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Abstract—General-Purpose Computation on Graphics Processing
Units (GPGPUs) are becoming crucial in accelerating computing capacity.
Due to the massive parallelism capabilities of GPUs, they can achieve
impressive speedups of up to 32 times compared to common CPUs.
However, writing highly parallel code and utilizing a GPU is challenging
for programmers. Developers are facing new challenges since GPUs
handle threads and parallelism differently from CPUs. Academia and
industry proposed several profilers to support developers in terms of
code optimization. These profilers often require an actual device (e.g.,
GPU) and take a long time for the profiling process.

We propose HyPA, a hybrid Parallel Thread Execution (PTX) Analyzer
that inspects PTX code statically and dynamically. HyPA implements
a partly functional emulator that executes instructions that rely on
runtime dependencies to count the number of executed PTX instructions
and divergent branches. HyPa executes compiled kernels—the programs
that run on GPUs—generated by the CUDA compiler and supports the
full PTX 7.7 specification. Our functional emulator allows significantly
faster analysis of PTX code compared to standard profilers. In our
evaluation, we quantify this increase in performance through benchmark
runs. HyPA achieved speedups of up to 536% compared to the nvprof
profiler. Moreover, our approach can gather performance metrics beyond
static analysis (e.g., branch efficiency) by a faster execution time than by
profiling the application on an actual device. Finally, we provide an open-
source implementation of HyPA to help developers and system designers
in further research and development.

Index Terms—GPU, CUDA, PTX, Power and Performance Optimiza-
tion

I. INTRODUCTION

The usage of general-purpose applications on Graphics Processing
Units (GPUs) increased over the last decades. Nowadays, their
applications range from embedded devices [1] to supercomputers like
the Summit [2], covering almost all kinds of electronic devices.

While in June 2015, nearly 19% of the systems on the TOP500
list used GPU accelerators, the proportion increased to nearly 30%
in June 2022 [3]. The use of GPUs for training and inferencing of
Deep Neural Networks (DNN) benefits this increase [2], [4].

GPUs (e.g., NVIDIA V100) offer 32 times better performance on
DNNs compared to classical CPUs [5]. For example, by utilizing the
potential of 256 GPUs’ parallelism, resnet50 [6]—a Convolutional
Neural Network (CNN) with 50 hidden layers—can be trained on
the full ImageNet [7] data set in one hour [8]. In contrast, when
resnet50 was introduced by [6] the training took 29 hours [9].

Besides all their apparent merits, GPUs’ drawback is their high
power consumption to achieve their high levels of performance. For
example, the Summit supercomputer uses 27,648 NVIDIA Volta
GPUs. Its energy consumption is 13 million watts [2]. Literature
estimates that a 5% decrease in power consumption of the Summit
will lead to a saving of 1 million dollars [10]. In Internet of
Things (IoT) devices, a higher power consumption—due to the usage
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of Machine Learning (ML) algorithms—has been reported [1] as
well. For instance, executing object recognition locally on an Nvidia
Jetson TX1 consumes 7 Watts, compared to 2 Watts, when the object
recognition is offloaded to the cloud [1]. Therefore, decreasing power
consumption is a relevant factor for IoT devices as well. With the
application of ML in many areas of electronic devices, the energy
efficiency of ML algorithms becomes crucial.

Three strategies are possible in order to achieve energy-efficient
applications 1) designing more energy-efficient devices, 2) optimizing
the applications’ implementation or 3) optimizing the chosen device
for the chosen application. Options 1 and 2 are usually long-term
approaches, as pursuing the second strategy requires deep inside
knowledge of the code and behavior of an actual device to maximize
its utilization, and regarding option 1, utilizing a GPU energy-
efficiently is a complex and challenging task [11], [12]. However,
the third option may allow users to supply only the performance
necessary for their task and thus, optimize energy efficiency. To do
so, one needs information about the potentially employed devices,
e.g. the different GPUs, for his specific task, e.g. a CNN-inferencing
task. Standard metrics that are used for the prediction of power
consumption and performance are the branch-efficiency, the #instruc-
tions, and the #floating-point-operations [13], [14]. Code profiling
and execution analysis need to be performed for all possible setups
to gather these metrics.

Academia and industry proposed different approaches for code
profiling and analysis. The three main approaches—which we will
describe in the following—are 1) classical profiler tools that measure
performance counters during the execution of the application on an
actual device, 2) simulators that simulate or emulate the actual device
and 3) static code analysis where performance and power prediction
is calculated based on the application’s source code. However, all
approaches have their limitations, discussed in the following:
(1) Profiling tools like nvprof [15], CUPTI [16], or nsight1 log
different performance counters (e.g., the total number of executed
instructions) during execution on an actual GPU [15], [17]–[19]. To
find the optimal GPU, it’s necessary to run the profiling process on
multiple GPUs since the profiling results are restricted to the GPU
in use. This leads to three main disadvantages of profilers.

• Performance counters are not consistent across different GPUs.
This means, that the same performance counter can be calculated
differently on different GPUs or the corresponding counter may
not exist. Hence, comparing these metrics can be challenging or
even impossible.

