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Abstract—In the context of digital circuits, formal verification
methods have been well-studied to ensure their functional cor-
rectness. However, several verification methods fail to provide
an upper bound for the time and space complexity. Therefore,
Polynomial Formal Verification (PFV) has been introduced to
address this problem. Unlike prior works, which have shown that
approximate circuits can be verified in polynomial time, we show
that approximate circuits with a constant cutwidth can be verified
even in linear time. Since approximate circuits have become
ubiquitous in error-resilient applications, it becomes essential to
guarantee their correctness. While prior works have been limited
to formal error analysis, we use Answer Set Programming (ASP)
based formal verification to guarantee that the approximate
circuit matches its functional specification. In this paper, we first
show that several approximate adder circuits exhibit a constant
cutwidth. We then provide a PFV approach that relies on this
cutwidth as a structural property of the circuits to guarantee a
linear-time verification w.r.t. the bitwidth using ASP. Finally, we
evaluate several approximate adders in terms of the upper bound
of the cutwidth, and verification time.

Index Terms—Polynomial Formal Verification, Logic Synthe-
sis, Approximate Circuits, Dynamic Programming, Answer Set
Programming, Cutwidth.

I. INTRODUCTION

In the context of digital system design, ensuring the func-
tional correctness of circuits is a crucial task. Circuit designs
are becoming increasingly complex to cater to modern applica-
tions’ demands, making the verification process more challeng-
ing. Thus, formal verification methods have been established
to ensure that the circuit implementation matches its specifi-
cations [1], [2]. Several methods have been successfully em-
ployed for the formal verification of circuits, including Boolean
Satisfiability (SAT), Binary Decision Diagrams (BDDs) [3],
Symbolic Computer Algebra (SCA) [4], Answer Set Program-
ming (ASP) [5]–[7], etc. While these methods are effective in
ensuring functional correctness, the upper bound of the run-
time for the verification process is still not guaranteed [8].
Therefore, Polynomial Formal Verification (PFV) [9] has been
introduced to provide an upper bound of the time complexity.

In prior works, it has been shown that several types of adders
can be verified in polynomial time [10]–[12]. Recently, it has
also been proven that adders with a constant Cutwidth [13] (i.e.,
Ripple Carry Adder (RCA), Carry Look-ahead Adder (CLA),
and Carry Skip Adder (CSKA)) can be even verified in linear
time [14]. In the context of formal verification, cutwidth
corresponds to the minimum number of edge cuts required
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to split the circuit into subcircuits. However, these works have
been limited only to exact adders.

In recent years approximate circuits have garnered signif-
icant attention as a result of the benefits obtained in power,
performance, and area [15]–[17]. Error-resilient applications
can produce an acceptable quality of output even after using
approximate circuits for their computations. Formal verification
methods for exact circuits cannot be directly used in approx-
imate circuits as they do not have the same specifications.
For example, functional approximation is one of the most
popular methods to design an approximate circuit. In functional
approximation, the exact Boolean function of the circuit is
replaced with an approximate Boolean function [16], [17].
Hence, the specification for the approximate circuit differs
from that of the exact circuit. As a result of this formal error
analysis has been used for the verification of approximate
circuits [18]. However, this method only guarantees that the
approximate circuits’ output error is below a specified error
bound and provides no guarantee that it matches the functional
specification. In another work, it was shown that approximate
adders can be verified using BDDs in polynomial time [19].

Prior works are limited as they either focus on performing
formal error analysis or verifying the approximate adders in
polynomial time. In this work, we alleviate these limitations
and guarantee that a) the approximate adders exactly matches
its functional specification, and b) the approximate adders with
a constant cutwidth can be formally verified in linear time.

