
Improving Virtual Prototype Driven Hardware
Optimization by Merging Instruction Sequences

Jan Zielasko1,2 Rune Krauss1 Marcel Merten1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
Jan.Zielasko@dfki.de, krauss@uni-bremen.de, mar mer@uni-bremen.de, drechsler@uni-bremen.de

Abstract—Tailoring hardware to an application significantly
enhances its performance compared to using a general-purpose
processor. While hardware optimization is essential to meet the
user requirements for resource-constrained embedded systems, it
generally entails considerable costs and a high level of effort. In
recent work virtual prototypes have been shown to be an effective
analysis tool for guiding this process. In best-case scenarios, it is
possible to identify a single recurring instruction sequence that
covers approximately 55 % of all executed instructions and is
thus suitable for optimization by a Hardware Accelerator (HA).
However, challenges arise for applications where each identified
sequence only covers a small fraction of the total execution.
In order to achieve comparable coverage, several HAs can be
designed, but this also multiplies the hardware costs. To address
these issues, this work proposes an approach to extend and
merge identified sequences allowing the design of a single HA
for the merged sequence. Experiments show that this approach
significantly increases the coverage achievable with a single HA
while the resulting performance loss is negligible compared to
building multiple HAs.

Index Terms—Virtual prototypes, ASIC, embedded systems,
execution tracing, hardware optimization

I. INTRODUCTION

With the ever-increasing demand for high-performance and
low-power applications in the areas of IoT and embedded
systems, selecting suitable hardware designs for applications is
becoming increasingly important [1]. Despite the availability
of a wide range of general-purpose processor designs, they fall
short of optimal performance as most systems in the afore-
mentioned areas operate with only a single application [2].
Instead of using a general-purpose processor, better results
can be achieved by building a customized application-specific
integrated circuit that is tailored to the specific requirements of
the application [3]. Unfortunately, creating a fully customized
design is a complex and expensive process requiring a high
level of expertise and effort [4].

Rather than starting the design process from scratch, it
is more efficient to start with an existing design and tailor
it to the respective application. Previous work has proposed
several approaches showing that the design effort is drastically
reduced while promising a similar performance improvement

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within projects Scale4Edge under grant no.
16ME0127, ECXL under grant no. 01IW22002 and VE-HEP under grant no.
16KIS1342.

as using application-specific integrated circuits: instruction set
simulators [5], Virtual Prototypes (VPs) [6], and register-
transfer level simulations [2]. The VP driven approach as
proposed in [7] and [6] uses VPs as a platform for system
analysis and therefore combines the advantages of listed high-
level and low-level approaches by running target applications
on the VP. In this context, the VP analyzes their executions
w. r. t. recurring instruction patterns in order to automatically
identify the most promising candidates (instruction sequences)
for hardware optimization. Experimental results achieved in
[6] show that using this approach allows the identification of
promising instruction sequences for many different embedded
applications: In best-case scenarios, it is even possible to
identify a sequence covering around 55 % of all executed in-
structions. Especially for such a sequence, it is worth designing
a Hardware Accelerator (HA), which can then improve the
performance for these 55 % of instructions.

However, there are applications where each discovered se-
quence covers only a small fraction of the total execution. Such
applications can pose a challenge for the described approach
as multiple optimization candidates are recommended, which
often only cover around 15 % of the executed instructions.
Although it is conceivable to build multiple HAs, this can be
expensive due to the increase of hardware costs.

To address these issues, we propose a novel technique for
extending and merging instruction sequences. This approach
allows a single HA design for a merged sequence that has a
higher execution coverage compared to a HA for a single se-
quence. Experiments confirm that the coverage almost doubles
and on average 10 single HAs needed for the same coverage
can be replaced with a negligible performance loss.

In summary, the main contributions are as follows:
• Extension of the VP driven approach for providing a

variety of instruction sequences;
• Merging of instruction sequences to increase execution

coverage and save HAs;
• Evaluation of merging effectiveness based on the variety

of instruction sequences.
To stimulate further research, the used VP1 and our pro-

posed approach2 are provided as open-source software.

