devices in the Internet of Things: A Survey,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 720–734, Oct. 2016.

[4] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi, “Checked C: Making C
Safe by Extension,” in 2018 IEEE Cybersecurity Development (SecDev),
Sep. 2018, pp. 53–60.

[5] A. Ruef, L. Lampropoulos, I. Sweet, D. Tarditi, and M. Hicks, “Achieving
Safety Incrementally with Checked C,” in Principles of Security and
Trust, F. Nielson and D. Sands, Eds. Cham: Springer International
Publishing, 2019, pp. 76–98.

[6] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing
Engine for C,” in Proceedings of the 10th European Software Engi-
neering Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-13.
New York, NY, USA: Association for Computing Machinery, 2005, p.
263–272.

[7] J. Duan, Y. Yang, J. Zhou, and J. Criswell, “Refactoring the FreeBSD
Kernel with Checked C,” in 2020 IEEE Secure Development (SecDev),
2020, pp. 15–22.

[8] S. Tempel and T. Bruns, “RIOT-POLICE: An implementation of spatial
memory safety for the RIOT operating system,” arXiv e-prints, Sep.
2018. [Online]. Available: https://arxiv.org/abs/2005.09516

[9] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in USENIX 2002 Annual
Conference. USA: USENIX Association, Jun. 2002, pp. 275–288.
[Online]. Available: https://www.usenix.org/legacy/publications/library/
proceedings/usenix02/jim.html

[10] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “Depen-
dent Types for Low-Level Programming,” in Programming Languages
and Systems, R. De Nicola, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 520–535.

[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’09. New York, NY,
USA: ACM, 2009, pp. 245–258.

[12] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-
Bound: Architectural Support for Spatial Safety of the C Programming
Language,” in Proceedings of the 13th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ser. ASPLOS XIII. New York, NY, USA: Association for Computing
Machinery, 2008, p. 103–114.

[13] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’08. USA: USENIX Association, 2008,
p. 209–224.

[14] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on Binary Code,” in 2012 IEEE Symposium on Security and
Privacy, 2012, pp. 380–394.

[15] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A
Survey of Symbolic Execution Techniques,” ACM Comput. Surv., vol. 51,
no. 3, May 2018.

[16] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in 2013 IEEE Symposium on Security and Privacy, May 2013,
pp. 48–62.

[17] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT: An
Open Source Operating System for Low-End Embedded Devices in the
IoT,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4428–4440,
Dec. 2018.

[18] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,”
Journal of Systems Architecture, vol. 109, p. 101756, 2020.

[19] S. Tempel, V. Herdt, and R. Drechsler, “An Effective Methodology for
Integrating Concolic Testing with SystemC-based Virtual Prototypes,”
in Design, Automation and Test in Europe Conference (DATE). Design,
Automation & Test in Europe (DATE-2021), Feb. 2021.

[20] L. Sassaman, M. L. Patterson, S. Bratus, and A. Shubina, “The
Halting Problems of Network Stack Insecurity,” USENIX ;login:,
vol. 36, no. 06, pp. 22–32, 2011. [Online]. Available: https://www.
usenix.org/publications/login/december-2011-volume-36-number-6/
halting-problems-network-stack-insecurity

[21] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, ser. PLDI ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 89–100.

[22] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A Fast Address Sanity Checker,” in Presented
as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). Boston, MA: USENIX, 2012, pp. 309–
318. [Online]. Available: https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

[23] D. A. Ramos and D. R. Engler, “Practical, Low-Effort Equivalence Verifi-
cation of Real Code,” in Computer Aided Verification, G. Gopalakrishnan
and S. Qadeer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 669–685.

https://github.com/RIOT-OS/RIOT/issues/15353
https://github.com/RIOT-OS/RIOT/issues/15345
https://github.com/RIOT-OS/RIOT/issues/15171
https://github.com/RIOT-OS/RIOT/issues/15221
https://rfc-editor.org/rfc/rfc7228.txt
https://rfc-editor.org/rfc/rfc7228.txt
https://www.usenix.org/publications/login/summer2017/wetzels
https://www.usenix.org/publications/login/summer2017/wetzels
https://arxiv.org/abs/2005.09516
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/jim.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/jim.html
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-problems-network-stack-insecurity
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-problems-network-stack-insecurity
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-problems-network-stack-insecurity
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

	Introduction
	Related Work
	Background
	Checked C
	Concolic Testing

	Methodology
	Conversion Bug Example
	Conversion Bug Classification

	Evaluation
	Setup
	Results

	Discussion and Future Work
	Conclusion
	References