Our approach relies on the cutwidth to split the netlist into
subcircuits. Thus, an ASP solver can verify each subcircuit
independently, while the interconnected nodes (also called Out-
going Nodes) among the subcircuits are stored. Our paper
represents a theoretical improvement over the state-of-the-art
as we prove that the approximate adders with constant cutwidth
can be verified in linear time. We also provide experimental
validation to confirm our theoretical findings, using several
approximate adders. These approximate adders can be divided
into sub-adders, containing both exact and approximate sub-
adders [20], [21]. These approximate sub-adders are obtained
by changing or removing gates from the exact ones, i.e., using
functional approximation [22]. We also experimentally evaluate
more than 1.5 million approximate RCA of input bitwidth 8
and 16, to highlight the efficacy of the proposed approach. We
do this as RCAs are mostly used in approximate adders [22],
[23]. However, to show that our method is not only limited
to RCA, we also show our proposed approach on approximate



(a) Exact Adder

(b) Approximate Adder

Fig. 1: 4-bit Ripple Carry Adder

CLA and CSKA adders, as they also have a constant cutwidth
and can be verified in linear time using ASP.

The paper is structured as follows: In Section II we introduce
adder functions, approximate adder circuits, and cutwidth as
a structural property of the And-Inverter Graph (AIG) [24]
representation of a circuit, and the basic concepts of ASP.
Subsequently, the modelling of circuits in ASP is described
in Section III. Section IV presents our approach for PFV of
approximate adder circuits. Section V describes the complexity
properties of our approach. An experimental evaluation follows
this in Section VI.

II. PRELIMINARIES

A. Adder Function

Let a, b be two inputs with size n bits, and carry−1 be the
incoming carry bit. The adder function adds two inputs ai and
bi together with carryi−1, and outputs sumi and carryi, for all
0 ≤ i ≤ n. The sum and carry functions can be characterized
as follows.

sumi := ai ⊕ bi ⊕ carryi−1 (1)
carryi := (ai ∧ bi) ∨ (carryi−1 ∧ (ai ⊕ bi)) (2)

Thus, the adder function takes 2n+1 input bits that represent
an, bn and carry−1, and n + 1 output bits, where n bits
represent sum and one carry output bit carryn.

B. Approximate Adders

In this work, we have focused on functional approxima-
tion, i.e., replacing the Boolean function of the output sumi

and carryi with another function to obtain the approximate
adders [22], [25]. The replaced Boolean function is chosen
to obtain benefits in design metrics like power, performance,
and area at the cost of producing inaccurate results for some
input combinations [26]. The error-resilient applications pro-
duce acceptable quality outputs even after introducing these
approximations [15]. The granularity of approximation can be
varied by changing the number of exact adders that are being
replaced with approximate adders [16], [22]. The example of a
4-bit exact and 4-bit approximate RCA with two approximated
bits is shown in Fig. 1. In prior works, it has been shown
that the approximate Boolean function is carefully crafted for
a particular application [17]. Thus, the implementation of an
approximate adder should exactly match its specification.
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Fig. 2: The logic diagram of a Half Adder is shown in Fig. 2(a), its
corresponding AIG graph illustrated in Fig. 2(b) and its truth table outlined
in Fig. 2(c).

C. Cutwidth of AIG
Informally, a netlist on the reverse topological order can

be represented as a directed acyclic graph AIG G, which is
composed of the sets of terminal nodes representing the inputs
PI and the outputs PO, and non-terminal nodes representing
the And gates and the Inv gates. This can be formulated as
follows.

Definition 1 (AIG Graph): Let G = (V,E) be an AIG of a
netlist C such that:

• V := {v | v is a node}.
• E := {(v, v′) | v, v′ ∈ V, v is connected to v′}.

Given the block diagram in Fig. 2(a), the AIG graph G is
constructed as shown in Fig. 2(b) and the truth table is shown
in Fig. 2(c).

A cutwidth of a graph G of a linear ordering v1, ..., vn is
the smallest integer k such that for every i = 1, ..., n − 1,
there exists at most k edges with one endpoint v1, ..., vi and
the other in vi+1, ..., vn. We refer by CO (called Out-going
Nodes) to the set of nodes induced by the Edge-Cuts to partition
the graph G into a set of subgraphs G1, ..., Gn. This yields a
characterization of K-bounded Graph that is defined in [27] as
follows.