1https://github.com/agra-uni-bremen/opt-vp
2https://github.com/agra-uni-bremen/opt-seq



II. PRELIMINARIES

This section introduces basic principles in an attempt
to keep the paper self-contained. While Section II-A ex-
plains some aspects of the RISC-V Instruction Set Architec-
ture (ISA), Section II-B briefly describes VPs.

A. RISC-V

RISC-V is an open standard ISA providing a foundation
for modular processor design [8]. To this end, it defines
an integer instruction set (I), which is the only mandatory
base for an implementation. In addition to this set, any of
the available standard extensions can be added to extend
its functionality [9]: integer multiplication and division (M),
compressed instructions (C), etc. A comprehensive survey is
available in [8].

The fact that RISC-V follows a load-store architecture and
supports unconditional execution makes it suitable for this
work as it simplifies the implementation of extending and
merging instruction sequences. For example, less information
needs to be traced during execution and the simplicity of the
instructions enables straightforward merging of sequences.

B. Virtual Prototypes

A VP is an executable abstract model of an entire hardware
platform that simulates its architecture at the electronic system
level [10]. VPs enable early software development and other
system-level use cases before the actual hardware is built
shortening the time-to-market. Compared to alternative tech-
niques such as traditional instruction set simulators, they offer
greater accuracy, for example in terms of timing behavior [5].
Although simulations on the register-transfer level offer more
accuracy than VPs, they are much slower [2].

VPs are suited for our use case as we can quickly obtain all
the necessary information at the electronic system level. Thus,
the RISC-V-based VP3 introduced in [11] is used, which is
implemented using SystemC transaction-level modeling [12].

III. RELATED WORK

To the best of the authors’ knowledge, RVOPT-VP4 pro-
posed in [6] is actually the only RISC-V-based VP driven
approach for tailoring hardware to application requirements.
Specifically, it extends the RISC-V VP introduced in the last
section with a tracing and analysis module for identifying
promising instruction sequences so that an existing design can
be tailored to a specific application.

In the first step, RVOPT-VP traces the execution of an
application based on inputs to generate a bounded execution
tree for each encountered instruction, where each tree stores
information about every sequence that starts with the instruc-
tion at its root node. In a tree, a valid sequence is any path
starting from the root node to any node of the same tree,
where each node stores a list of data dependencies to previous

3https://github.com/agra-uni-bremen/riscv-vp
4https://github.com/agra-uni-bremen/opt-vp

nodes. In the second step, RVOPT-VP’s trees are processed by
its analysis module using a score function

score(I) = wI ·#I (1)

where wI (weight) is the number of executions of the respec-
tive instruction sequence I and #I (length) is the number of
the affected instructions.

Example 1. A loop I that is executed wI = 100 times and
contains #I = 8 instructions results in score(I) = 800.

To find the most promising sequence in a tree, the analysis
module traverses it using a recursive depth-first search. Taking
child nodes into account, for each node it is checked whether
it is added to the current best sequence: If there is no branch
instruction and the new score calculated with Eq. 1 is greater,
the node extends this sequence, otherwise the path extension
is stopped here. This way, all possible sequences for a tree
are evaluated in order to finally return the most promising
sequence with the highest score for each tree.

Considering compiler optimizations, [6] has shown for
embedded applications from the de facto standard EmbenchTM

suite5 that promising sequences can be identified covering on
average about 31 % of the total execution. In the best case,
even 55 % of executed instructions for the application crc32
can be covered, which is therefore particularly suitable for
optimization by a HA. However, there are also applications
such as picojpeg with numerous sequences that only cover
around 15 % of the execution. Although it is conceivable to
build several HAs, this also increases the hardware costs. If
the highest scores additionally consist of a length of 1, these
sequences are unusable for a HA design. Hence, the main
goal of this work is to overcome these limitations in order to
increase the coverage by a single HA design.

IV. METHODOLOGY

In this section, we describe the core development of our
proposed approach, which is based on [6] and thus designed
w. l. o. g. for the RISC-V ISA. First, the VP driven approach
described in the last section is extended in Section IV-A
with the ability to generate a variety of instruction sequences
w. r. t. the extension set RV32IMC. Second, in Section IV-B,
we present our algorithm to merge instruction sequences for
increasing execution coverage and saving HAs.