• The profiling step is very time-consuming as its duration is
significantly longer than the application run-time itself due to
its dependence on the GPU instead of the application [17],

1https://developer.nvidia.com/nsight-systems



[18], [20]. Hence, profiling GPUs is not a time-efficient way
of determining the most appropriate GPU.

• For profiling, access to the actual GPU is necessary. As results
are not transferrable between different GPUs due to the de-
pendence on their machine language [18], the user would need
access to every GPU that is evaluated, which is very costly.

(2) Simulation techniques solve the abovementioned availability
problem of GPUs. They allow the computation of metrics without
actual access to the GPU. In the past, tools like GPGPUSim [21],
and Ocelot [22] were proposed. However, since they emulate GPU
behavior and execute the application on CPUs, which do not offer
the same high parallelism capabilities, the execution time takes much
longer than the profiling on actual GPUs. Additionally, they do not
achieve identical results compared to profiling. Hence, while helping
to reduce costs, simulation techniques are less favourable in terms of
time than profiling techniques.
(3) Another possibility is static code analysis. Its main drawback
is the fact that it can not analyze dynamic behavior. Conditional
jumps may have different control-flow paths in different threads
which can only be determined with a dynamic analysis. Therefore,
the result of static analysis either underestimates (in the case of
loops) or overestimates (in the case of non-entered ELSE branches)
several metrics (e.g. numbers of instructions). Other metrics, like
branch efficiency, are inherently based on dynamic analysis, and can
therefore not be computed. Its advantage, however, is the small time
consumption [20], [23]–[25].

The three existing methods have crucial drawbacks for gathering
standard metrics to predict power and performance based on ML.
Therefore, we propose an approach for computing the respective
metrics, which combines the time-related advantage of static analysis
with the advantage of simulations without having its time-related
drawback. Our approach is based on the idea that it is not necessary
to simulate the entire application on the GPU, but only those parts that
influence conditional jumps and may therefore obfuscate the results
of static analysis. The resulting hypothesis is twofold: First, a hybrid
analysis approach is more time-efficient than the standard simulation
approach and second, not only more precise than a static analysis but
capable of determining metrics that are inherently based on dynamic
analysis.

Thus, we created an Hybrid PTX Analyzer (HyPA) that considers
dynamic dependencies within the code and can be used without
executing the entire application (e.g., CNNs). The basic idea of our
tool is to read all instructions, consider the number of threads, and
search for dynamic dependencies. Afterwards, a functional simulator
executes only those PTX instructions on a CPU that rely on dynamic
run-time dependencies for conditional jumps. By this, HyPA is over-
coming the lack of speed of existing GPU simulators. The generated
profiles can be used for power and performance prediction of GPU
applications (e.g., [26]) or for better code understanding (e.g., [18],
[20], [21]). HyPA gives detailed information on the number and type
of instructions, floating point operations, and divergent branches.

Our main contributions can be summarized as follows:

1) A hybrid approach of PTX emulation to profile CUDA appli-
cations on a low-level code basis

2) An automatic extraction of the following PTX code metrics:
number of instructions, floating point operations, number of
divergent branches, and branch efficiency

3) An implementation of HyPA as an opensource project to help
developers, computer architects, and researchers in their work

This paper is structured as follows: Section II provides information

regarding GPUs and PTX. We describe our approach in Section III.
The experimental results are shown in Section IV and discussed
in Section V. Section VI covers related work. Lastly, Section VII
concludes the paper.

II. BACKGROUND

In this section, we explain the necessary background and intro-
ductory concepts of General Purpose GPUs and PTX ISA which are
necessary to understand the proposed approach and to make the paper
self-contained.

A. General Purpose GPU

GPUs have a different and more complex architecture compared
to traditional CPUs. The GPU architecture consists of a scalable
number of Streaming Multiprocessors (SMs). An SM is partitioned
into multiple Processing Units (PUs) to improve the utilization of
GPUs. In the case of the NVIDIA V100, an SM is divided into
four PUs. Each PU contains 16 Floating Point (FP) 32-Bit Cores, 8
FP64 Cores, 16 INT32 Cores, one Tensor Core (with mixed-precision
Tensor Cores for Deep Learning), an L0 instruction cache, one warp
scheduler, one dispatch unit, and a 64KB Register File [25], [27].

Kernels compiled for a GPU are subdivided into Cooporative
Thread Arrays (CTAs), also called thread blocks [19]. A CTA is
further divided into groups of 32 threads called a warp [25], [28]. All
threads inside a warp execute the same instruction [20]. This principle
is similar to Single Instruction Multiple Data (SIMD). However,
NVIDIA calls it Single Instruction Multiple Threads (SIMT). Unlike
SIMD instructions, the concept of warps is new to many program-
mers. Additionally, they only have control over the total number of
threads but not over the warp handling. Thus, programmers write
a program for one thread and then specify the number of parallel
executions of this thread [25].

All threads in one warp are executed on one SM. An SM can also
handle multiple warps [19], [28]. The number of concurrently running
warps is determined by the resource requirements of each warp, such
as the number of registers or shared memory usage. Beginning with
the Volta architecture, the warp-synchronous programming, that all
threads executing the same instruction within a warp, has been made
obsolete [19]. As a result, the generated threads are less ideal due to
divergent branches.