Definition 2 (K-bounded Graph): Let K be a positive
number. Then, a graph G is said to be K-bounded if there
exists a partition σ = {G1, ..., Gn} of G such that for every
Gi ∈ σ, the number of inputs is at most K.

D. Answer Set Programming
ASP is a well-known declarative programming framework

from the area of knowledge representation and non-monotonic
reasoning [28]. It is mainly used to solve NP-hard search
problems, while allowing a compact modelling [29], and the
search problems are reduced for computing Answer Sets. We
follow the standard definitions of propositional ASP [30] (for
more details, see [31]).

Let a1, ..., an be distinct Atoms. Then, a program Π is
defined in terms of rules over a1, ..., an as follows.

Definition 3 (Logic program): Let a1, ..., an be distinct
atoms, and l,m, n be non-negative integers such that l ≤ m ≤
n. A Logic Program Π is a finite set of Rules of the form
a1 ∨ ... ∨ al ← al+1, ..., am,¬am+1, ...,¬an.
We denote by Head(r), Body(r) to the set of atoms appearing
on the left-hand side and right-hand side of the rule r,
respectively. A rule r is said to be a Fact (Negation-free) if
Body(r) = ∅. In the context of circuit design, a circuit is
modelled as a program Π. Then, a query Q (represented by a
set of facts) representing values of circuit inputs, is added to
the program Π (denoted by ΠQ). Thus, an ASP solver is asked,
whether there exists an answer set of ΠQ. The answer set is



defined in terms of the Gelfond-Lifschitz (GL) Reduct [32] as
follows.

Definition 4 (Answer Set): Given an interpretation I (repre-
sented by a set of atoms), and a program ΠQ. Then, I is an
answer set of ΠQ iff I is a minimal model of ΠQ.
We refer by AS(Π) to the set of all answer sets of the program
Π w.r.t. all possible queries Q. To illustrate the previous
definition, the answer set corresponds to the minimal set of
atoms, satisfying ΠQ. It is important to distinguish the ASP
semantics from the classical logic. In ASP, an answer set is a
model of a program ΠQ, while a model is not required to be
minimal in classical logic.

Example 1: Consider the program of the circuit in Fig. 2(a):
Π := {s← a,¬b; s← ¬a, b;⊤ ← s, a, b;⊤ ← ¬a,¬b;

c← a, b; }
The sum (Xor) is captured by the first four rules. The first
two rules illustrate that to set the sum s to 1, whenever a
and b are different. Similarly, the second two rules describe
that s is equal to 0, whenever a and b are the same. The last
rule is defined similarly to encode the carry c (And). Now, the
possible values for a and b are added as queries. This can be
described as Q = {a ∨ ¬a←; b ∨ ¬b←}. Hence, AS(Π) :=
{{a, s}, {b, s}, {a, b, c}} w.r.t. ΠQ.

III. CIRCUIT MODELLING USING ASP
In this section, we illustrate the modeling of the AIG

graph into ASP, where we rely on the input language of
the ASP solver Clingo [33]. Clingo provides an interface for
logical Or (as “X?Y”), And (as “X&Y”), Xor (as “XˆY”),
and Inv (as “1ˆX”). Also, it uses ”:-” to represent the left
arrow symbol. Moreover, it utilizes uppercase and lowercase
letters to denote variables and constants, respectively. The
general idea is to introduce ASP rules that represent PI ,
PO, And and Inv gates, a connection between two arbitrary
gate ports, and the circuit specification (exact and approximate
adder functions). The actual representation of AIG (type of a
gate, and connection between two different gate ports), and
the values of PI (representing an ASP query) are encoded as
ASP facts. Then, the ASP solver is used to reason whether
each output o ∈ PO matches its corresponding specification.