A. Extending Instruction Sequences

In RVOPT-VP described in Section III, promising instruc-
tion sequences can be generated as optimization candidates for
a HA. Specifically, one sequence is returned for each different
tree, i. e. for each different instruction that is encountered
during execution. While this approach guarantees that each
sequence covers different execution parts, sequences cannot
share a prefix. To offer more opportunities for merges than
this default mode, a method is needed that can find additional
sequences. The analysis module is therefore extended to allow
two new optimization modes: Subsequence and Variant.

5https://embench.org



ADD

SUB

SUB

ADD

BEQ REM

MUL

MUL

ADD

MUL

DIV

AND

AND AND AND

Fig. 1: □ Default, ■ Subsequence, and ■ Variant

Some instruction nodes are not part of promising optimiza-
tion candidates that have been generated based on RVOPT-
VP’s trees due to an insufficient score calculated by Eq. 1. To
generate more sequences for improving merge opportunities,
the subsequence mode considers the optimization candidates
as subsequences and extends their paths at each child of the
last node. Since the children can consist completely of branch
instructions, this type of instruction is also analyzed if it is
always or never executed given the application input.

Example 2. Fig. 1 shows a tree generated by RVOPT-VP
with the optimization candidate (ADD,SUB,SUB,ADD), where
ADD, SUB, BEQ, MUL, REM, and AND are instructions sup-
ported by the RV32IMC extension set. Using the subsequence
mode, this sequence can be extended by (BEQ,MUL) and REM
resulting in a total of 3 sequences. AND is missing assuming
that the score for this instruction is insufficient.

In addition to stop points set by the analysis module at
the end of promising instruction sequences, there are also
stop points at branches in the tree generated by RVOPT-
VP’s tracing module, which can also be extended. In order to
increase the sequence variety for such structures, analogous to
the generation of subsequences introduced above, the analysis
module iterates over the children of each branching node
contained in the respective optimization candidates in the
different execution trees. The corresponding instruction path
is then extended using Eq. 1 to find the next best variant.
Depending on a predetermined parameter b, it is thus possible
to identify the best b optimization variants with the highest
overall execution percentage.

Example 3. Reconsider the promising optimization sequence
(ADD,SUB,SUB,ADD) from Fig. 1 that is generated by the
RVOPT-VP’s analysis module. Using the variant mode, the
SUB instructions are considered as branching nodes and there-
fore analyzed by iterating over the paths of their children.
Let b = 2. Then the variants (ADD,SUB,MUL,ADD,MUL)
and (ADD,SUB,SUB,DIV) result. The ADD instruction is not
included as the score is insufficient in this case.

Algorithm 1: Proposed merging of instruction sequences

Input: Instruction sequences S
Output: Merged sequence

1 B ← mapsort(S) ▷ Base sequences
2 M ← Concatenated sequences from B
3 snew ← 0 ▷ Current score
4 k ← 0
5 while k < #B − 1 do
6 sold ← snew
7 for all v ∈ reverse(M0,...,k) do ▷ BU
8 if v has any outgoing dependency then
9 for all u ∈ reverse(Mk+1) do

10 if u = v ∧ no dependency conflict then
11 merge(u, v)
12 end if
13 end for
14 end if
15 end for
16 for all u ∈Mk+1 do ▷ TD
17 if u has any incoming dependency then
18 for all v ∈M0,...,k do
19 if v = u∧ no dependency conflict then
20 merge(v, u)
21 end if
22 end for
23 end if
24 end for
25 for all v ∈ reverse(M0,...,k) do ▷ R-BU
26 for all u ∈ reverse(Mk+1) do
27 if u = v ∧ no dependency conflict then
28 merge(u, v)
29 end if
30 end for
31 end for
32 for all u ∈Mk+1 do ▷ R-TD
33 for all v ∈M0,...,k do
34 if v = u∧ no dependency conflict then
35 merge(v, u)
36 end if
37 end for
38 end for
39 snew ← score′(B,M, k + 2)
40 if snew ≤ sold then
41 break
42 end if
43 k ← k + 1
44 end while
45 return M0,...,k

B. Merging Instruction Sequences

Although the original RVOPT-VP generates instruction se-
quences from which a candidate for HA optimization can
be selected, this is highly dependent on the application. If
optimization candidates only cover a small execution fraction,
it may not be worthwhile to build HAs for them, especially
if the worst case occurs where only one instruction per
tree is affected. Moreover, designing different HAs also in-
crease hardware costs. Thus, a novel merging approach called
RVOPT-SEQ is proposed in Algorithm 1 that combines the
sequences created by the analysis module (Section IV-A) to
increase the execution coverage and save hardware costs, and
to allow optimization by a single HA in worst-case scenarios.