The analysis in this paper considers primarily Nvidia GPU archi-
tectures starting from Volta and their successors because they are
provided with a solid and more reliable theoretical foundation since
there are massive changes between the Volta architecture and their
predecessor [19].

B. Parallel Thread Execution

Nvidia offers the Compute Unified Device Architecture (CUDA)
library to run applications on their GPUs. Frameworks like Ten-
sorflow include CUDA so users can easily run their applications
on GPUs [29]. Therefore, the code is compiled to Parallel Thread
Execution (PTX) to execute the CUDA applications on a GPU.
PTX is an Instruction Set Architecture (ISA) including memory
access and computational instructions (e.g., ADD, MUL, FMA) and
is translated to native binary micro-instructions [30]. Some PTX
instructions cannot be translated to a single binary micro-instruction
and are therefore represented by multiple ones [25]. Nvidia provides
a detailed natural language description of the PTX model which gives
developers a detailed understanding of PTX’s syntax and behavior 2.

2https://docs.nvidia.com/cuda/parallel-thread-execution/



The binary micro-instruction language (SASS) is the target ma-
chine language of a specific GPU [31] PTX is designed as a virtual
ISA to be portable between different GPU generations with different
instruction sets (i.e., SASS implementations). The lack of portability
makes SASS unattractive for analysis [18] as it limits the analyses
to a single GPU.

The number of executed instructions of a PTX code can be
calculated statically by counting the total instructions per thread block
and multiplying it by the total number of threads. However, this
only includes the static number of instructions. Since PTX supports
conditional jumps, the actual number of executed instructions might
differ from the results of this static analysis [25]. The code needs
to be executed to determine data dependencies for conditional jumps
to get more accurate results. Static analyses, e.g. [25], [32], ignore
underlying data dependencies. Consequently, the counted number of
instructions is only an approximation of the actual number. On the
one side, the counted number of instructions can be an overestimation
if instructions are not executed due to conditional jumps. On the other
side, the counted number can also be an underestimation, if the PTX
code includes loops and parts are executed multiple times due to
conditions.

Divergent Branches: The PTX ISA and NVIDIA’s GPU archi-
tectures allow so-called divergent branches. A divergent branch is a
branch where some threads are within the same warp branch while
others are not (cf. Figure 1). Consequently, the number of divergent
branches is always smaller or equal to the number of branches. If
all threads in a warp take the same path in the control flow no
divergent branches occur. Deferring the concept of SIMT, not all
threads execute the same instruction for the occurrence of divergent
branches [20], [23], [24]. This behavior leads to an unknown amount
of instructions that cannot be detected by static code analysis. Since
these instructions rely on conditional jumps, the register values must
be calculated. As a consequence, a simulation of the program is
necessary to determine the value of the registers that are checked
at the branch conditions.

Two cases of divergent branches can occur 1) IF without ELSE;
during this case, some threads enter the IF and execute the additional
instructions while others are idle due to the SIMT concept where all
threads have to execute the same instructions. 2) IF, with ELSE,
this case is more complex; while some threads enter the IF and
execute the instructions, other threads are idle. Afterwards, when
the previously idle threads enter the ELSE statement, the IF-threads
become idle [20]. Both cases may lead to a different number of
executed instructions; hence, counting the instructions of a PTX code
and multiplying them by the number of threads will not lead to the
correct number of executed instructions.

III. HYBRID PTX ANALYSIS

The PTX Code analysis is split into three parts 1) static code
analysis and dependency detection, 2) dynamic code analysis and
emulation, and 3) profile generation. The general workflow of HyPA
is illustrated in Figure 2.

A. Static PTX Analysis

HyPA starts with a static code analysis to detect all instructions that
need to be executed, the number of threads that will be raised, and
the run-time dependencies that need simulating to resolve conditional
jumps based on dynamic dependencies. Therefore, HyPA is parsing
the PTX Assembler and stores the information in an intermediate

Thread 2 Thread 3Thread 1 Thread 2Thread 3 Thread 1

with divergent branch without divergent branch

Fig. 1: Example of three different threads taking their path in a control
flow graph. In the left graph thread 3 creates a divergent branch as
in the right graph no divergent branches are created.

PTX

HyPA

Static Analysis

Instruction Identification

Instruction Graph Generation

Filtered Instruction Graph
Generation

Dynamic Analysis

Register Emulation

Divergent Branch Detection

Instruction Set Simulation

CNN Profile

Fig. 2: General Workflow of the PTX Analyzer HyPA

representation. In this intermediate representation, an instruction is
formally denoted by a vector

ins = (id, dr, sr1, ..., srm, CTAid, CBid) (1)

where id stands for the unique instruction identifier, dr and
srj , 1 ≤ j ≤ m denote the destination and source registers,
resp., and CTAid,CBid are the CTA-Id and the Code-Block-
Id. INS is the set of all possible instructions which enables the
denotation of I(P ) ∈ INSn for the list of all instruction lines
of a given program p. Ii, 1 ≤ i ≤ n denotes the i-th instruction
line in this denotation scheme. Thus, the formal notation of the
exemplary PTX code line add.s64 %rd48 %rd7, %rd47; is
ins = (0 , rd48 , rd7 , rd47 , 0 , 0 ). Since it is the first identified PTX
line, the ID id is set to zero (0). Moreover, since no CTA and
labels are specified in the example, both CTA-Id and Code-Block-Id
also are set to zero (0) in this case. Please note, that the maximum
number of specified source registers is limited to 4 based on the PTX
documentation [30].