Each gate behavior is defined based on values on their
ports, where these ports provide an interface for passing
values between a gate and its connections. Let P (G) be a
unary function symbol representing a port of gate G, and
val(P (G), v) be a binary predicate symbol stating a value v
on a port P of gate G. Also, let conn(P1, P2) be a binary
predicate symbol, representing the connection between ports
P1 and P2. Furthermore, let type(G,T ) be a binary predicate
symbol that is used to label a gate G with a type T (i.e., And,
Inv, PI , and PO). Finally, the rules representing And, Inv, and
the connection between two ports are characterized as follows.

val(out(G), X&Y ):- type(G, and),

val(in1(G), X), val(in2(G), Y ). (3)
val(out(G), 1ˆX):- type(G, inverter), val(in(G), X). (4)

val(P2, V ):- conn(P1, P2), val(P1, V ). (5)

In Eq. (3), the And gate behavior is captured such that X
and Y indicate the values on the ports in1(G) and in2(G) of

gate G, respectively, while the value obtained from performing
logical And is passed to the port out(G). Similarly, Eq. (4)
captures the Inv gate such that it takes value X on port in(G)
of gate G and performs the logical Inv and passes it to out(G).
Finally, Eq. (5) captures passing the value V from port P1 to
port P2.

To complete the modeling of the circuit, we introduce
facts representing the actual representation of AIG. Consider-
ing Fig. 2(b), the facts type(and2, and), conn(b, in1(and2)),
and conn(a, in2(and2)) capture the And gate “2”, as well as
its connection with inputs a and b. Furthermore, it is essential
to encode the circuit specification. Thus, the output gate can
be checked against its corresponding logic function. The exact
sum and carry rules (recall Eq. (1) and Eq. (2)) are formulated
as follows.

sum(sumi, V ):- val(ai, A), val(bi, B),

carry(carryi−1, C), V = AˆBˆC. (6)
carry(carryi, V ):- val(ai, A), val(bi, B),

carry(carryi−1, C), V = (A&B)?(C&(AˆB)). (7)

Since there exist several ways to approximate the sum and
the carry functions, they can be encoded similarly using the
Clingo logical representation of the logic functions (e.g., Or
and Xor). Also, it is essential to add a rule that relates
each output gate with its expected logic function to enable
verification of the circuit. This is characterized as follows.

verify(oi):- sum(sumi, X), val(oi, X).

verify(on):- carry(carryn, X), val(on, X).

Finally, the values PI are encoded as facts (i.e., val(a, 0) and
val(b, 0) correspond to the first row of the table illustrated
in Fig. 2(c)) that represent the ASP query. Let Π(G) be the
resulting ASP program. The set of values is said to be a Valid
Input if every output gate matches its corresponding logic
function (every verify(oi) appears in the answer set of Π(G)).
This yields a characterization for a verification of the graph.

Definition 5 (Valid Graph): Let Π(G) be a program defined
w.r.t. the AIG graph G of size n, and F be a set of sets of
facts such that each s ∈ F represents an input sequence. Then,
G is said to be a Valid Graph, iff for every s ∈ F , we have
that s is a valid input. Otherwise, G is an Invalid Graph.
It is worth noting that the overall search space is 2n. Hence,
|F| = 2n. The following section illustrates the PFV approach
for defining an upper bound of the search space.

IV. POLYNOMIAL FORMAL VERIFICATION OF
APPROXIMATE ADDER CIRCUITS

In this section, we extend the PFV approach of adder circuits
illustrated in [14] to the case of approximate adders. We rely
on the cutwidth property to split the AIG G into subgraphs,
where the interleaving nodes (out-going nodes) are stored to be
used in other subgraphs. Thus, we provide a method for passing
the out-going nodes over subgraphs. Finally, we illustrate the
verification of the subgraphs.

A. Graph Splitting

An AIG graph G can be split into subgraphs such that each
subgraph starts from one output node and traverses all nodes,
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Fig. 3: The AIG G of 2-bit approximate RCA block diagram in Fig. 3(a) and the resulting (reduced) subgraphs (G,O0), (G,O1) and (G,O2) that can be
obtained from the AIG graph in Fig. 3(b). The nodes highlighted in red and blue correspond to input and output nodes, respectively. The nodes highlighted in
cyan and green correspond to carry C1 and approximate output O0, respectively. Dotted nodes and edges are removed when the subgraph is reduced.

from which the output node is reachable. This is characterized
as follows.