C

A

B

A

D

A

B

C

A

B

D

A’

B

(a) Without dependencies

C

A

B

A

D

A

B

C

A’

B

A

D

B

C

A’

B’

A

D

(b) With dependencies

Fig. 2: Merging of instruction sequences

RVOPT-SEQ starts by sorting input sequences S gen-
erated by the analysis module to determine the base se-
quences B (Line 1). To this end, the sequence with the highest
score (Eq. 1) is selected as the start sequence B0. The next
base sequence is a sequence from S that has not yet been
selected and matches most of the instructions of the current
base sequences without considering data dependencies. This
metric is natural because B0 has the highest execution per-
centage and therefore the chance is greatest that many merges
are possible due to similar sequences B1, . . . , B#S−1 ∈ B,
especially by using the new modes Subsequence and Variant.
The computed list of base sequences is then concatenated to
create the vector M (Line 2). The main iteration depends on
the number of base sequences #B to combine sequence pairs
where the first element M0,...,k is the current sequence already
merged and the second element Mk+1 is the sequence to be
merged (Lines 3–6). To map instructions between M0,...,k and
Mk+1, there are 4 subroutines: 1) Bottom-Up (BU) in Lines 7–
15, 2) Top-Down (TD) in Lines 16–24, 3) Rest-BU (R-BU)
in Lines 25–31, and 4) Rest-TD (R-TD) in Lines 32–38. BU
iterates backwards through M0,...,k and Mk+1, and merges
each instruction node containing an outgoing dependency from
M0,...,k with a matching node from Mk+1 if there is no depen-
dency conflict. TD works vice versa, where nodes from Mk+1

with incoming dependencies are observed. While 1) and 2)
merge nodes w. r. t. dependencies, 3) and 4) select “remaining”
source nodes without any dependencies. If this order is not
followed, finding the optimal solution is not guaranteed as
nodes without dependencies can block the optimization after
some of these subroutines have been performed.

Example 4. Let M0 = (C,A,B,A,D) and M1 = (A,B) be
sequences, where A, B, C, and D are instructions. Fig. 2
visualizes the merging of M0 (top) and M1 (bottom) sepa-
rated by a horizontal line, without and with respecting data
dependencies (Fig. 2a and Fig. 2b) represented by arrows.
If no dependencies are respected, AM0

can be mapped to
AM1

(highlighted in black) leading to A′, but afterwards no
further merges are possible. Taking dependencies into account,
AM1 can first be mapped to AM0 , which then allows BM1 to be
merged with BM0

, resulting in the shortest possible sequence.

Since the main loop is repeated a maximum of #B−1 times
in which all instructions can be compared by the subroutines,
this results in a worst-case complexity of O(n·m2), where n is
the number of sequences and m is the number of instructions.
The main loop can also be exited beforehand if the termination
criterion snew ≤ sold is satisfied (Lines 39–44), which is
calculated by

score ′(B,M, k) =

k−1∑
i=0

score(Bi)−(#Mi−#Bi)·wBi
·c (2)

where c is the cost factor for No Operations (NOPs). If a
HA is built for M0,...,k, processed base sequences can still be
executed. Since M0,...,k contains more instructions than each
of the k merged sequences, all instructions without mapping
are discarded and treated as NOPs for that particular base
sequence. In this context, Eq. 2 ensures that the performance
gain remains reasonable in relation to the increase in hardware
complexity. Finally, the best HA for the returned merged
sequence M0,...,k (Line 45) can be designed.