In the following, we will shortly define dependency graphs [33]
and their restriction to conditional instructions.

Definition 1 (Dependency Graph). A Dependency Graph G is defined
as a tuple G = (V,E), where V is a finite set of nodes, denoting
instructions, and E = {(v1, v2)|v1, v2 ∈ V } is a set of directed
edges. An edge from node v1 to node v2 indicates that the latter
instruction is dependent on the former.

Each PTX code line containing an instruction (Ii) is represented
by a node (vi ∈ V ) where all instructions included in a CTA lead to a



Dependency Graph GCTAid containing these instructions as well as
their data dependencies. A dependency of two or more instructions
exists if a source register (srj) of instruction Ii is the destination
register (dr ) of earlier occurring instructions. Consequently, the node
vi for instruction Ii depends on the nodes vl whose instructions Il
have previously been written to the source registers specified for Ii
and thus an edge e = (vl, vi) is included in the graph for each
instruction that does so [34].
During Dependency Graph (G) construction all jump instructions are
stored in a Control Flow Instruction List (CFIL). At the same time,
these nodes constitute the set Vbranch ⊆ V , namely all nodes in
the instruction graph that may affect a specific jumping operation.
The jump instructions can be identified unambiguously based on the
identifiers (id) assigned to the lines during initial parsing,

Filtered Dependency Graph: Based on our initial hypothesis,
not all instructions must be executed to decide whether a thread will
branch. Therefore, a dynamic slicing [34] is performed. Starting from
the jump condition of a specific code block, all influencing nodes are
traced back through the instruction graph. The resulting subgraph
is called Filtered Dependency Graph (FDG) in the following. We
formally define this in the following

Definition 2 (Filtered Dependency Graph (FDG)). The Filtered
Dependency Graph is defined as subgraph Gv∗ = (V ′, E′) of
G = (V,E), where v∗ ∈ Vbranch ⊆ V , with

V ′ = {v0 ∈ V |∃π = v0v1...vn with vn = v∗,

(vi−1, vi) ∈ E, ∀i ∈ {1, ..n}} ⊆ V

E′ =
{
e = (v1, v2) ∈ E|v1, v2 ∈ V ′}

The FDG only consists of the instructions that need to be executed
to identify if a conditional jump operation will be triggered or not.
Hence, all jump operations have to be located to generate the FDG.
Based on the CFIL from the dependency graph generation, the paths
to the root nodes are identified. The working principle is as follows:
A jump instruction from the CFIL marks the starting point at node
(A) in the dependency graph (G). This starting node (A) is added
to the FDG. For every added node, its (transitive) parents are added
as well. The resulting graph trivially is a subset of G. The identified
FDG will then be simulated during the Dynamic PTX Analyzation.

B. Dynamic PTX Analyzation

Based on the FDGs which are generated for all CTAs, the dynamic
PTX analysis proceeds by emulating the GPU. The emulation does
not perform the full application (i.e., PTX code) since the FDG only
consists of a subset of instructions. Every generated FDG is given
to the Instruction Set Simulator (ISS) which builds the core of the
dynamic PTX analysis.

Instruction Set Simulator: Based on a C++ CPU implementa-
tion, the ISS executes PTX instructions included in the FDG. The
necessary registers are emulated based on a symbol table, where
each register is identified by its name and receives the belonging
value after the instruction emulation. Moreover, the ISS receives the
instructions, and based on a fixed assignment, the equivalent C++
implementation is performed. We reimplemented nearly all existing
PTX instructions in C++, allowing the analyzer to apply to all CUDA
applications.

Register Emulator: To correctly determine the jump conditions,
it is necessary to save the values of the registers. Hence, we designed
a data structure consisting of a key-value pair that can be defined as
a function based on the definition in Eq. 2.

f : K → V (2)

TABLE I: An overview of CNN models used in the experiments

Model name Input Size Layers Neurons

m-r50x1 224 × 224 50 15,903,016
m-r50x3 224 × 224 50 143,111,080
m-r101x3 224 × 224 101 25,3408,168
m-r101x1 224 × 224 101 28,158,248
m-r154x4 224 × 224 154 611,981,544
resnet101 224 × 224 101 55,886,036
resnet152 224 × 224 152 79,067,348
resnet50v2 224 × 224 50 31,381,204
resnet101v2 224 × 224 101 51,261,140
resnet152v2 224 × 224 152 75,755,220
nasnetmobile 224 × 224 771 27,690,705
nasnetlarge 331 × 331 1041 290,560,171
densenet121 224 × 224 121 49,926,612
densenet169 224 × 224 169 60,094,164
densenet201 224 × 224 201 77,292,244
mobilenet 224 × 224 28 16,848,248
inceptionv3 299 × 299 48 32,554,387
vgg16 224 × 224 16 15,262,696
vgg19 224 × 224 19 16,567,272
efficientnetb0 224 × 224 240 25,117,095
efficientnetb1 240 × 240 342 40,150,331
efficientnetb2 260 × 260 342 50,908,981
efficientnetb3 300 × 300 387 87,507,971
efficientnetb4 380 × 380 477 180,088,531
efficientnetb5 456 × 456 579 358,290,427
efficientnetb6 528 × 528 669 605,671,091
efficientnetb7 600 × 600 816 1,046,113,195
Xception 299 × 299 71 62,981,867
MobileNetV2 224 × 224 53 21,815,960
InceptionResNetV2 299 × 299 164 81,201,907
alexnet 227 × 227 8 650,000

The required keys are determined based on the filtered instruction
graph, and each key occurs precisely once. If the ISS now calculates
a value, it is assigned as a value to the corresponding register key.
This process is defined as follows:

f (ki)← vnew (3)

The currently assigned value vi is overwritten with the new value
vnew if a register ki is written to several times during the emulation.