Definition 6 (Subgraph): Let G = (V,E) be a graph, and
v ∈ V be an output node. Then, a subgraph (G, v) = (Vv, Ev)
of G is obtained such that:

• Vv := {v} ∪ {v′ ∈ V | v′ is reachable from v} ∪ {v′ ∈
V | ∃x, y ∈ V : x, y are reachable from v′, v}.

• Ev := {(u′, v′) ∈ E | u′, v′ ∈ Vv}.
Consider the graph G of Fig. 3(b). It can be split into subgraphs
(G,O0), (G,O1), and (G,O2) as shown in Fig. 3(c), Fig. 3(d),
and Fig. 3(e), respectively. It is clear to see that some
nodes (out-going nodes) appear in several subgraphs (e.g., node
“18”). We refer by Gi to the Reduced Subgraph of (G,Oi) that
is obtained from removing all nodes and edges that appear in
any subgraph (G,Oj), where j < i. This set of nodes is defined
w.r.t. Gi as follows.

Definition 7 (Out-going Nodes): Let G = (V,E) be AIG
graph, and Gi = (Vi, Ei) be the reduced subgraph of (G,Oi),
where 0 ≤ i ≤ n. The set COi of Out-going Nodes is defined
w.r.t. Gi such that COi := {a ∈ Vi | (b, a) ∈ E, b ̸∈ Vi}.
Similarly, we refer by CIi to the set of In-going Nodes
containing all nodes with a predecessor node that appears
in any other graphs Gj , where j < i. For the graph G1

in Fig. 3(d), we have that CO1 = {32}, and CI1 = {18}.
Notably, CI0 = ∅ of G0, while COn = ∅ of Gn. As the
reduced subgraph Gi may contain primary inputs PIi, and
non-primary inputs (in-going nodes) CIi, we denote by INi

to the set of all inputs of the reduced subgraph Gi.
B. Information Passing

Intuitively, the set of out-going nodes COi is evaluated
in the reduced subgraph Gi. Thus, the values of COi need
to be stored to be used in any other subgraphs Gj , where
j > i. Notably, these values cannot be stored as a function of
the primary inputs, as this would require passing the primary
inputs to other subgraphs. Instead, the values of COi are stored
w.r.t. the computed carry function. This allows us to use the
carry function carryi in the specification of the output for the
reduced subgraph. Therefore, we define two mapping functions
f and g as follows.

f : INi 7→ COUTi. (8)
g : COUTi 7→ [0, 1]. (9)

Intuitively, function f maps each set of input values s ∈ INi

to a set of values COUTi of out-going nodes COi. Then,

function g maps the resulting values s′ ∈ COUTi to the value
of carry function carryi. Finally, a hash table Xi is used to
store the resulting values as follows.

Xi = {(f(s), g(f(s))) | s ∈ INi}. (10)

To illustrate this, consider Fig. 3(c), and suppose carry−1 = 0.
Then, CO0 = {18}, and CI0 = ∅. There are two possible
values of f , i.e., s ∈ COUT0: f(0, 0) = {0} and f(1, 1) =
{1}. Other input combinations do not need to be considered,
as they are already covered in COUT0. Notably, the hash table
Xi is bounded by the size of COi (e.g., X0 = {(0, 0), (1, 1)}).

C. Subgraph Verification
The verification of Gi involves checking whether Gi is

valid (recall Definition 5), and constructing Xi to be used in
CIj of subgraph Gj , where j > i. This is because inputs INi

of Gi may contain primary inputs PIi and in-going nodes CIi.
As CIi may be stored in any hash table Xj , where j < i, it is
essential to go over all tables Xj to obtain all values of CIi.
A relation ⋊⋉ is used to define the relation between two table
Xj and Xj′ such that Xj ⋊⋉ Xj′ := {r ∪ r′ | r ∈ Xj , r

′ ∈
Xj′ , COj ∩ COj′ ⊆ CIi}. The values of the tables Xj and
Xj′ are combined, if they have out-going nodes that appear in
the in-going nodes Ci of subgraph Gi, where j, j′ < i. The
resulting table Xi(CIi) is defined as follows.