Example 5. Fig. 3 shows the computed base sequences
M0 = (ADD,SUB,MUL,DIV,AND) with the highest score,
M1 = (SUB,MUL,MUL,DIV,ADD,DIV) with the most map-
pings to M0, and M2 = (AND,ADD,ADD), consisting of
instructions from RV32IMC analogous to those shown in
Fig. 2. By using Algorithm 1, BU cannot be performed
when k = 0: For example, DIVM0 cannot be mapped to
DIVM1 because there is an incoming dependency from ANDM0

resulting in a conflict. However, the TD routine working
in reverse can be applied as shown in Fig. 3a, whereby
the incoming dependency to the highlighted DIVM1

must
be redirected to the merged DIV′. Similar to this routine,
R-BU (Fig. 3b) and R-TD (Fig. 3c) can be executed for
remaining nodes. In contrast to the first iteration, the BU
routine can be used w. r. t. M2 for k = 1 (Fig. 3d). By
reapplying R-BU, Fig. 3e finally shows the merged sequence
M0,1,2 = (SUB′,MUL′,DIV′,MUL,DIV,AND′,ADD,ADD′′).

V. EXPERIMENTAL RESULTS

This section summarizes the experiments conducted to
empirically evaluate our developed merging algorithm for
instruction sequences in order to design a single HA. While
Section V-A describes the setup used for the evaluation,
Section V-B presents the impact of our proposed approach
compared to related work.

A. Experimental Setup
The new optimization modes for extending RV32IMC in-

struction sequences were implemented in the analysis module
of RVOPT-VP6, which is implemented in C++. For reasons
of consistency, the novel merging approach RVOPT-SEQ7

was also implemented in C++ for performance evaluation.
For representative reasons, the same set of EmbenchTM ap-
plications8 compiled with optimization level O3 and inputs

6https://github.com/agra-uni-bremen/opt-vp
7https://github.com/agra-uni-bremen/opt-seq
8https://embench.org



ADD

SUB

MUL

DIV

AND

SUB

MUL

MUL

DIV

ADD

DIV

(a) TD

ADD

SUB’

MUL

DIV’

AND

MUL

MUL

ADD

DIV

(b) R-BU

SUB’

MUL

DIV’

AND

MUL

MUL

ADD’

DIV

(c) R-TD

SUB’

MUL’

DIV’

AND

MUL

ADD’

DIV

AND

ADD

ADD

(d) BU

SUB’

MUL’

DIV’

MUL

ADD’

DIV

AND’

ADD

ADD

(e) R-BU

Fig. 3: Merging of base sequences using Algorithm 1 in order to optimize the input for building a HA

as in [6] were used to generate their execution trees using
the RVOPT-VP’s tracing module. To analyze these trees, the
default mode already available in RVOPT-VP, and the new
subsequence and variant mode were used. In addition, the
combination of these new modes was also used, which is called
Full below. While using the default mode allows an ideal
comparison with the results from [6], the other modes are used
for determining to what extent the greater sequence variety
increases the number of merges. The associated parameters
b = 3 and c = 0.1 introduced in Section IV were determined
experimentally. Specifically, the best 3 variants were analyzed
for all experiments and a realistic NOP cost factor of 0.1 was
assumed for the termination criterion (Eq. 2) of RVOPT-SEQ.

All evaluations were carried out on a Fedora 39 machine
with an Intel Xeon E3-1270 v3 CPU with 3.5 GHz and 32 GB
of main memory. For each considered application, 30 runs
were performed and the average (AVG) was calculated.

B. Performance Evaluation

In order to evaluate the effectiveness of the proposed merg-
ing approach, the results achieved by RVOPT-SEQ were com-
pared with those from [6]. Based on the original RVOPT-VP’s
Instruction Sequence Score (ISS) calculated using Eq. 1, it was
measured in relation to the number of base sequences (#B)
to what extent these can improve the ISS through a number of
merges (#M ) expressed as Merged Sequence Score (MSS).
The experimental results for the embedded applications are
shown in Table I and interpreted below.