In addition, the ISS reads the values of a register specified as
source register for instructions from this data structure f (ki) = vi .
This guarantees that during the emulation of the PTX code, the correct
values are always present in the register emulator.

Divergent Branch detection: Each time a jump is performed,
the current code-block ID is stored in a list. Each thread has its list
of code-block IDs. The order of the IDs in the code-block ID list
indicates the exact program path of the respective thread.

If the lists of all threads of a CTA are compared to each other,
divergent program paths (e.g., divergent branches) can be recognized,
and threads, which deviate, can be identified. When the code-block
ID list is created, the first code block is always given the ID zero (0).
Consequently, all code block ID lists start with ID zero (0), followed
by the respective thread’s code-block- ID sequence. Different orders
of code-block IDs identify different code paths and thus divergent
branches. If no divergent branch occurs, all code path lists have the
same order of code-block IDs.

C. Profile Generation

After the analysis, a PTX profile in the form of a Comma-
Separated Values (CSV) file is generated. This file can be used for
power and performance prediction and other optimization tools. All
analyzed PTX files are combined into a single output file, which
includes details such as filename, PTX version, PTX target, PTX
address size, file instructions, CTAs, thread count, static instructions
count, dynamic instruction count, FP instructions count, executed



instructions count, divergent branches, divergent branches for each
CTA, branch efficiency, and duration (in milliseconds).

IV. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate our hypothesis that the hybrid approach
combines the advantages of static analysis and simulation approaches,
while avoiding their disadvantages, we aim to answer three research
questions with our evaluation.

Research Question 1. How does the run-time of the profiling
approach compare to the hybrid approach?

Research Question 2. How much do the acquired metrics of the
hybrid approach differ from the profiling approach?

Research Question 3. Can the hybrid approach measure metrics that
the static analysis can not and how do they compare to the profiling
approach?

We base our research questions on the profiling approach instead
of the simulation approach due to three reasons: (1) The profiling ap-
proach is the most accurate, i.e. it surpasses the simulation approach,
(2) it is faster than the simulation approach and thus more suited
for the evaluation, and (3) it does not affect statements about the
simulation approach if evaluated in favor of the hybrid approach. The
third reason holds because the profiling is faster than the simulation,
i.e. if the hybrid approach is faster than the profiling approach, it is
faster than the simulation, and more accurate.

In order to evaluate these questions, we perform the hybrid dy-
namic code analysis on several different CNNs (n = 32) and compare
these results to classic profilers. In the following, we describe the
technical setup, used benchmarks, and computed metrics, before
presenting the evaluation results.

Technical Setup: The technical setup is a SLURM-based HPC
cluster and we ensure that the same machine of the cluster is used
in all experiments. The used machine is equipped with three Nvidia
V100S 32GB, 256GB memory, and 2 AMD EPYC ROME 7272. The
home directory is a Network Attached Storage (NAS) connected by
a 10GBit/s ethernet connection. HyPA runs on a Lenovo ThinkPad
T490s with Intel i7-8565U, 16GB memory and Ubuntu 22.04.

Benchmark CNNs: The following provides an overview of the
CNNs used for all experiments. They differ in various aspects like
the number of layers, neurons, or input layer size. In Table I, the
CNNs and their attributes are listed.

Moreover, we consider CNNs designed for different use cases.
While some CNNs are designed to reach the best prediction accuracy,
like Resnet [6], Alexnet [35], or Densenet [36], some are designed to
perform well on mobile devices like MobileNet [37]. In contrast, the
NASnetmobile and NASnetlarge are designed by Neural Architecture
Search (NAS) [38] techniques.

All CNNs are pre-trained and downloaded from Tensorflow Hub
as we focus on the inferencing aspect of these networks.

Data Generation: For each CNN, two profiles are computed:
One, as a result of the application of HyPA, and one as a result
of the application of nvprof as the reference value. In order to
determine the average execution time of both HyPA and nvprof for
the profile generation, each profile generation is repeated 10 times.
The resulting metrics (besides run-time) are identical for all runs, as
both approaches are deterministic.

Applications’ Metrics: We measure the performance of nvprof
and HyPA in collecting the following metrics: branch efficiency,
inst executed, flop count sp, flop count dp, and flop count hp,
where the latter three are cumulated to flop count.
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Fig. 3: Run-time comparison for HyPa and nvprof

The Branch Efficiency (η) is defined as the ratio between the
number of branches (b) and divergent branches (d) and can be
calculated as follows [39]:

η = 100 × b − d

b
= 100 − 100 × d

b
(4)

If there are no divergent branches, the efficiency is 100%, if every
branch is a divergent branch, the efficiency is 0%.