Xi(CIi) := Xi−1 ⋊⋉ ... ⋊⋉ X0. (11)

Hence, the resulting table Xi(CIi) is populated with the values
of PIi. Consider Fig. 3(d), in which CI1 = {18} is populated
with PI1 = {A1, B1}, where X0(CI0) = {(0, 0), (1, 1)}.

V. TIME COMPLEXITY

In this section, we illustrate that the upper bound of the
cutwidth property relies on the exact sub-adder and is indepen-
dent of the approximate sub-adder. Earlier, it has been proven
in [14] that the program Π(Gi) of the reduced subgraph Gi

is verified in O(2|INi|). Also, it has been proven that the
overall graph G with a constant cutwidth cw is verified in
time O(n · 2K), where n is the number of subgraphs, and
K = max(|IN0|, ..., |INn|).

Lemma 5.1: Let A be an exact adder of size n. If the adder
A has a constant cutwidth cw and can be verified in O(n ·
2K), then an approximate adder A′ constructed w.r.t. A with
x approximate bits also exploits a constant cutwidth cw′ and
can be verified in O(n ·2K′

) such that cw′ ≤ cw and K ′ ≤ K.



TABLE I: Calculated cutwidth (cw), upper bound (K), number of approximate bits (#Approx), clingo solving, clingo modelling, and verification time (seconds)
for the approximate adders of size 8.
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1 1 3 16 9 74.6 104.6 3 2 10.0 15.0 0.03 0.06 0.03 0.02 0.03 0.02 0.42 0.72 0.51
2 1 3 16 9 79.6 104.5 3 2 15.5 19.6 0.02 0.06 0.03 0.01 0.03 0.02 0.42 0.75 0.52
3 1 3 16 9 84.6 109.5 3 2 15.5 19.6 0.02 0.06 0.03 0.01 0.03 0.02 0.42 0.71 0.52
4 1 3 16 9 89.6 114.5 3 2 15.5 19.6 0.02 0.06 0.03 0.01 0.03 0.02 0.42 0.73 0.52
5 1 3 16 9 94.6 119.5 3 2 15.5 19.6 0.02 0.07 0.03 0.01 0.03 0.02 0.42 0.73 0.52
6 1 3 16 9 99.6 124.5 3 2 15.5 19.6 0.02 0.06 0.03 0.01 0.03 0.02 0.42 0.70 0.52
7 1 3 16 9 104.6 129.5 3 2 15.1 19.2 0.02 0.07 0.03 0.02 0.03 0.02 0.42 0.73 0.52

TABLE II: Calculated cutwidth (cw), upper bound (K), number of approximate bits (#Approx), clingo solving, clingo modelling, and verification time (seconds)
for the approximate adders of size 16.
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1 1 3 32 17 154.6 203.5 3 2 10.0 15.0 0.06 0.96 0.06 0.03 0.54 0.03 0.42 9.02 0.60
2 1 3 32 17 159.6 208.5 3 2 15.5 19.6 0.05 0.98 0.06 0.03 0.55 0.03 0.42 9.03 0.60
3 1 3 32 17 164.6 213.5 3 2 15.5 19.6 0.05 0.97 0.06 0.03 0.54 0.03 0.43 9.00 0.60
4 1 3 32 17 169.6 218.5 3 2 15.5 19.6 0.05 1.02 0.06 0.03 0.55 0.03 0.43 9.10 0.60
5 1 3 32 17 174.6 223.5 3 2 15.5 19.6 0.05 1.04 0.06 0.03 0.56 0.03 0.42 9.10 0.60
6 1 3 32 17 179.6 228.5 3 2 15.5 19.6 0.04 1.03 0.06 0.03 0.55 0.03 0.42 9.11 0.83
7 1 3 32 17 184.6 233.5 3 2 15.5 19.6 0.04 2.74 0.06 0.03 0.55 0.03 0.42 9.06 0.60
8 1 3 32 17 189.6 238.4 3 2 15.5 19.6 0.04 1.08 0.06 0.03 0.56 0.03 0.42 9.19 0.60
9 1 3 32 17 194.6 243.4 3 2 15.5 19.6 0.04 1.16 0.06 0.03 0.57 0.03 0.32 9.21 0.60