Regardless of which optimization mode is activated, using
RVOPT-SEQ significantly improves the ISS on average where
all results are stable. Compared to RVOPT-VP, 8 mappings of
instructions can be made based on 28 sequences. This almost
doubles the ISS and thus also the coverage of the execution
w. r. t. instructions, i. e. 8 HAs can be replaced. In the best case,

it is even possible to increase the execution coverage for the
application qrduino by a factor of around 5 using 11 merges.
For matmult-int the coverage is hardly increased due to the fact
that the coverage of around 40 % achieved in [6] is already
comparatively high. A similar case is the benchmark nsichneu
where the coverage cannot be significantly improved either. It
should be noted that in [6] only the instruction LW is covered
with a percentage of around 55 %, i. e. a HA cannot be used to
accelerate the original best sequence. A total of 7 merges now
make it possible to design a single HA for this application.

Extended sequences generated by the new modes make it
possible for several applications to achieve an even higher
number of merges due to additional base sequences compared
to the default mode.9 For e. g. nettle-aes, the MSS increases
by a considerable factor: While the variant mode has a MSS
that is about 7 times higher than ISS, the full mode has a
MSS that is nearly 8 times higher. However, the combination
of subsequence and variant mode is not worthwhile for every
benchmark. For nettle-sha256, the coverage increases the most
when using only the subsequence mode. This is because some
variants are sorted into the front part of the base sequences, i. e.
one less mapping is possible in full mode. For better clarity,
the corresponding best score improvements are highlighted in
bold for each application and visualized in Fig. 4.

In summary, the experimental results confirm that our
approach meets the objectives of this work. Taking all opti-
mization modes into account, the execution coverage is almost
doubled by using RVOPT-SEQ and on average 10 HAs needed
for the same coverage can be replaced by one single HA with
a negligible performance loss.

9The number of base sequences in full mode does not necessarily corre-
spond to the sum of those analyzed with the subsequence and variant mode
as sequences were discarded for merging if they are completely contained in
other sequences.



TABLE I: Experimental comparison between optimization modes for merging instruction sequences

Optimization mode

Application Default Subsequence Variant Full

MSS ISS #M #B MSS ISS #M #B MSS ISS #M #B MSS ISS #M #B

aha-mont64 2,969,930 1,786,752 9 29 2,078,290 1,786,752 9 66 2,275,320 1,786,752 10 70 2,275,320 1,786,752 10 107
crc32 4,027,420 2,101,248 6 26 3,656,100 3,655,680 12 72 2,101,340 2,101,248 8 48 3,656,130 3,655,680 13 94
edn 1,970,450 1,509,200 11 29 3,980,830 2,956,800 16 89 2,306,440 1,509,200 17 72 3,980,830 2,956,800 16 132
huffbench 1,754,030 661,439 10 26 719,411 703,200 8 121 960,971 661,439 10 55 719,411 703,200 8 150
matmult-int 2,183,670 2,143,200 4 24 3,839,160 3,732,740 7 69 2,176,220 2,143,200 6 50 3,826,040 3,732,740 8 95
md5sum 1,145,350 958,464 3 34 2,805,400 1,078,272 7 104 4,473,090 958,464 12 96 2,805,400 1,078,272 7 166
minver 954,229 500,570 6 35 553,937 500,570 5 205 910,309 500,570 7 74 553,937 500,570 5 244
nettle-aes 4,309,130 1,018,784 7 27 5,492,240 1,018,784 9 84 6,833,180 1,018,784 9 70 8,016,290 1,018,784 11 127
nettle-sha256 952,937 670,684 11 26 1,161,800 670,684 14 136 853,372 670,684 7 61 1,138,000 670,684 13 171
nsichneu 1,227,180 1,227,108 7 22 1,227,270 1,227,108 11 91 1,286,260 1,227,108 4 44 1,227,270 1,227,108 12 113
picojpeg 949,127 632,636 7 35 2,339,880 814,212 13 199 1,376,820 632,636 8 95 2,494,210 814,212 14 259
primecount 3,047,680 1,399,464 7 23 1,881,740 1,881,432 9 83 1,400,400 1,399,464 8 46 1,881,920 1,881,432 9 106
qrduino 3,152,640 619,974 11 33 628,656 619,974 16 219 775,144 619,974 10 80 628,656 619,974 16 266
sglib-combined 916,351 489,435 10 31 492,747 489,435 8 185 798,675 489,435 9 51 492,201 489,435 5 205
slre 1,565,790 749,049 8 25 836,406 749,049 11 111 1,269,750 749,049 7 56 976,266 749,049 13 142
tarfind 2,154,990 443,520 9 26 923,201 628,320 8 72 602,807 443,520 9 50 652,126 628,320 10 96
ud 479,456 298,888 9 24 1,075,360 298,888 12 86 742,610 298,888 11 54 1,223,260 298,888 14 116