Experimental Results: Figure 3 illustrates the runtime results for
both HyPA and nvprof as boxplot comparisons. For every net, the
right boxplot shows the nvprof results, and the left boxplot shows
the HyPA results. The results of HyPA are smaller and show less
variance than the results of nvprof. This decreases the visibility of the
boxplots’ colors. Therefore, Figure 4 visualizes this relation again, but
with focus on the pairwise comparison of results. The different colors
indicate different CNNs, while the line depicts the bisector. Values
above the bisector indicate greater runtimes for HyPA, values below
the bisector show greater runtimes for nvprof. Most nets have shorter
runtimes for HyPA than for nvprof. The results for the execution time
yield mean values between 185.3s and 2410.1s for nvprof, mean
values between 19.63s and 1220.1s for HyPA. For 27 out of 32
CNNs, the reduction in runtime is statistically significant (α < 0.05,
Welsh’s t-test for comparing means).

Regarding the acquired metrics, our experiments are illustrated in
Table II. It shows values for the instruction count results, counts
of floating-point operations and results for branch efficiency. Addi-
tionally, we report the percentage of instructions that need execution
(simulation) for HyPA. Results for both types of instructions show
varying results. In most cases, HyPA reports a smaller instruction
count than the static analysis which may be due to the conservative
overestimation of static analyses. For seven CNNs, the HyPa reports
a higher instruction count than static analysis. The instruction count
results for nvprof are significantly higher than both HyPA and static
analysis. We discuss this in the next section.
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Fig. 4: Run-time comparison for HyPa and nvprof in correlation

As HyPA considers runtime information, it is capable of reporting
metrics such as branch efficiency which is impossible for static
analysis by design. The reported values of HyPA for branch efficiency
deviate by 0.5 - 7 percentage points from the ones reported by nvprof,
with one outlier that deviates by 12 percentage points.

Overall, HyPA had to perform at most 10% of the instructions
to obtain the necessary information to compute its required metrics.
This is in line with the runtime results described above.

V. DISCUSSION

Following, we will discuss the interpretations of our evaluation and
the current limitations of HyPA.

A. Evaluation interpretation

In response to R1, we found that HyPA is faster than nvprof in
27 out of 32 experiments. Therefore, it can be assumed that HyPA
is also faster than classical simulation, such as GPGPU-Sim, since a
simulation is slower than profilers like nvprof.

When analyzing R2, we found a significant difference between the
calculated instructions by HyPA and the actual values measured by
nvprof. This difference can be explained by three reasons:

1) PTX instructions are not directly translated one-to-one into
SASS instructions, and since NVIDIA does not provide docu-
mentation on SASS, it is difficult to understand the translation
process [18].

2) During the translation process, further optimization steps can
be performed, resulting in one PTX instruction being translated
into multiple SASS instructions [18].

3) CUDA kernels can be called and executed multiple times,
which is not evident in the PTX code but can be observed
in the nvprof profiles.

Comparing nvprof metrics like instruction executed and
flops count sp can be complicated because some work on
wrap-level, while others work on thread-level [18].

Verifying points 1 and 2 through reverse engineering is compli-
cated. However, verifying point 3 is possible by simulating parts of
the CUDA code to obtain the exact number of kernel calls. Therefore,

integrating HyPA into a compiler such as LLVM or Clang can help
with this step. It is essential to apply the concept of HyPA to both
CUDA and PTX, not just PTX.

Finally, we can answer R3 and demonstrate that our system can
gather metrics beyond what static code analysis can provide, such as
branch efficiency. Additionally, we have found that our system can
accurately predict branch efficiency with a high degree of accuracy,
ranging from 0.5 to 7 percentage points off from what is reported by
nvprof. When combined with the speedup, our the system represents
a critical improvement for power and performance estimation, as well
as the extraction of necessary metrics.

B. Limitations

Besides all its merits, HyPA still has some drawbacks and lim-
itations. Currently, two aspects limit our approach 1) not all PTX
instructions are implemented, and 2) data dependencies in conditional
jumps might not resolve correctly. In the following, we describe each
limitation and a possible solution to overcome these.

Since not all PTX instructions are implemented (e.g., indirect
addressing), our HyPA implementation has to fall back on state-
of-the-art approaches. Thus, the results might still be approximated.
In future work, we plan to implement an equivalent for all PTX
instruction and, thus, overcome this issue.

Regarding the second limitation: In some cases, a register is written
in two parallel conditional jumps. Currently, HyPA is adding an
edge to the first node in the dependency graph where a source
register is written. This might lead to a wrong control flow when
the register is written in both branches. This issue can be solved by
implementing an Static Single Assignment (SSA) Form y [40], [41]
or by earlier dynamic analysis and determination of which branch
is to be taken into account. Thus, the edge for the dependency can
be added between the correct nodes instead of the earliest occurring
node that writes to a register and thus generates a data dependency.
We plan to modify the dependency graph generation and extend it by
control flow generation with SSA Form to overcome this issue and
improve HyPA to get closer to the most accurate calculation of the
total number of instructions.