10 1 3 32 17 199.6 248.4 3 2 15.5 19.6 0.04 1.21 0.06 0.02 0.58 0.03 0.42 9.32 0.60
11 1 3 32 17 204.6 253.4 3 2 15.5 19.6 0.03 1.22 0.06 0.02 0.59 0.03 0.42 9.41 0.60
12 1 3 32 17 209.6 258.4 3 2 15.5 19.6 0.03 1.18 0.07 0.02 0.58 0.03 0.42 9.33 0.60
13 1 3 32 17 214.6 263.4 3 2 15.5 19.6 0.03 1.30 0.07 0.02 0.58 0.03 0.43 9.46 0.61
14 1 3 32 17 219.6 268.3 3 2 15.5 19.6 0.03 1.19 0.07 0.02 0.57 0.03 0.42 9.28 0.61
15 1 3 32 17 224.6 273.3 3 2 15.1 19.2 0.03 1.11 0.07 0.03 0.58 0.04 0.42 9.20 0.61

Proof: Let A be an exact adder circuit of size n with
a constant cutwidth cw. Then, the AIG graph G constructed
w.r.t. A can be split into (G,O0), ..., (G,On) by starting from
any output node Oi and traversing all nodes that are reachable
from Oi, where 0 ≤ i ≤ n. Moreover, let G0, ..., Gn be the
reduced subgraphs of (G,O0), ..., (G,On). Now let A′ be an
approximate adder of A with x approximate bits. Similarly, let
G′ be the AIG graph of A′. Also, let (G′, O0), ..., (G

′, On) be
the resulting subgraphs of G′. Consequently, let G′

0, ..., G
′
n be

the resulting reduced subgraphs. As A′ has x approximate bits,
let G′

0, ..., G
′
x be the approximate reduced subgraphs such that

x ≤ n with inputs IN ′
0, ..., IN

′
x.

As the approximate adder A′ is derived from A by either
removing gates or replacing some gates with others, and the ap-
proximation is performed at the sub-adder level (bit level), the
number of edges connecting any two sub-adders either remains
constant, in the case of retaining the same number of nodes
representing the carry or decreases due to the approximation
of the carry. Therefore, for every CO′

i of G′
i and COi of Gi,

we have that |CO′
i| ≤ |COi|, where 0 ≤ i ≤ x. Let cw be the

cutwidth of the adder A such that cw = max(CO0, ..., COn).
Similarly, let cw′ be the cutwidth of the adder A′ such that
cw = max(CO′

0, ..., CO′
n). Then, cw′ ≤ cw. As A has a

constant cutwidth cw, then ∀i, 0 ≤ i ≤ n : |COi| ≤ cw. Hence,
cw′ ≤ cw.

Also, for every IN ′
i , INi we have that |IN ′

i | ≤ |INi|, where
0 ≤ i ≤ x. Let K be the upper bound of inputs of the adder
A such that K = max(IN0, ..., INn). Similarly, let K ′ be
the upper bound of inputs of the adder A′ such that K =
max(IN ′

0, ..., IN
′
n). Hence, K ′ ≤ K.

Therefore, if the exact adder A has a constant cutwidth cw

and the approximate adder A′ of A, then, there exists an integer
cw′ ≤ cw such that cw′ is the cutwidth of the approximate
adder A′. Also, if the adder A can be verified in O(n · 2K),
then the approximate adder A′ can be verified in O(n · 2K′

).