AVG 1,985,904 1,012,377 8 28 1,981,908 1,341,876 10 117 1,831,924 1,012,377 9 63 2,149,839 1,341,876 11 152

aha-mont64 crc32 edn huffbench matmult-int md5sum minver nettle-aes nettle-sha256 nsichneu picojpeg primecount qrduino sglib-combined slre tarfind ud

200

400

600

66.22 91.67
34.63

165.18

2.85

366.69

90.63

686.85

73.23
4.82

206.33

117.77

408.51

87.23 109.04

385.88
309.27

Application

Sc
or

e
im

pr
ov

em
en

t
(%

)

Fig. 4: Improvement of scores in terms of merging instruction sequences using the optimization modes

VI. CONCLUSION

This paper focused on merging VP-generated instruction
sequences to increase their execution coverage for a single HA
design. Experiments demonstrated that our approach extends
sequences so that the total coverage almost doubles and an
average of 10 HAs needed for the same coverage can be
replaced by one HA with a negligible performance loss.

Future work will be directed towards further investigat-
ing our merging method. Even though its effectiveness was
demonstrated by saving HAs, it can be used universally,
e. g. for pipeline optimization. It is thus generally planned
to design coarse-grained reconfigurable architectures based on
the existing high-level results in order to accurately measure
possible hardware acceleration for the covered sequences.

REFERENCES

[1] L. De Micco, F. Vargas, and P. Fierens, “A literature review on embedded
systems,” Latin America Transactions, vol. 18, no. 2, pp. 188–205, 2020.

[2] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, “Bespoke
processors for applications with ultra-low area and power constraints,”
in 44th ISCA. IEEE, 2017, pp. 41–54.

[3] M. Rieger, “Application specific integrated circuits (ASICs),” in The
Electronic Design Automation Handbook, D. Jansen, Ed. New York:
Springer, 2010, pp. 384–397.

[4] A. Shetty, “ASIC design flow and methodology – an overview,” Interna-
tional Journal of Electrical and Electronics Engineering, vol. 6, no. 1,
pp. 1–5, 2019.

[5] D. Shapiro, M. Montcalm, and M. Bolic, “Parallel instruction set ex-
tension identification,” in 26th Convention of Electrical and Electronics
Engineers. IEEE, 2010, pp. 535–539.

[6] J. Zielasko and R. Drechsler, “Virtual prototype driven application
specific hardware optimization,” in Forum on Specification & Design
Languages (FDL). IEEE, 2023, pp. 1–8.

[7] M. Funck, V. Herdt, and R. Drechsler, “Virtual prototype driven design,
implementation and evaluation of RISC-V instruction set extensions,” in
25th DDECS. IEEE, 2022, pp. 14–19.

[8] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. Patterson, and
K. Asanovic, “The RISC-V instruction set,” in HCS. IEEE, 2013.

[9] Y. Gao, W. Qian, and E. Cui, “RISC-V ISA extension toolchain supports:
A survey,” in Proceedings of the 4th International Conference on
Computing, Networks and Internet of Things. ACM, 2023, pp. 924–929.

[10] V. Herdt, D. Große, and R. Drechsler, Enhanced Virtual Prototyping.
Cham: Springer, 2020.

[11] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype,” Journal of Systems Architecture, vol. 109, 2020.

[12] F. Ghenassia, Transaction-Level Modeling with SystemC. New York:
Springer, 2010.


	Introduction
	Preliminaries
	RISC-V
	Virtual Prototypes

	Related Work
	Methodology
	Extending Instruction Sequences
	Merging Instruction Sequences

	Experimental Results
	Experimental Setup
	Performance Evaluation

	Conclusion
	References