VI. RELATED WORK

The performance evaluation and optimization process can be di-
vided into two categories 1) given a particular hardware, the software
is optimized to extract the maximum performance on the architecture,
and 2) given a group of applications (software), hardware features can
be extracted to adapt novel software requirements [20].

In order to perform optimization analysis, tools (profiler) are
necessary. Most (GP)GPU vendors provide tools like nsight, CUPTI,
nvprof [15], or ncu from NVIDIA. Moreover, alternative tools for
multi-vendor applications are more comprehensive than just a single
vendor or system. [20]. However, using profilers and performance
counters is limited and has three main disadvantages 1) the number
and type of performance counters are not uniform over different
devices (e.g., GPGPUs) even if the same profiler is used. Hence,
performance and power optimization techniques or predictive models
based on performance counter are not immediately generalizable.
2) The number of performance counters that are simultaneously ac-
cessible is limited by the number of hardware registers. Consequently,
multiple application executions and profiling may be required to
collect all performance counters [17]. This leads to longer profiling
times and limits the estimation of profiling run-time. 3) To measure
the different performance counters, the application must be run on
actual GPUs. In the case of searching for the most appropriate GPU,



TABLE II: Experimental results for static and dynamic analysis with HyPA for 32 different CNNs.

NVIDIA V100s

Instruction Count Branch Efficiency

CNN % to execute HyPA Static ratio nvprof Instruction nvprof FLOPs HyPA FLOPs ηnvprof ηHyPA ratio
densenet121 9.46% 3,347,534 10,722,398 0.3122 73,918,277,390 1,239,313,864,022 340,755 92.1568% 98.9158% 0.9316
densenet169 9.76% 4,618,062 19,331,166 0.2388 132,677,813,819 2,323,797,491,957 392,979 92.1568% 99.0541% 0.9303
densenet201 9.86% 6,975,950 26,674,398 0.2615 268,813,644,433 4,853,604,008,393 478,995 92.1568% 99.1078% 0.9298
efficientnetb0 7.21% 1,605,049 3,563,417 0.4504 28,170,395,486 341,116,792,220 356,583 92.1535% 96.0827% 0.9591
efficientnetb1 6.24% 2,284,762 4,870,436 0.4691 44,518,197,354 617,624,476,202 568,808 92.1535% 96.2471% 0.9574
efficientnetb2 5.76% 3,234,232 6,097,016 0.5304 74,094,157,251 824,407,223,138 776,827 92.1535% 96.3291% 0.9566
efficientnetb3 6.40% 3,785,200 6,140,976 0.6163 110,536,344,626 1,103,881,214,923 894,237 92.1535% 96.8977% 0.9510
efficientnetb4 6.04% 4,167,634 6,454,880 0.6456 128,613,616,058 1,502,321,376,491 1,014,889 92.1535% 97.2130% 0.9479
efficientnetb5 5.57% 6,988,730 10,670,869 0.6549 154,166,225,231 1,999,289,837,215 1,691,145 92.1535% 97.5638% 0.9445
efficientnetb6 6.13% 8,311,211 12,591,814 0.6600 133,278,295,936 2,212,260,957,075 2,037,615 92.1535% 97.9676% 0.9406
efficientnetb7 6.28% 9,979,998 13,901,223 0.7179 98,031,779,822 2,251,834,391,082 2,362,090 92.1535% 97.6439% 0.9437
InceptionResNetV2 7.89% 4,986,406 9,935,678 0.5018 128,538,060,350 2,591,083,345,663 666,852 92.1568% 99.1184% 0.9297
inceptionv3 7.06% 3,591,286 6,674,334 0.5380 99,139,487,866 1,709,094,946,347 429,036 92.1568% 98.6580% 0.9341
mobilenet 10.77% 792,566 1,077,652 0.7354 15,516,090,366 287,752,628,102 169,807 92.1086% 97.3356% 0.9462
MobileNetV2 10.22% 995,962 2,032,606 0.4899 15,757,543,754 210,300,655,245 177,403 92.1538% 98.2702% 0.9377
m-r101x1 7.11% 96,990,375 28,257,288 3.4324 45,603,141,589 870,125,486,565 10,790,977 92.1568% 98.6123% 0.9345
m-r101x3 8.43% 187,338,305 42,787,720 4.3783 101,530,724,333 2,734,139,342,013 21,533,361 99.6015% 99.1282% 1.0047
m-r154x4 9.53% 267,066,941 62,232,168 4.2914 156,582,406,489 4,138,138,061,309 34,877,039 99.6015% 99.2344% 1.0036
m-r50x1 8.28% 46,505,966 14,963,624 3.1079 44,031,032,572 853,827,859,109 5,338,521 92.1568% 98.5723% 0.9349
m-r50x3 9.02% 90,945,907 20,466,728 4.4435 91,364,961,407 2,589,336,187,773 10,241,279 99.6010% 99.0358% 1.0057
nasnetlarge 7.55% 5,776,912 28,546,814 0.2023 76,928,601,211 1,702,504,253,055 568,407 92.1566% 99.2786% 0.9282
nasnetmobile 8.31% 3,363,489 19,124,047 0.1758 8,651,631,107 103,056,406,909 192,899 92.1536% 99.1792% 0.9291
resnet101 5.77% 2,728,871 2,922,782 0.9336 33,718,778,616 665,107,865,206 625,983 92.1565% 98.8248% 0.9325
resnet101v2 6.13% 2,804,054 3,035,678 0.9236 53,668,419,497 1,109,393,289,019 570,448 92.1565% 98.8290% 0.9324
resnet152 5.50% 3,923,239 4,117,022 0.9529 34,822,490,986 680,214,892,914 917,567 92.1565% 99.0168% 0.9307
resnet152v2 5.83% 4,012,758 4,248,094 0.9446 54,769,117,374 1,124,161,761,326 864,080 92.1565% 99.0196% 0.9306
resnet50 6.51% 1,532,071 1,725,982 0.8876 32,615,069,876 650,429,295,715 334,399 92.1565% 98.2734% 0.9377
resnet50v2 6.88% 1,605,974 1,832,990 0.9761 52,567,694,245 1,094,624,830,407 280,912 92.1565% 98.2815% 0.9376
vgg16 9.56% 8,738,852 412,254 21.1977 96,577,294,513 1,480,562,789,621 1,292,884 92.0827% 86.9564% 1.0589
vgg19 9.56% 8,738,852 412,254 21.1977 94,645,096,385 1,488,245,837,048 1,292,884 92.0827% 86.9564% 1.0589
Xception 6.37% 2,223,811 3,402,190 0.6536 24,125,255,065 735,441,505,983 391,266 76.3605% 98.4047% 0.7759