VI. EXPERIMENTAL WORK

To check the feasibility of our approach, we have imple-
mented the ASP framework in Python. The framework takes an
input approximate circuit in the standard AIGER format [34],
and circuit specification in the Verilog. We evaluate approx-
imate RCA, CSKA, and CLA of different input bitwidth
under different functional approximations, as it has been shown
in [14] that the exact circuits of RCA, CSKA, and CLA have
a constant cutwidth. The approximate RCA is designed by
generating all possible approximations for the two outputs.
Since each of the two outputs is dependent on 3 inputs, the
number of possible functions that can be generated is 22

3 ∗223 ,
i.e., 65,536 designs for each approximated bit [22]. The CSKA
and CLA adders are generated using the ArithsGen tool [35].
These adders of size n are split into blocks of size 4. For CSKA
and CLA adders, we have chosen one approximation and the
number of approximated bits is 4, to highlight that our method
is not only limited to RCA. All experiments were performed
on an Intel(R) Core(TM) i7-11370 with 3.30 GHz. We set a
timeout of 100 seconds and a limited available RAM to 16 GB
per instance.

A. Approximate RCA

We evaluate 1.5 million approximate RCA with 8 and 16
input bitwidth with different numbers of approximate bits up
to 7 and 15, respectively in terms of the cutwidth, the upper



TABLE III: Calculated upper bound (K), and verification time (V T ) (seconds)
w.r.t. size (n) for CSKA and CLA, where #Approx= 4.

n
CSKA CLA

K V T K V T
8 8 0.51 11 0.53

16 8 0.61 11 0.72
32 8 0.81 11 1.09
64 8 1.29 11 1.85
128 8 2.24 11 3.36

bound for the upper bound of inputs, verification time, clingo
modeling time, and clingo solving time.

Table I presents the results for approximate RCA adders of
size 8 (n = 8) with all possible functional approximations.
It shows the number of approximate bits (#Approx), the
cutwidth (the maximum number of out-going nodes) cw, the
upper bound for inputs (the maximum number of in-going
nodes) K, the number of instances, the average number of gates
in the input graph, and the average number of gates in reduced
subgraphs. Moreover, it provides the minimum, maximum,
and average times in seconds for clingo modeling, clingo
solving, and verification. As cw = 1 for different functional
approximations and different numbers of approximate bits, this
aligns with Lemma 5.1 that the cutwidth is bounded by the
regular sub-adders and does not rely on the approximate sub-
adders.

Similarly, Table II presents the results for approximate RCA
adders of size 16 (n = 16) with all possible functional
approximations. Since the upper bound K is equal to 3 (i.e.,
two primary inputs PI and one in-going node CI representing
the incoming carry) for n = 8, and n = 16, this confirms the
linearly time scalability that has been shown in [14].

B. Approximate CLA and CSKA

To show the linear time scalability of the verification process,
we evaluate approximate CLA and CSKA with different input
bitwidth up to 256 in terms of the upper bound K and
verification time, where the number of approximate bits is
equal to 4 and the functional approximation is fixed.

Table III shows the upper bound for the inputs K, and
verification time w.r.t. approximate CLA and CSKA. It shows
that both approximate circuits exhibit a constant cutwidth.
Therefore, the verification process scales in linear time w.r.t.
the input bitwidth. Also, it confirms Lemma 5.1 showing that
the upper bound K is bounded by the regular sub-adders and
does not rely on the approximate sub-adders.

VII. CONCLUSION

In this paper, we have proven that approximate adders with
a constant cutwidth can be verified in linear time w.r.t. the
input bitwidth. These linear time verifiable approximate adders
are generated from RCA, CSKA, and CLA regular adders by
performing functional approximation. Also, we have shown
that the upper bound for the cutwidth depends on the exact
sub-adders and does not depend on the approximate ones.
Finally, the experimental evaluations confirm the upper bound
complexity of each approximate adder architecture.
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