many different GPUs are needed, and the profiling process must be
repeated on each of them. This is a very time-consuming and costly
process.

CUDA Flux [18] is a lightweight Instruction Profiler for CUDA
applications that characterizes all types of PTX instructions executed
by a kernel. However, CUDA Flux is not considering divergent
branches within a PTX code. Hence, it cannot count the actual num-
ber of executed instructions and is still approximating. In contrast, our
approach analyses the PTX code by combining static analysis with
partial simulation. However, CUDA Flux is only a static analysis of
the PTX code. Moreover, the accuracy is only given for single Thread
analysis.

Besides the analysis tools, there is also a set of simulation-based
approaches like GPGPU-Sim [21], ocelot [22], or Barra [24]. The
obtained results have an accuracy between 10% to 20% compared to
the actual hardware execution [42]. However, these simulators execute
the GPU code on the CPU, which does not offer a high amount of
parallelism and, thus, is significantly slower than the actual hardware
execution. The limited accuracy and speed are significant drawback
that impairs the usage of simulators for GPU application profiling
[20]. Moreover, GPGPU-Sim is more suitable for evaluating GPU
architecture and helps designers modify existing GPU architectures
by adding detailed timing models [23]. In contrast, we focus on
analyzing high-level PTX kernels’ insights.

In [12], a Virtual GPU (VGPU) is introduced. The OpenMP code,
specified to run on a GPU, is compiled to CPU binary but includes
the same instruction as for the GPU. This allows the execution of
the GPU code on a CPU while using the available CPU profiling
tools. However, since the highly parallel GPU code is executed on
the CPU, it has the same disadvantages as the simulator. Moreover,
the work focuses on GPU applications written in OpenMP to make
the application portable between the different GPU vendors like
NVIDIA and AMD. In contrast, we focus on CUDA applications

since CUDA is the most common GPU implementation for neural
network frameworks.

Similar to the simulators are Virtual Prototypes (VPs) [43], which
were the inspiration for the execution implementation of different
PTX instructions on the CPU in C++. A VP is an abstract model
of a specific hardware platform (e.g., RISC-V processors). Using a
VP enables software developers to simulate applications behavior at
early design stages on the virtual device.

In [20], a top-down performance profiling approach for NVIDIA’s
GPUs is presented. Therefore, they take advantage of the profiling
tools offered by NVIDIA (e.g., CUPTI, nvprof, and ncu). Conse-
quently, the application has to be executed on an actual device. In or-
der to verify multiple GPUs’ performance, the top-down performance
profiling from [20] has to be executed on multiple actual GPUs.

VII. CONLUSION

We created a tool that can analyze PTX code without having to
run it on a real GPGPU. To account for divergent branches, we
use partial execution and code emulation. By reimplementing the
PTX ISA in C++, we can emulate the execution on a CPU system.
Unlike traditional GPU simulators that run the entire application,
our approach only executes the necessary parts to identify divergent
branches. This speeds up the analysis, and the execution time is
comparable to or faster than profiling with nvprof on the NVIDIA
V100S.

Our research shows that HyPA can provide metrics beyond what
static code analysis can offer, such as branch efficiency. One signifi-
cant advantage of HyPA is its ability to speed up the design space ex-
ploration process by providing early metrics for different approaches
to power and performance prediction of CNNs on GPGPUs. HyPA’s
quick execution time makes it an excellent tool for this type of work.

Although HyPA is capable of parsing the entire PTX ISA, it
currently has a limitation in its ability to emulate indirect addressing.



As part of our future work, we aim to implement indirect addressing
in order to fully cover the ISA emulation. We will expand the hybrid
analysis to include memory access emulation for analyzing memory
reads and writes. This will result in a more comprehensive profile
that is better suited for deep learning application profiling.
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